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Abstract

This paper discusses the proof of the Mahler-Lech Skoll Theorem using
Strassmann’s theorem and its ties with p-adic analysis.

1 Introduction

The Mahler-Lech-Skolem theorem answers the question of how many roots a
linear recurrence sequence can have. Skolem made the first step in the theorem
and proved the theorem for a recurrence an ∈ Z for each n. Mahler and Lech
later extended the proof to more general cases. Funnily so, Mahler later gave
an independent proof apart from Lech’s result and was embarrassed that Lech
had already proven it.

The importance of the theorem is that it gives no mention to the p-adics
while every known proof uses p-adic techniques in some way. It provides an
example of how analytic methods can solve algebraic problems.

To tackle the theorem, we will introduce the technique of p-adic analysis. p-
adic analysis is the study of functions and analysis in the context of the p-adics
Qp rather than the real or complex numbers.

The p-adics comes from another way of defining the distance between two
rational numbers. The Euclidean absolute value d(x, y) = |x − y| gives rise to
the real numbers. The p-adics rely on the p-adic absolute value.

Contrary to the real numbers, p-adic numbers are ”close together” if their
difference is divisible by a high power of p. The p-adics have their notion of
absolute value. In the realm of p-adic functions, we will largely be focused on
p-adic analytic functions.

There are some interesting ways in which the p-adic numbers are distinct
from the reals or complex numbers. While Qp is a complete field, it is also totally
disconnected (as the only connected subsets are one-point subsets). Addition-
ally, while the algebraic closure of the real numbers (the complex numbers) is
a complete field and finite-dimensional vector space over the real numbers, the
algebraic closure of Qp is an infinite dimensional vector space over Qp and is not
complete.

We will begin the preliminaries by introducing the p-adics and the connection
between linear recurrence sequences and linear algebra. We will prove Strass-
mann’s theorem, which is a key step in the proof. We will then give the first
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proof of the Mahler-Lech-Skolem theorem. Furthermore, we will explore p-adic
logarithms and exponentials, alongside p-adic interpolation, to provide a second
proof of the Mahler-Lech-Skolem theorem. We finish the paper with some open
questions.
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3 Preliminaries

Recall that we constructed the real numbers as equivalence classes of Cauchy
sequences of rationals, using the usual absolute value d(x, y) = |x − y|. We
construct the p-adics using the p-adic absolute value, which we will define in
the following section. The following definitions are standard in p-adic textbooks,
one can refer to [Gou97, Chapter 2].

3.1 Absolute Values and Valuations

We begin with the general notion of what an absolute value is.

Definition 3.1. An absolute value on a field k is a function || : k → R+ that
satisfies the following three conditions:

|x| = 0 if and only if x = 0

|xy| = |x||y| for all x, y ∈ k

|x+ y| ≤ |x|+ |y| for all x, y ∈ k

We will say that an absolute value on k is non-archimedean if it satisfies the
following condition.

|x+ y| ≤ max(|x|, |y|) for all x, y ∈ k

Notationally, we will consider |x|∞ to be the standard absolute value of x in
R as in | − 3|∞ = 3. Notice that the fourth condition directly implies the third
condition. We then define what a valuation is. Intuitively, a valuation tells us
how ”large” elements in a field are. We introduce the p-adic valuation.

Definition 3.2. Fix a prime number p ∈ Z. The p-adic valuation on Q is the
function vp : R − {0} → Z defined as follows: for each integer n ∈ Z, let vp(n)
be the unique positive integer satisfying

n = pvp(n)n′
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with p not dividing n′. Moreover, we extend vp to the field of rational numbers
as follows: if x = a

b in Q, then

vp(x) = vp(a)− vp(b)

We can play around with this definition.

Example. One can check the following.

v5(3060) = 1

v2(3) = 0

v2(8) = 3

Naturally, we are curious as to what properties this valuation satisfies.

Theorem 3.3. For all x and y ∈ Q, we have

vp(xy) = vp(x) + vp(y)

vp(x+ y) ≥ min(vp(x), vp(y))

Proof. For the first part, let us denote x = px1x′ and y = py1y′.

xy = px1x′py1y′ = px1+y1x′y′

vp(xy) = x1 + y1 = vp(x) + vp(y)

For the second part, we just factor out the common power of p. Without
loss of generalization we let x ≥ y, so px1 ≥ py1 .

x+ y = px1x′ + py1y′ = py1(px1−y1x′ + y′)

vp(x+ y) ≥ y1 = min(vp(x), vp(y))

■

We now define the p-adic absolute value.

Definition 3.4. For any nonzero x ∈ Q, we define the p-adic absolute value of x
by

|x|p = p−vp(x)

We extend this to all of Q by defining |0|p = 0.

Using the p-adic absolute value, we can construct Qp as equivalence classes
of Cauchy sequences of rationals using the p-adic absolute value. We can also
define Zp and pmZp

Definition 3.5. Zp (called the ring of p-adic integer) is the subring of Qp com-
prised of p-adic numbers with p-adic absolute value less than or equal to 1.

Definition 3.6. For a non-negative integerm, the notation pmZ refers to {pmx|x ∈
Zp}.

This is the set of all p-adic integers divisible by pm.
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Example. One can check that the following infinite series converge in Z5:

1 = 1 + 0 · 5 + 0 · 52 + 0 · 53 + · · · ∈ Z5

x = 1 + 2 · 5 + 3 · 52 + · · · ∈ Z5

−1 = 4 + 4 · 5 + 4 · 53 + · · · ∈ Z5

The previous one is true by the fact that

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + · · · .

125 = 0 + 0 · 5 + 0 · 25 + 1 · 125 + · · · ∈ p3Zp

x = 0 + 0 · 5 + 0 · 25 + 3 · 125 + 4 · 625 + · · · ∈ p3Zp

We define what a unit in Qp is.

Definition 3.7. An element x ∈ Qp is a unit if there exists an element y ∈ Qp

such that
xy = 1.

