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Abstract

The Hasse-Minkowski Theorem is a fundamental result in number theory that estab-
lishes a local-global principle for quadratic forms over the rational numbers. It states that
a quadratic form over Q admits a non-trivial solution to the equation Q(x) = 0 if and
only if it does so over the real numbers R and every p-adic field Qp. Additionally, two
quadratic forms are equivalent over Q if and only if they are equivalent over all such com-
pletions. This paper provides an expository account of the theorem, including necessary
background on quadratic forms, local fields, and the Hilbert symbol, a sketch of the proof,
and applications to problems such as sums of squares.

1 Introduction

The Hasse-Minkowski Theorem is a cornerstone in the theory of quadratic forms over number

fields, offering a powerful local-global principle. It addresses the question of whether a quadratic

equation, such as ax2 + by2 + cz2 = 0, has a non-trivial solution (i.e. not all variables are zero)

in rational numbers by checking its solvability in the real numbers and the p-adic numbers,

which are completions of the rationals with respect to prime-based metrics.[Wan19] Similarly,

it determines when two quadratic forms are equivalent, meaning one can be transformed into

the other via a linear change of variables.

Historically, Hermann Minkowski proved the theorem for rational numbers, and Helmut

Hasse generalized it to number fields. Its significance lies in its use of p-adic numbers, in-

troduced by Kurt Hensel, to solve arithmetic problems, marking a significant advancement in

number theory. This paper focuses on the theorem over Q, providing a clear exposition suitable

for readers familiar with introductory algebra and number theory. The Hasse-Minkowski The-

orem emerged from Hermann Minkowski’s work on quadratic forms in the early 20th century,

building on Kurt Hensel’s discovery of p-adic numbers in 1897. Helmut Hasse later generalized

it to number fields, formalizing the local-global principle. This theorem revolutionized number
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theory by providing a systematic method for solving Diophantine equations using local fields,

thereby establishing it as a cornerstone for modern algebraic geometry and arithmetic.

To illustrate its power, consider the equation x2 + y2 = 3z2. Does it have non-trivial

rational solutions (i.e., x, y, z ∈ Q, not all zero)? The Hasse–Minkowski Theorem answers this

by checking solvability in R and all Qp. Over R, solutions exist (e.g., (x, y, z) = (1, 1,
√

2/3)).

However, over Q3, setting z = 1 requires x2 + y2 ≡ 3 (mod 3), which is impossible since

x2, y2 ≡ 0, 1 (mod 3). This local failure implies no rational solutions, a result we’ll explore in

detail later, showcasing the theorem’s ability to simplify complex problems.

We begin with preliminaries on quadratic forms and local fields, followed by discussions of

the Legendre and Hilbert symbols, which are crucial tools. We then state and outline the proof

of the Hasse–Minkowski Theorem, concluding with applications like classifying quadratic forms

and representing numbers as sums of squares.

2 Preliminaries and Definitions

Throughout, F denotes a field of characteristic ̸= 2. Boldface letters x, y represent column

vectors.

2.1 Quadratic Forms

Definition 2.1 (Quadratic Form). Let n ≥ 1. A quadratic form in n variables over F is a

homogeneous polynomial of degree 2,

Q(x1, . . . , xn) =
∑
i≤j

cijxixj = (x1 x2 · · · xn)A


x1

x2
...

xn

 ,

where A = A⊤ is an n× n symmetric matrix over F .

Isotropic vectors and hyperbolic planes

Definition 2.2. Let Q be a quadratic form on an F -vector space V and x ∈ V \ {0}.

• x is isotropic (for Q) if Q(x) = 0.

• Q (or V ) is isotropic if it possesses an isotropic vector; otherwise it is anisotropic.

Definition 2.3 (Hyperbolic plane). The binary form H = ⟨1,−1⟩ is called the hyperbolic

plane. Equivalently, H = {(x, y) ∈ F 2 | Q(x, y) = x2 − y2}. It contains the isotropic vectors

(1, 1) and (1,−1), which are linearly independent.
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Remark 2.4. Any two-dimensional isotropic subspace of a non-degenerate quadratic space over

F is F -isometric to H. Hyperbolic planes will be the "building blocks" in Witt decomposition.