Moreover, we define the prime ideal. Intuitively, in the ring of integers Z,
the prime ideals are precisely 0 (the zero ideal) and p (the ideal generated by a
prime number p). The condition ab ∈ R =⇒ a ∈ R or b ∈ R generalizes the
fact that if p divides ab, then p divides one of a or b.

Definition 3.8. For a commutative ring R. An ideal P ⊂ R is called a prime
ideal if it satisfies the following properties

• It is a proper ideal P ̸⊂ R.

• For any two elements a, b ∈ R, if ab ∈ R, then either a ∈ R or b ∈ R.

Notice that ||p is a non-archimedean absolute value. Generally, absolute
values capture information related to primes instead of what sign a number has,
as in | − 5| = 5. This brings us to the product formula as an example of how
the absolute values work together.

Before we get into the proposition, note that we have written absolute values
in the form ∥p where p is either a prime or infinity. It is convenient to think of
the symbol ∞ as a prime number in Z and refer to it as the infinite prime. This
will let us say ”∥p for all primes p ≤ ∞.” This is mainly for convenience.

Proposition 3.9. For any x ∈ Q×, we have∏
p≤∞

|x|p = 1

where p ≤ ∞ means that we take the product over all the primes of Q, including
the ”prime at infinity.”
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Proof. We let x = pa1
1 pa2

2 · · · pak

k . Then, we have three cases:

|x|q = 1 if q ̸= pi

|x|pi
= p−ai

i for i = 1, 2, 3, . . . k

|x|∞ = pa1
1 pa2

2 · · · pak

k

The result follows. ■

To conclude this section, the completion of Q with respect to the p-adic
metric is denoted Qp. We think of the p-adics as equivalence classes of Cauchy
sequences of rationals using the p-adic metric.

3.2 Metrics

Metrics are a notion of distance and lead to some unusual properties in the
p-adic sense.

Definition 3.10. Let k be a field and || an absolute value on k. We define the
distance d(x, y) between two elements x, y ∈ k by

d(x, y) = |x− y|

The function d(x, y) is called the metric induced by the absolute value.

A set on which a metric is defined is a metric space. We explore two simple
properties of this metric.

Lemma 3.11. For any x, y ∈ k, d(x, y) ≥ 0, and d(x, y) = 0 if and only if
x = y.

Proof. Notice that the absolute value function |x − y| is greater than or equal
to 0 because by definition it outputs a nonnegative value. Note that |x− y| = 0
if and only if x− y = 0, which implies the conclusion. ■

We notice that this metric is commutative.

Lemma 3.12. For any x, y ∈ k, d(x, y) = d(y, x).

Proof. Notice that |x − y| = |y − x| by properties of the absolute value. This
directly implies the conclusion. ■

We can also use the triangle inequality. Recall the following definition.

Lemma 3.13. For a triangle with sides a,b, and c, we have a+ b > c, a+ c > b
and b+ c > a

Lemma 3.14. For an x, y, z ∈ k, d(x, z) ≤ d(x, y) + d(y, z).
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Proof. We plot x, y, z on a plane. Notice that they form a triangle. The absolute
value distances are |x − z|, |x − y|, and |y − z|. By the triangle inequality, we
have |x− z| ≤ |x− y|+ |y − z|.

To handle the edge cases, i.e. they are all on a line, we consider a line with
x, y, z in that order. Permutations give the same result. Since they lie on a line
|x− y|+ |y − z| = |x− z|. This implies the conclusion. ■

There is an inequality which is stronger than the triangle inequality in a
similar respect, and this is referred to as the ultrametric inequality. A set with
a metric induced by a non-archimedean absolute value is called an ultrametric
space. [Gou97][Chapter 2]

Lemma 3.15. Let || be an absolute value on a field k, and defined a metric by
d(x, y) = |x− y|. Then || is non-archimedean if and only if for any x, y, z ∈ k,
we have

d(x, y) ≤ max(d(x, z), d(z, y))

Curiously, the ultrametric inequality directly implies the triangle inequality.
Alain Robert refers to the following as the ”strongest wins principle” in page
429 of [vdP89].

Proposition 3.16. Let k be a field and let || be a non-archimedean absolute
value on k. If x, y ∈ k and |x| ≠ |y|, then:

|x+ y| = max(|x|, |y|)

Proof. Wlog |x| > |y|. Noting that we can apply the ultrametric inequality, we
have:

|x+ y| ≤ |x| = max(|x|, |y|).

Noting that x = (x+ y)− y:

|x| ≤ max(|x+ y|, |y|)

The only way for both of these inequalities to hold is if:

max(|x+ y|, |y|) = |x+ y|

This implies |x| ≤ |x+ y|, which in turn lets us conclude |x| = |x+ y|. ■

The following corollary proposes that triangles are isosceles.

Corollary 3.17. In an ultrametric space, all ”triangles” are isosceles.

Proof. Let x, y, z be three elements of a vector space. Thus, we have d(x, y) =
|x− y|, d(y, z) = |y − z|, and d(x, z) = |x− z|. Now, we make use of:

(x− y) + (y − z) = (x− z)

We then invoke the proposition to show that if |x− y| ≠ |y − z|, then |x− z| is
equal to the bigger of the two. Either way, two ”sides” are equal.” ■
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3.3 Recurrences relation with Matrices

Linear recurrence sequences can be analyzed using matrices. Our motivation
for turning to matrices to study a general linear recurrence sequence is that it
provides a concise expression for the recurrence sequence, as we will soon see.

We begin this subsection by proving the Binet formula with matrices.

Theorem 3.18. Binet Formula
If Fn is the nth Fibonacci number, then

Fn =
1√
5

(
(
1 +

√
5

2
)n − (

1−
√
5

2
)n

)

We recall xk+2 = xk+1 + xk (this is the Fibonacci series), and we define vk
as:

vk =

[
xk

xk+1

]
vk+1 =

[
xk+1

xk+2

]
=

[
xk+1

xk+1 + xk

]
=

[
0 1
1 1

] [
xk

xk+1

]
= Avk

We let A =

[
0 1
1 1

]
. Notice that A is diagonalizable, and particularly the

characteristic polynomial is PA(x) = x(x− 1)− 1 = x2 − x− 1. The roots are
1
2 (1±

√
5). The eigenvalues are

λ1 =
1

2
(1 +

√
5) and λ2 =

1

2
(1−

√
5)

The eigenvectors are respectively e1 =

[
1
λ1

]
and e2 =

[
1
λ2

]
. Moreover, the

diagonalizing matrix for A is P =
[
e1 e2

]
=

[
1 1
λ1 λ2

]
Given the simple matrix,

it is implied that the solutions are of the form vk = b1λ
k
1e1 + b2λ

k
2e2. We find

the coefficients b1 and b2 as they are[
b1
b2

]
= P−1v0 =

−1√
5

[
λ2 −1
−λ1 1

] [
1
1

]
=

1√
5

[
λ1

−λ2

]
The last line follows from the formula for an inverse 2x2 matrix. We now
substitute this:

vk =
λ1√
5
λk
1

[
1
λ1

]
− λ2√

5
λk
2

[
1
λ2

]
By comparing top entries, we receive

xk =
1√
5
(λk+1

1 − λk+1
2 )

It appears that any linear recurrence can be translated to a matrix, and we
show that this is true. We first recall what a characteristic polynomial is.
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Definition 3.19. The characteristic polynomial of A is defined as

PA(x) = det(Ix−A)

where A is a n×n matrix with integer entries and x is a chosen matrix. I refers
to the identity matrix.

Theorem 3.20. Cayley-Hamilton Theorem

PA(A) = 0

In words, this means that every square matrix has a distinct equation called a
characteristic polynomial.

This seems a bit confusing, so let’s do an example to make it clearer. Let

A =

[
1 2
3 4

]
.

PA(x) = (x− 1)(x− 4)− 2 · 3 = x2 − 5x− 2

Upon substituting x = A:

PA(A) =

[
1 2
3 4

]2
− 5

[
1 2
3 4

]
− 2

[
1 0
0 1

]
=

[
0 0
0 0

]
We give an idea of how one can prove this. Readers who want to pursue

this particular part further should consult [HK71, Chapter 6]. We first specify
that all matrices in this proof have coefficients over the complex numbers, and
that the space of such matrices of a fixed size has a natural topology coming
from identifying n×n matrices with vectors with n2 entries. We are essentially
proving the Cayley-Hamilton theorem for matrices with integer entries in Z (and
in an algebraically-closed field). Let us assume that A is diagonalizable to get
a glimpse of the general idea.

We assume A is diagonalizable. Therefore, we can write A = SDS−1 for an
invertible matrix S, and a matrix D of the form:

D =


λ1 0 . . . 0

0
. . .

...
...

. . . 0
0 · · · 0 λn


We consider PA(D):

PA(D) =


p(λ1) 0 . . . 0

0
. . .

...
...

. . . 0
0 · · · 0 p(λn)


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Notice that λi for i ∈ [0, n] are the eigenvalues of A, so PA(λi) = 0. Thus,
PA(D) is the zero matrix.

Let’s apply PA(x) to A = SDS−1:

PA(A) = SPA(D)S−1

Because PA(D) = 0, PA(A) = 0. This covers the simpler case, which brings us
to the general proof.

Proof. We use the fact that any matrix A can be approximated by diagonalizable
matrices. Specifically, we can find a sequence of matrices (Ak : k ∈ N) that
converge to A such that Ak → A as k → ∞, and each matrix Ak has n distinct
eigenvalues. Therefore, the matrix Ak is diagonalizable for each k ∈ N . We
apply the results of the previous discussion, so PAk

(Ak) = 0 where PAk
=

det(λI −Ak) is the characteristic polynomial of Ak.
Note that each entry of the matrix PA(A) can be written as a polynomial in

the entries of A. Because limk→∞ Ak = A, we have limk→∞ PAk
(Ak) = PA(A).

As PAk
= 0, PA(A) = 0. We are done. ■

The first step in the proof of the Mahler-Lech-Skolem theorem involves writ-
ing a linear recurrence as an = [Anv, w] for an n× n integer matrix and v and
w are integer vectors. We give one example to show how this is possible.

Recall the Fibonacci recurrence Fn = Fn−1 + Fn−2 with initial conditions

F0 = 0 and F1 = 1. Let us write vectors in the form

[
F1

F0

]
. Notice that this is

equal to

[
1
0

]
. [

Fn+1

Fn

]
=

[
1 1
1 0

] [
Fn

Fn−1

]
=

[
Fn + Fn−1

Fn

]
Let A =

[
1 1
1 0

]
, and the initial vector is v =

[
1
0

]
. To generate F2, we just

calculate A2v and take the integer part at the top.

A2v =

[
1 1
1 0

]2
v =

[
2 1
1 1

] [
1
0

]
=

[
2
1

]
Furthermore, for higher values, we can use Fn = Anv.

However, we do not use w here. We have another way. [Blo17] Given a linear
recurrence (an) of dimension k (this means we recursively call k functions of ai
for 0 ≤ i < n), we can form a k×k matrix A such that Ai,1 = ci for all i (where
ci are the coefficients of the ai), Ai,i−1 = 1 for 2 ≤ i ≤ k and everything else is
0.

A =


c1 c2 · · · ck−1 ck
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0


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Let

v =


ak−1

ak−2

...
a0



w =


1
0
...
0


For n ≥ k, an = vAn+1−kw, which gives the general form an = [anv, w]. Note
that we do not make mention of the dimension in the proof of the Mahler-Lech-
Skolem theorem as we cover all possible dimensions.