Example 2.5 (Isotropic vs. anisotropic). Over R the form Q1(x, y) = x2 − 2y2 is isotropic

because Q1(1,
1√
2
) = 0. In contrast, Q2(x, y) = x2 + 2y2 is anisotropic over R (both terms are

≥ 0 and vanish simultaneously only at (0, 0)). Over Q3 the situation reverses: ⟨1, 2⟩ becomes

isotropic because 2 is a square mod 3, whereas ⟨1,−2⟩ is anisotropic.

Definition 2.6 (Equivalence). Quadratic forms Q1, Q2 in n variables over F are equivalent

over F if some T ∈ GLn(F ) satisfies Q2(y) = Q1(Ty) for every y ∈ Fn.

Proposition 2.7. Every non-degenerate quadratic form over F is equivalent to a diagonal form

Q(x1, . . . , xn) = a1x
2
1 + · · ·+ arx

2
r , ai ∈ F×,

where r = rank(Q) (see Definition 2.9).

Sketch. Write Q(x) = x⊤Ax with A symmetric. Because charF ̸= 2, repeatedly complete the

square to kill off-diagonal entries, obtaining a diagonal matrix congruent to A. [Mar09]

Example 2.8 (Diagonalising a binary form over Q). Consider the form

Q(x, y) = 3x2 + 4xy + 5y2.

Its coefficient matrix is A =

(
3 2

2 5

)
So detA = 11 ̸= 0 and Q is non-degenerate. Completing

the square gives

Q(x, y) = 3
(
x+ 2

3y
)2

+ 11
3 y

2.

Writing u = x + 2
3y, v = y (matrix T =

(
1

2
3

0 1

)
∈ GL2(Q)) We obtain the diagonal form

Q ∼= ⟨3, 113 ⟩.

Definition 2.9 (Rank). For Q(x) = x⊤Ax, the rank of Q is rank(A), i.e. the dimension of

the largest subspace on which Q is not identically 0.

Remark 2.10. After diagonalisation, rank(Q) is the number of non-zero diagonal coefficients.

2.2 Field extensions

Definition 2.11 (Field extension). An extension K/F is a pair of fields with F ⊆ K. Its

degree is [K :F ] = dimF K as an F -vector space.
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Definition 2.12 (Finite & quadratic extensions). An extension is finite if [K : F ] < ∞. If

[K : F ] = 2 it is called quadratic. Every quadratic K/F has the form K = F (
√
d) for some

d ∈ F×\F×2.

Definition 2.13 (Separable). For characteristic 0 (in particular, F = Q) every algebraic

extension is automatically separable: every element’s minimal polynomial over F splits into

distinct roots in a splitting field.

Remark 2.14. Finite separable extensions admit well-defined field trace TrK/F and norm

NK/F . These appear later when we relate the Hilbert symbol to norm forms.

Example 2.15 (Quadratic extension of Q). Set K = Q(
√
5). The minimal polynomial of

√
5 over Q is x2 − 5, so [K : Q] = 2; hence K/Q is quadratic (and separable). For α =

x+ y
√
5 (x, y ∈ Q):

TrK/Q(α) = 2x, NK/Q(α) = x2 − 5y2,

the latter giving the Pell conic X2 − 5Y 2 = 1.

2.3 Fields, absolute values, and completions

Definition 2.16 (Absolute value). An absolute value on a field K is a map |·| : K → R≥0

such that

1. |x| = 0 ⇐⇒ x = 0;

2. |xy| = |x||y|;

3. |x+ y| ≤ |x|+ |y|.

It is non-Archimedean if |x+ y| ≤ max{|x|, |y|}.

On Q there are, up to equivalence, exactly the usual absolute value |·|∞ and the p-adic

absolute values |·|p, one for each prime p [Ser73].

Definition 2.17 (Completion). Let (K, |·|) be a valued field. Its completion K̂ is the metric

completion of K with respect to d(x, y) = |x− y|. We write

Q∞ = R, Qp (p prime)

for the completions of Q.

Example 2.18 (Real vs. p-adic magnitude). Take x =
14

75
. The ordinary absolute value is

|x|∞ ≈ 0.187, but factorising x = 5−2 ·14·3−1 gives v5(x) = −2 and |x|5 = 5−(−2) = 25. Thus,

a "small" real can be "large" 5-adically.

4



2.4 Bilinear forms, discriminant, Witt decomposition

Definition 2.19 (Symmetric bilinear form). A symmetric bilinear form on an F -vector space

V is B : V × V → F with B(x,y) = B(y,x) and linear in each argument.