4 Strassmann’s Theorem

Now that we have the appropriate preliminaries, we turn to the theorem that
will do most of the heavy lifting in our proof: Strassmann’s Theorem.

4.1 Interlude

In the proof of Strassmann’s theorem, we will make use of the fact that we can
re-order a double sum. Thus, we show the following lemma.

Lemma 4.1. Let k be a field which is complete with respect to the non-archimedean
valuation | · |. Let aij ∈ k for i, j = 0, 1, 2, . . . . Suppose that for every ϵ > 0
there is a f(ϵ) such that |aij | < ϵ whenever max(i, j) ≥ f(ϵ). Then the series∑

i

(
∑
j

aij) and
∑
j

(
∑
i

aij)

both converge, and are equal.

Proof. Recall that in the non-archimedean case a series converges if and only if
the terms that are summed tend to zero as in [Gou97, Chapter 5]. We know
that aij → 0 as j → ∞ for every i and vice versa, so∑

j

aij and
∑
i

aij

both converge. Using the ultrametric inequality, we have

|
∑
j

aij | ≤ max
j

|aij | → 0

so that the first double sum converges, and similarly for the second one. Note
that the notation maxj |aij | refers to the max of the set of aij as i → ∞.
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For the second part, we note that for finite sums, the rearrangement of i and
j do not matter, specifically we have

f(ϵ)∑
i=0

(

f(ϵ)∑
j=0

aij) =

f(ϵ)∑
j=0

(

f(ϵ)∑
i=0

aij)

We apply the ultrametric inequality again:

|
f(ϵ)∑
i=0

(

f(ϵ)∑
j=0

aij)−
∞∑
i=0

(

∞∑
j=0

aij)| = |
∑
i

∑
j with max(i,j)>f(ϵ)

aij | ≤ max
i,j s.t. max(i,j)>f(ϵ)

|aij < ϵ

And similarly with the i and j exchanged. Hence

|
∑
i

(
∑
j

aij)−
∑
i

(
∑
j

aij)| = |
∑
i

(
∑
j

aij)−
f(ϵ)∑
i=0

(

f(ϵ)∑
j=0

aij)+

f(ϵ)∑
j=0

(

f(ϵ)∑
i=0

aij)−
∑
j

(
∑
i

aij)|

≤ max{|
f(ϵ)∑
i=0

(

f(ϵ)∑
j=0

aij)−
∞∑
i=0

(

∞∑
j=0

aij)|, |
f(ϵ)∑
j=0

(

f(ϵ)∑
i=0

aij)−
∞∑
j=0

(

∞∑
i=0

aij)|} < ϵ.

Thus, the two series are equal. ■

We are ready to prove Strassmann’s theorem.

Theorem 4.2. Strassmann’s Theorem
Let

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + . . .

be a non-zero power series with coefficients in Qp, and suppose that we have
limn→∞ an = 0 so that f(x) converges for all x ∈ Zp. Let N be the integer
defined by the two conditions

|aN | = max(|an|) and |an| < |aN | for n > N

Then the function f : Zp → Qp defined by x → f(x) has at most N zeros.

Proof. The core of this proof is induction on N . If N = 0, we must have that
|a0| > |an| for all n ≥ 1. In this case, we show there are no zeros for f(x). To
show this, we proceed by contradiction. Assume that we have f(x) = 0, then:

f(x) = a0 + a1x+ a2x
2 + · · · = 0

We bound |a0|.

|a0| = |a1x+ a2x
2 + . . . | ≤ max |anxn| ≤ max |an|

Thus |a0| ≤ |an|, but this in direct contradiction with the assumption. There-
fore, f(x) has no zeros.
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As for the inductive step, we suppose that

|aN | = max(|an|) and |an| < |aN | for n > N

We look to factor f(x), so we assume that it has a root α ∈ Zp. For any x ∈ Zp,
we have

f(x) = f(x)− f(α) =
∑
n≥1

an(x
n − αn) =

= (x− α)
∑
n≥1

n−1∑
j=0

anx
jαn−1−j

We re-order the series as a power series in x (applying the previous lemma),
which gives

f(x) = (x− α)

∞∑
j=0

bjx
j = (x− α)g(x)

with defining the coefficients bj as

bj =

∞∑
k=0

aj+1+kα
k.

Because limn→∞ an = 0, limj→∞ bj = 0. However, we cannot have all the
coefficients be 0 as then f(x) would be the 0 power series, contradicting our
assumptions. Thus, g(x) satisfies the assumptions of the theorem.

We proceed with the induction hypothesis. We describe the last |bj | with
maximum absolute value. Notice that

|bj | ≤ max
k≥0

|aj+1+k| ≤ |aN |

for every j, so the |bj | are bounded by |aN |. However, since |α| ≤ 1, for any
i ≥ 1, we have |aN+iα

i| ≤ |aN+i| < |aN |. Now, we make use of the ultrametric
inequality:

|bN−1| = |aN + aN+1α+ aN+2α
2 + . . . | = |aN |

For j ≥ N :
|bj | ≤ max

k≥0
|aj+k+1| ≤ max

j≥N+1
|aj | < |aN |

Therefore g(x) has N − 1 roots. By the induction argument, g(x) has at most
N − 1 roots, so f(x) has at most N roots. We are done.

■

This is an important theorem about the zeros of functions on Qp defined by
power series. We give several consequences using the notation of Strassmann’s
Theorem.
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Corollary 4.3. Let f(x) =
∑

anx
n be a non-zero power series which converges

on Zp, and let α1, . . . , αm be the roots of f(x) in Zp (multiplicity allowed).
Then, we can find a power series g(x) which converges on Zp but has no zeros
in Zp, specifically:

f(x) = (x− α1) · · · (x− αm)g(x)

Proof. This corollary comes from the factoring idea in the inductive step in the
proof of Strassman’s Theorem. Note that since α1 is a root of f , standard facts
about topological fields tells us that f must be off the form

f(x) = (x− α1)g1(x)

where g1(x) is a function with at most m − 1 zeros. We repeat this process
indefinitely

f(x) = (x− α1) · · · (x− αm)gm(x)

until gm(x) has no zeros. Then, we let g(x) = gm(x). ■

Corollary 4.4. Let f(x) =
∑

anx
n be a non-zero power series which converges

on pmZp, for some m ∈ Zp. Then f(x) has a finite number of zeros in pmZp.

Proof. Let g(x) = f(pmx) =
∑

anp
mnxn. Because f(x) is known to converge

on pmZp, g(x) converges for x ∈ Zp. We now apply Strassmann’s theorem to
g(x) which gives the desired conclusion. ■

Finally, we end off this section with a bound for the number of roots in
pmZp.

Corollary 4.5. The bound for the number of roots of a function in pmZp is N .

Proof. Note that N is defined in the same way as in the statement of Strass-
mann’s theorem. We use a similar form to the previous corollary. We want
to put f(x) =

∑
anx

n. In order to do that, we have to look at the series∑
anp

mnxn. We find N such that the conditions for Strassmann’s theorem are
met.

|pmNaN | = max |pnman| and |pmnan| < |pmNaN | for n > N

Therefore f(x) has at most N zeros on pmZp. ■

For more information on the theorem and applications, one can consult
[CONb] and [Che18].

4.2 Alternative proof

Alternatively, we can prove this theorem using the definition of a p-adic analytic
function, which we will use in the proof of the Mahler-Lech-Skolem Theorem.
To define what a p-adic analytic function is, we introduce the idea of an open
ball.

13



Definition 4.6. Let k be a field with absolute value ||. Let a ∈ k be an element
and r ∈ R+ be a real number. The open ball of radius r and center a is the set

B(a, r) = {x ∈ k : d(x, a) < r} = {x ∈ k : |x− a| < r}.

The closed ball of radius r and center a is the set

B(a, r) = {x ∈ k : d(x, a) ≤ r} = {x ∈ k : |x− a| ≤ r}.

This allows us to define what a p-adic analytic function is.

Definition 4.7. Let B be an open ball in Zp. A function f : B → Zp is p-adic
analytic if it is defined by a power series

f(z) =
∑
k≥0

ak(z − b0)
k

for some b0 ∈ B, with the power series convergent for all z ∈ B.

This definition implies that an analytic function on a ball is defined by a
single power series. At every point b in the domain, there is some smaller ball
around B such that the function is computed using a power series in that smaller
ball. We emphasize that p-adic analytic functions which are locally power series
on a ball are actually globally so. The reader can consult [Kob77, Chapter 4]
for more information on this specifically.

We then rewrite Strassmann’s theorem to incorporate the concept of p-adic
analytic function.

Theorem 4.8. Let f : B → Zp be a p-adic analytic function. Then either f is
identically zero, or it has only finitely many zeros in B.

We make use of following theorem, which is further discussed in [Gou97,
Chapter 5].

Theorem 4.9. Zp is compact.

We are now ready to prove Strassmann’s theorem.

Proof. We start by contradiction, assuming f has infinitely many zeros, say
f(bk) = 0. By applying the lemma in the previous slide, the bk have a limit
point b.

We expand f about b using f(z) =
∑

ak(z− b)k. If f is not identically zero,
some ak ̸= 0; let aN be the first coefficient.

f(z) = (z − b)n(aN + (z − b)g(z))

Moreover, for |z − b|p being very small, we see that

|(z − b)g(z)|p < |aN |p

Specifically, f is non-zero in some small punctured disk about b. This is a direct
contradiction. ■
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5 First Proof

We might ask, how exactly does this p-adic approach help with arithmetic pro-
gressions? Let us imagine that given a linear recurrence ak we could find some
p-adic analytic functions fi with i ∈ [0,m−1] such that fi(n) = mn+ i for large
n. Then, each fi would be 0 or it would have finitely many zeros. Moreover,
this would complete the proof, and the main point of the proof is to find such
a function fi.

Theorem 5.1. Let ai determine a linear recurrence. The set of zeros of this
linear recurrence form a finitely set or an arithmetic sequence.

Let us work through some examples. We consider the traditional Fibonacci
sequence an = an−1 + an−2 with initial conditions a0 = 0 and a1 = 1. Let Sa

denote the zero set.
In this case Sa = {0} because the only zero is at a0, and the recurrence

keeps increasing.
Suppose we have a linear recurrence an = an−1 +2an−2 +3an−3 with initial

conditions a0 = a1 = a2 = 1.
Sa = ∅ because we start out at a positive integer, and keep increasing.
Finally, what if we have an = an−2 with a0 = 0 and a1 = 1?
Sa = {n ∈ N |n ≡ 0 (mod 2)}. This is because the sequence alternates

between 0 and 1, and only indices that are zero are n ≡ 0 (mod 2) are 0.

Proof. This proof is due to Hansel [Han86]. Notice that a linear recurrence can
be expressed as a matrix ak = [Akv, w] for A an n× n integer matrix and v, w
being integer vectors (here v is the initial conditions; A is the transition matrix;
and w picks out the top entry of a vector). We choose a prime p such that A is
invertible modulo p, meaning that p does not divide the determinant of A.

The group of invertible matrices (mod p) is finite, so we define m as such
for Am ≡ 1 (mod p), which will be the period of the arithmetic progression. To
understand why we there is such a m, notice that Am (mod p) over Fp (this is a
finite field with p elements) takes on finitely many values. Thus, by pigeonhole
principle, there exists such an m.

Let us write Am = I+pB for some matrix B. We now construct our fi. For
i ∈ [0,m− 1]:

fi(n) = amn+i = [AmnAiv, w] = [(I + pB)nAiv, w].