Every quadratic form Q yields such a B by B(x,y) = 1
2

(
Q(x+ y)−Q(x)−Q(y)

)
.

Definition 2.20 (Discriminant). For Q represented by A, set

disc(Q) = (−1)n(n−1)/2 detA ∈ F×/F×2.

Example 2.21. For the diagonal ternary form ⟨1, 1, 1⟩ we have

disc
(
⟨1, 1, 1⟩

)
= (−1)3 = −1 in Q×/Q×2.

Hence ⟨1, 1, 1⟩ is not Q-equivalent to ⟨1, 1,−1⟩, whose discriminant is +1.

Example 2.22 (Hyperbolic plane). H = ⟨1,−1⟩ is isotropic, since (1, 1) is a non-trivial zero.

Any isotropic plane is F -isometric to H.

Theorem 2.23 (Witt decomposition). Every non-degenerate quadratic form Q over F decom-

poses uniquely (up to isometry) as

Q ∼= H⊥r ⊥ Qan,

where H is the hyperbolic plane and Qan is anisotropic. The integer r is the Witt index of Q.

See [O’M71].

Example 2.24 (Witt decomposition of a quaternary form). Let

Q = ⟨1, 1,−1,−1⟩ = x2 + y2 − z2 − w2.

Choose isotropic vectors v1 = (1, 0, 1, 0) and v2 = (0, 1, 0, 1) with BQ(v1,v2) = 0. They span a

hyperbolic plane H; repeating with another pair yields

Q ∼= H ⊥ H,

so the Witt index is 2 and the anisotropic part is 0.

2.5 Norms and trace in quadratic extensions

For K = F (
√
d) and α = x+ y

√
d, put

TrK/F (α) = 2x, NK/F (α) = x2 − dy2.

The norm form NK/F is a basic 2-variable quadratic form whose local isotropy answers norm-

related questions.
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3 Local Fields and Completions

Classical Diophantine problems over Q can often be understood one prime at a time. This idea

is made precise by working in the completions of Q—the real field R at the infinite place and

the p-adic fields Qp at each finite place p.

3.1 Ostrowski’s classification of norms on Q

Proposition 3.1 (Product formula). For every x ∈ Q×,
∏
p≤∞

|x|p = 1.

Theorem 3.2 (Ostrowski, 1916). Every non-trivial absolute value on Q is equivalent to either

| · |∞ (the usual Archimedean norm) or | · |p (p a prime).

No other inequivalent norms exist.

Idea of proof. For any x ∈ Q× write x = ±pk11 · · · pkrr . If | · | is non-Archimedean one shows

|x| = ρkj for a single prime pj ; rescaling makes it | · |pj . If | · | is Archimedean, Kronecker’s

lemma implies it coincides (up to equivalence) with the usual absolute value. A more detailed

proof can be found at [Rui22].

Remark 3.3. Ostrowski’s theorem shows that, up to equivalence, the only non-trivial comple-

tions of Q are the real field R (corresponding to | · |∞) and the p-adic fields Qp for primes p.

Hence, whenever we say a statement holds “at every completion of Q,” we really mean: it holds

over R and over Qp for each prime p—no further places need be considered.

Remark 3.4. Consequently the only completions of Q are R and the p-adic fields Qp. Verifying

local conditions at those places is therefore exhaustive in the Hasse–Minkowski theorem.

Example 3.5 (Product formula sanity check). For n = 30 = 2 · 3 · 5 one has

|30|∞ = 30, |30|2 = 2−1, |30|3 = 3−1, |30|5 = 5−1, |30|p = 1 (p ̸= 2, 3, 5).

Hence |30|∞
∏
p

|30|p = 30·2−13−15−1 = 1, illustrating the global product formula used implicitly

in Ostrowski’s proof.

3.2 p-adic valuation and norm

Definition 3.6 (p-adic valuation). For a prime p and a non-zero rational x ∈ Q×, write

x = pk a/b with a, b ∈ Z not divisible by p. Set vp(x) = k and vp(0) = ∞.
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Definition 3.7 (p-adic norm). The p-adic norm is

|x|p = p−vp(x), x ∈ Q.

It satisfies the non-Archimedean inequality |x+ y|p ≤ max{|x|p, |y|p}.

3.3 Completions and the field Qp

Completing (Q, | · |p) in the metric dp(x, y) = |x− y|p yields the p-adic field Qp. For the usual

absolute value, we obtain Q∞ = R. Elements of Qp can be written as series
∑

n≥k anp
n with

digits an ∈ {0, . . . , p− 1}.