We now expand the (I + pB)n part with the binomial expansion theorem.

fi(n) =
∑
j

pjPj(n)

for some polynomials Pj with coefficients in the p-adic integers, which follow
from the binomial coefficients. Indeed, the binomial expansion of (I + pB)n

15



contains terms involving a polynomial in n times pk

k! for natural number k (in
the binomial expansion). The number of times that p divides k is

⌊k
p
⌋+ ⌊ k

p2
⌋+ · · · ≤ k

p
+

k

p2
+ · · · = k

p− 1

which grows slower than k since p ≥ 2. Thus, each of the Pj can be built using
only finitely many of the terms in the binomial expansion. Note that we use the
index j because we have pn in the binomial expansion, so we cannot use i.

This power series makes sense as a p-adic analytic function convergent on all
of Zp. We are done, since each fi has only finitely many zeros or is identically
zero by Strassmann’s theorem.

■

6 Exponentials and Logarithmns

We have investigated the use of p-adics in Strassmann’s theorem and linear
algebra. We combined both methods to give the first proof. We now look at
exponential and logarithmnic functions in the p-adic sense to construct another
proof of the Mahler-Lech-Skolem theorem.

Our goal is to use power series to define p-adic functions that are analogous
to the trivial exponential and logarithm functions we regularly use. Take log to
mean the formal power series, not the function.

The power series for a logarithm is:

f(x) = log(x+ 1) =

∞∑
n=1

(−1)n+1x
n

n
= x− x2

2
+

x3

3
−∞

Since the coefficients of the power series are rational, it is not a far leap to think
of the series as a power series in Qp (for any prime p). We begin by finding the
radius of convergence.

Let f(x) =
∑∞

n=1(−1)n+1 xn

n , so an = (−1)n

n . Then,

|an| = | 1
n
| = pvp(n)

From this we have:
n
√
|an| = p

vp(n)

n → 1

This last part follows as vp(n) is the largest m such that pm divides n, so

vp(n) ≤ log(n)
log(p) . Moreover,

vp(n)
n ≤ log(n)

n log(p) , which tends to 0 as n → ∞.

Hence, the radius is 1. But, we have to check whether convergence happens
on the open or closed ball of radius 1. We investigate |x| = 1. In this case
|anxn| = |an| = | 1n | does not tend to 0 (in fact it is 1 when p does not divide n).

Lemma 6.1. The series

f(x) =

∞∑
n=1

(−1)n+1x
n

n
= x− x2

2
+

x3

3
− x4

4
+ . . .
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converges for |x| < 1 (and diverges otherwise).

We conclude that f(x) defines a function on the open ball B(0, 1) of radius
1 and center 0. This suggests that we define the logarithm as f(x) = log(x+1).

Definition 6.2. Let U1 = B(1, 1) = (x ∈ Zp : |x− 1| < 1) = 1 + pZp. We define
the p-adic logarithm of x ∈ U1 as

logp(x) = log(1 + (x− 1)) =

∞∑
n=1

(−1)n+1 (x− 1)n

n

We note that this function satisfies the simplest proposition of the logarithm.

Proposition 6.3. Suppose a, b ∈ 1 + pZp. Then,

logp(ab) = logp(a) + logp(b)

Proof. This proof dives into some deeper results, which we leave the reader a
reference [Gou97, Chapter 5]. ■

Curiously so, notice that if p = 2, then −1 ∈ B, so logp(−1) makes sense. To
evaluate it, all we have to notice is that 2 log2(−1) = log2(−1)2 = log2(1) = 0,
so logp(−1) = 0.

Now that we have understood logarithmns, let us examine exponentials.
Classically, the series

exp(x) =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+ · · ·

converges for all x ∈ R as the coefficients 1
n! tend to 0. However, in the p-adic

context, this is not true, because as 1
n! tends to 0, 1

n! becomes very large as n
gets larger. Our first business is to determine the radius, i.e. how divisible n! is
by p.

Lemma 6.4. Let p be a prime. Then

vp(n!) =

∞∑
i=1

⌊ n
pi
⌋ < n

p− 1

Proof. A proof can be found in [Gou97, Chapter 5]. ■

With these estimates, we work out the radius of convergence for the expo-
nential. This will become a key part in the latter proof.

Lemma 6.5. Let

g(x) =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

Then g(x) converges if and only if |x| < p
−1
p−1 .
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Proof. Since

|an| = | 1
n!
| = pvp(n!) < p

n
p−1

by our work in the previous part, we have

p ≥ p
−1
p−1

Therefore, the series converges for |x| < p
−1
p−1 .

On the other hand, suppose that we have |x| = p
−1
p−1 and let n = pm be a

power of p. Thus:

vp(n!) = vp(p
m!) = 1 + p+ · · ·+ pm−1 =

pm−1

p− 1

Because vp(x) =
1

p−1 :

vp(
xn

n!
) = vp(

xpm

pm!
) =

pm

p− 1
− pm − 1

p− 1
=

1

p− 1

This does not depend on m, hence xn

n! cannot tend to 0, and the series does not
converge. The region of convergence is a disk, which proves our lemma. ■

The astute reader can see something strange about the inequality. If p ̸= 2

and x ∈ Zp, then the absolute value of x is either 1 (bigger than p
−1
p−1 ) or less

than or equal to 1
p (which is smaller): there are no values in the middle. Thus,

if p ̸= 2:

|x| < p
−1
p−1 ⇐⇒ |x| ≤ p−1 ⇐⇒ x ∈ pZp ⇐⇒ |x| < 1,

so that the disk in the lemma is just the open disk of radius 1.
As long as we stay in Qp, things are not too troublesome. If p ̸= 2, g(x) =

exp(x) converges for x ∈ pZp. If p = 2, −1
2−1 = −1, so the lemma tells us that

g(x) = exp(x) converges when |x| < 1
2 , which occurs when x ∈ 4Z2. We can

now define the p-adic exponential function.

Definition 6.6. Let D = B(0, p
−1
p−1 ) = (x ∈ Zp : |x| < p

−1
p−1 ). The p-adic

exponential is the function expp : D → Qp defined by

expp(x) =

∞∑
n=0

xn

n!