3.4 Constructing p-adic Numbers

As mentioned above, the p-adic numbers Qp arise as the completion of Q with respect to the

p-adic norm. For example, in Q5, the number 1
1−5 = −1

4 can be written as a 5-adic series:

1

1− 5
=

∞∑
n=0

5n = 1 + 5 + 52 + · · · .

This series converges in Q5 because |5n|5 = 5−n → 0 as n → ∞. The following diagram

illustrates the 5-adic expansion of −1
4 . Such series make Qp a complete field, enabling tools

n

an

0 1 2 3 4 5
0

1 · · ·

Figure 1: 5-adic expansion of −1
4 = 1 + 5 + 52 + · · · in Q5. Each dot represents an = 1.

like Hensel’s lemma for solving equations.

3.5 Topology of Qp

Each Qp is locally compact and totally disconnected. The compact open unit group Z×
p is

pro-cyclic for p ̸= 2.

3.6 Strong approximation

For any finite set S of primes, the diagonal embedding Q ↪→
∏

v∈S Qv is dense. This lets us

patch local solutions into a global one once obstructions vanish.
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3.7 Why bother with completions?

• Analytic control. Limits exist in a completion, so Newton iteration and Hensel’s lemma

can lift solutions of congruences to genuine p-adic (hence rational) solutions.

• Local–global philosophy. Many arithmetic statements are true over Q exactly when they

hold in every completion; Hasse–Minkowski for quadratic forms is the prime example.

3.8 Hensel’s Lemma

Lemma 3.8 (Hensel’s Lemma, simple form). Let p be a prime and f(x) ∈ Zp[x]. Assume there

exists a0 ∈ Zp such that

f(a0) ≡ 0 (mod p) and f ′(a0) ̸≡ 0 (mod p).

Then there is a unique ã ∈ Zp satisfying

f(ã) = 0 and ã ≡ a0 (mod p).

Equivalently, any root modulo p with non-vanishing derivative lifts to a unique root in the entire

p-adic field Qp.

3.9 Example: lifting a square root of 2 from F7 to Q7

We illustrate Hensel’s lemma with the congruence x2 ≡ 2 (mod 7).

1. In F7, 32 = 9 ≡ 2, so x0 = 3 is a root modulo 7.

2. Let f(x) = x2 − 2. Because f ′(x0) = 2x0 = 6 ̸≡ 0 (mod 7), Hensel’s lemma applies.

3. One Newton–Hensel step (working mod 49).

x1 = x0 −
f(x0)

f ′(x0)
= 3− 9− 2

6
= 3− 7

6
.

We need 6−1 (mod 49). Since 6 · 41 = 246 = 49 · 5 + 1, we have 6−1 ≡ 41 (mod 49).

Hence

7

6
≡ 7 · 41 = 287 ≡ 42 (mod 49), so x1 ≡ 3− 42 ≡ −39 ≡ 10 (mod 49).

4. Verification. 102 = 100 = 49 · 2 + 2 ≡ 2 (mod 49). Thus x1 = 10 is a root modulo 49.

Repeating the process (or invoking Hensel directly) yields a unique x̃ ∈ Z7 with x̃ ≡ 10

(mod 49) and x̃2 = 2.

Remark 3.9. The condition f ′(x̃) ̸≡ 0 (mod p) is essential for Hensel’s lemma: it ensures the

lift exists and is unique.
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3.10 Isotropy over local fields: quick examples

We record three illustrative calculations that foreshadow the local analysis in the Hasse-

Minkowski theorem.

Example 3.10 (A form isotropic over R but anisotropic over Q5). Consider Q = ⟨1, 1,−3⟩ =
x2 + y2 − 3z2.

• Real place: Q is indefinite, hence isotropic (e.g. (1, 1,
√

2/3)).

• 5-adic place: write −3 ≡ 2 (mod 5). Completing squares shows that any non-trivial

5-adic zero would imply 2 is a square mod5, which it is not; thus Q is anisotropic in Q5.

Example 3.11 (A binary form anisotropic over R but isotropic over Q3). Take B = ⟨1, 2⟩ =
x2 + 2y2.

• Over R both terms are non-negative and vanish simultaneously only at (0, 0); B is anisotropic.

• In F3 we have 2 ≡ −1, and x2 − y2 = 0 has solutions (1, 1), (1, 2). Hensel’s lemma lifts

either to a 3-adic isotropic vector, so B is isotropic over Q3.