Notice that expp(1) is not defined, so there is no natural p-adic analogue of
e in Qp. Let us make sure that this satisfies most of the formal properties of the
classical exponential.

Proposition 6.7. If x, y ∈ D, we have x+ y ∈ D and

expp(x+ y) = expp(x) expp(y).

18



Proof. We essentially just manipulate power series.

expp(x+ y) =

∞∑
n=0

(x+ y)n

n!
=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
xn−kyk =

=

∞∑
n=0

n∑
k=0

1

n!

n!

(n− k)!k!
xn−kyk =

∞∑
n=0

n∑
k=0

xn−k

(n− k)!

yk

k!
=

= (

∞∑
m=0

xm

m!
)(

∞∑
k=0

yk

k!
) = expp(x) expp(y)

as we want. ■

We dive into an interesting lemma that gives a formula for vp(n!).

Lemma 6.8. Let n be a positive integer, and let n = a0+a1p+a2p
2+ · · ·+akp

k

be its expansion in base p. Let s = a0 + a1 + · · ·+ ak be the sum of the digits in
the expansion. Show that

vp(n!) =
n− s

p− 1

Proof. Notice that vp(n!) = ⌊n
p ⌋+⌊ n

p2 ⌋+· · ·+⌊ n
pk ⌋. We consider each component.

⌊n
p
⌋ = ⌊a0 + a1p+ a2p

2 + · · ·+ akp
k

p
⌋ = a1 + a2p+ a3p2 + · · ·+ akp

k−1

Notice that since a0 < p, ⌊a0

p ⌋ = 0. Similarly, we have

⌊ n
p2

⌋ = a2 + a3p+ · · ·+ akp
k−2

...

⌊ n

pk
⌋ = ak

If we sum everything up, we have:

vp(n!) = a1 + a2(p+ 1) + a3(p
2 + p+ 1) + · · ·+ ak(p

k−1 + pk−2 + · · ·+ 1)

We now consider n−s
p−1 :

n− s

p− 1
=

(a0 + a1p+ · · ·+ akp
k)− (a0 + a1 + · · ·+ ak)

p− 1
=

=
a1(p− 1) + a2(p

2 − 1) + a3(p
3 − 1) + · · ·+ ak(p

k − 1)

p− 1
=

= a1 + a2(p+ 1) + a3(p
2 + p+ 1) + · · ·+ ak(p

k−1 + pk−2 + · · ·+ 1)

This matches our expression for vp(n!), so we are done. ■
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We end this section with a proposition that shows that wrapping logp over
expp(x) and vice versa leaves x.

Proposition 6.9. Let x ∈ Zp, |x| < p
−1
p−1 . Then we have

| expp(x)− 1| < 1

so that expp(x) is in the domain of logp, and

logp(expp(x)) = x.

Conversely, if |x| < p
−1

(p−1) we have

| logp(1 + x)| < p
−1

(p−1)

so that logp(x+ 1) is in the domain of expp, and

expp(logp(x+ 1)) = x+ 1.

Proof. Consult [Gou97, Chapter 5] for a proof. ■

7 P-adic Interpolation

[CONa] Interpolation is the idea of finding a function given a data set. We give
the standard example of p-adic interpolation. Suppose n ∈ Zp is any p-adic
integer, and α is an integer. Then it make sense to compute nα. Thus, we
consider the function f(α) = nα, which is well defined for α ∈ Z.

Essentially we want to extend this function to the widest possible range of
p-adic values of α. Since Z is dense in Zp (we showed this in the alternative
proof for Strassmann’s theorem).

The problem of finding such an extension is called the problem of finding
a p-adic interpolation of the function f(α) = nα. We leave the well-known
theorem in preparation for the next proposition.

Theorem 7.1. Any continuous function defined on a compact set is automati-
cally uniformly continuous and bounded

Proof. [Gou97][Chapter 5] has more information ■

Suppose that f(α) can be extended to Zp, then since Zp is compact, the
extension has to be founded and uniformly continuous. Hence, so would f(α).
Curiously, these two conditions are sufficient.

Proposition 7.2. Let S be a dense subset of Zp, and let f : S → Qp be a
function. Then there exists a continuous extension f ′ : Zp → Qp of f to Zp if
and only if f is bounded and uniformly continuous. If it exists, this extension
is unique.

20



Proof. By our discussion above, we know that the condition is necessary, and
that the extension is unique if it exists. Notice that if x ∈ Zp, there exists a
sequence

α1, α2, . . . αk, . . .

of elements of S which tend to x (because S is dense). If f ′ exists, then we will
have

f ′(x) = lim
k→∞

f ′(αk) = lim
k→∞

f(αk).

Note that (αk) is a Cauchy sequence, so

lim
k→∞

|αk+1 − αk| = 0.

Hence, it follows that since f is uniformly continuous and bounded,

lim
k→∞

|f(αk+1)− f(αk)| = 0

so that f(αk) is indeed a Cauchy sequence. Moreover, it has a limit in Qp. We
define f ′ by the condition it has to satisfy:

f ′(x) := lim
kto∞

f(αk)

for any sequence (αk) converging to x. This gives the extension.
■

We know that f ′ exists, but we do not know anything else about it. Can it
be written as a power series? Can we extend it to a set larger than Zp?

Recall the definition of uniform continuity. We take f(α) to be a function
defined on a dense subset S of Zp, with values in Qp. Being ”close” in S implies
being congruent modulo a high power of p, and being ”close” in Qp. Hence f is
uniformly continuous if it satisfies the following condition:

α ≡ β (mod pN ) =⇒ f(α) = f(β) (mod pm)

for m ∈ Z there exists an NinZ such that the above is true. Therefore, uniform
continuity has a translation in terms of congruity. We return to the exponential
α → nα for α ∈ Z and n ∈ Zp, and we want to extend it to all of α ∈ Zp.
However this depends on the n.

Let us work with the assumption that n is a 1−unit (this just means that
n ∈ 1 + pZp. We make use of the binomial series to get the interpolation.

Corollary 7.3. For any n ∈ 1 + Zp, there exists a continuous function fn :
Zp → Qp such that for any α ∈ Z we have fn(α) = nα

We outline some possible approaches. We introduce a simple piece of nota-
tion.

Definition 7.4. For any α ∈ Zp and any x ∈ pZp, we define

(1 + x)α := B(α, x)
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Proof. We can merely give fn(α) = B(α, n − 1), which converges because we
assumed n ∈ 1 + pZp. However checking continuity is not so easy. Note that
we want continuity in α, not n, so it is not valid to merely say that power
series are continuous functions. This is outside the scope of the paper, so we
omit the proof. Interested readers can consult [Gou97, Chapter 5] for more
discussion. ■

We can also show this corollary in a more direct approach by showing that
if n ∈ 1+pZp then α → nα is bounded and uniformly continuous. Boundedness
is trivial as any integer power of n will be in Zp because n is a 1-unit. Uniform
continuity is not too bad either. We notice that

(1 + pk)p
m

≡ 1 (mod pm+1)

so if β = α+ ipm we have

nβ = nα · (npm

)i ≡ nα (mod pm+1)

which is what we want. Thus, we know that fn exists. Proving that fn(α) =
B(α, n− 1) requires showing continuity, as mentioned before.

We can also do this an entirely different way, making use of exponentials
and logarithmns that we just went over. We define nα = expp(α logp(n)). This
works because there are no convergence issues to check (and gives the same
result by continuity).

The mishap is that we require |α logp(n)| < p
−1
p−1 to be able to compute the

exponential, and |n− 1| < 1 to compute the logarithm. The second condition is
already assumed as n ∈ 1 + pZp. We have shown that it implies | logp(n)| < 1,
so if α ∈ Zp and p ̸= 2, that in Zp having more absolute value less than 1 implies
having absolute value ≤ 1

p . Generally, this idea does not work as well, but here
it is fine.

8 Second Proof

[vdP89, Chapter 3] We are now ready to present the second proof of the Mahler-
Lech-Skolem theorem. The general case requires a technique that we have not
talked about, which is quite complex, so we present the case of sequences defined
over the rationals. For a detailed proof in the general case, consult [vdP89,
Chapter 3]. The main idea of p-adic interpolation is altogether the same as
below.

Definition 8.1. The characteristic of a field is the smallest positive integer p
such that adding 1 p times yields 0. If no such p exists, then the field is said to
have characteristic 0.

Theorem 8.2. The set of zeros of a linear recurrence sequence over a field
of characteristic zero comprises a finite set together with a finite number of
arithmetic progressions.
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Proof. [EvdPSW03, Chapter 2] Let L denote the splitting field of the charac-
teristic polynomial of the given linear recurrence a.

A splitting field is the smallest field extension in which the polynomial factors
completely into linear factors.

We choose a prime p with the property that all characteristic roots are units
in Qp and the prime ideal generated by p splits completely in L.

Then, for each i, αp−1
i ≡ 1 (mod p), so the p-adic logarithms

logp(α
p−1
i ) = logp(1− (1− αp−1

i ))

are defined, and satisfy vp(logp(α
p−1
i )) ≥ 1. We recall that the p-adic exponen-

tial expp(t) converges for t ∈ Cp with vp(t) >
1

p−1 .

This allows us to p-adically interpolate the (p − 1) sequences (a(r + (p −
1)x)), 0 ≤ r ≤ p− 2, yielding p-adic analytic functions

ap,r(t) =

m∑
i=1

Ai(r + (p− 1)t)αr
i exp(t logα

p−1
i ), r = 0, 1, 2, . . . , p− 2

converging for vp(t) > −1 + 1
p−1 , and in particular on Zp.

Since Z is a dense subset of the compact set Zp, if any of these functions
has infinitely many integer zeros it must vanish identically. It follows by the pi-
geonhole principle that, if the original linear recurrence sequence a has infinitely
many zeros, then at least one of those p− 1 functions vanishes. In particular, it
follows that for some r, a(r + (p− 1)x) = 0, x = 1, 2, . . . .

■

9 Open Questions

Lech proved in 1953 that the set of zeros of a linear recurrence sequence in a
field of characteristic 0 is the union of a finite set and finitely many infinite
arithmetic progressions.

In 2005, Harm Derksen proved an analog of the Mahler-Lech-Skolem theorem
in positive characteristic. Interested readers are recommended to read [Der07].
We now present some open questions.

• Can the size of the common difference of the arithmetic progressions in
the degenerate case be estimated?

• Can the theorem be used to decided whether a given linear recurrence
sequence has infinitely many zeros?

• Can the number of zeros of a non-degenerate linear recurrence sequence
be estimated?

• Can the set of zeros be found effectively?
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• Can the general bounds for special interesting families of linear recurrence
sequences be improved?

• For what other interesting classes of sequences does a similar result hold?

There is much to say about these questions, and most have a satisfactory partial
solution. The lone exception is the fourth question: no effective method is known
to find the set of all zeros for an arbitrary non-degenerate linear recurrence
sequence.

The simplest question is the first. For a linear recurrence sequence of order n
over an algebraic number field K with degree d over Q, the least common multiple
of the differences of the corresponding zero progressions does not exceedM(d, n)
where M(d, n) is given as following:

Theorem 9.1. Let a denote a linear recurrence sequence of order n over an
algebraic number field K of degree d over Q. Then there is a constant

M(d, n) ≤

{
exp(2n(3 log n)

1
2 ) if d = 1

2nd+1 if d ≥ 2

such that for some M ≤ M(d, n) each subsequence (a(Mx + ℓ)) is either iden-
tically zero, or is non-degenerate.

Interested readers can consult [BM76] and [Rob78] for more information.
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