Example 3.12 (Hyperbolic plane everywhere locally). The form H = ⟨1,−1⟩ is isotropic over

R (obvious) and over every Qp, since x2 ≡ y2 (mod p) always has non-trivial solutions.

These computations illustrate that local isotropy can vary wildly with the place v, high-

lighting the necessity of checking all completions in the Hasse–Minkowski criterion.

4 Legendre Symbol and Quadratic Residues

4.1 Basic definitions

Definition 4.1 (Quadratic residue modulo p). Let p be an odd prime. An integer a is a

quadratic residue modulo p if the congruence

x2 ≡ a (mod p)

has a solution x ∈ Z. Otherwise a is a quadratic non-residue.

Definition 4.2 (Legendre symbol). For an odd prime p and any integer a, define

(
a

p

)
=


0 if p | a,

1 if a is a quadratic residue (modp),

−1 if a is a quadratic non-residue (modp).

The map
( ·
p

)
: Z → {−1, 0, 1} descends to a group homomorphism

( ·
p

)
: (Z/pZ)× −→ {±1}.
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Example 4.3 (Computing a Legendre symbol). Compute(
7
19

)
.

Method 1: Euler’s Criterion. Because 19 is prime,(
7
19

)
= 7 (19−1)/2 mod 19 = 7 9 mod 19.

Fast exponentiation:

72 = 49 ≡ 11, 74 ≡ 112 = 121 ≡ 7, 78 ≡ 72 = 11.

Hence 79 = 78 · 7 ≡ 11 · 7 = 77 ≡ 1 (mod 19), so
(

7
19

)
= +1. Thus 7 is a quadratic residue

modulo 19.

Method 2: Quadratic Reciprocity. Write 7 = 19−12 ≡ −12 ≡ 7 mod 19 (already reduced).

Since 7 ≡ 3 (mod 4) and 19 ≡ 3 (mod 4), Quadratic Reciprocity gives(
7
19

)
= (−1)

7−1
2 ·19−1

2

(
19
7

)
= (−1)3·9

(
5
7

)
= −

(
5
7

)
.

Now 5 ≡ 5 (mod 7), and 5 3 = 125 ≡ −1 (mod 7), so
(
5
7

)
= −1 by Euler’s criterion; therefore(

7
19

)
= (−1) · (−1) = +1, agreeing with Method 1 [Con11a].

4.2 Quadratic Reciprocity

Theorem 4.4 (Quadratic Reciprocity Law). For distinct odd primes p and q,(
q

p

)(
p

q

)
= (−1)

p−1
2

· q−1
2 .

Equivalently, (
q

p

)
=


(
p

q

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4),

−
(
p

q

)
if p ≡ q ≡ 3 (mod 4).

Together with the supplementary laws
(−1

p

)
= (−1)(p−1)/2 and

(
2
p

)
= (−1)(p

2−1)/8, this com-

pletely determines all Legendre symbols.

Example 4.5. Compute
(

7
19

)
. Since 7 ≡ 3 (mod 4) and 19 ≡ 3 (mod 4),(

7
19

)
= −

(
19
7

)
= −

(
5
7

)
.

Because 53 = 125 ≡ −1 (mod 7) we have
(
5
7

)
= −1, hence

(
7
19

)
= +1.
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4.3 Example: deciding local solvability with
( ·
p

)
Determine whether

x2 ≡ 5 (mod 11)

has a solution.

(
5

11

)
=

(
11

5

)
(−1)

5−1
2

· 11−1
2 (Quadratic Reciprocity)

=

(
1

5

)
(−1)2·5 = 1.

Hence 5 is a quadratic residue mod 11, so the congruence is solvable. Indeed x ≡ 4 or x ≡ 7

works.

Remark 4.6. Legendre symbols (and their higher-power generalisation, the Jacobi symbol) give

a quick local test at each prime. In later sections, we will combine these local conditions with

Hensel’s lemma and completions to analyse global solvability of quadratic forms.

5 Hilbert Symbol and Local Quadratic Forms

The Hilbert symbol is a key invariant for classifying quadratic forms over local fields.

Definition 5.1 (Hilbert Symbol). For a local field K (e.g., Qp or R) and a, b ∈ K×, the

Hilbert symbol (a, b)K is defined as:

(a, b)K =

1 if x2 − ay2 − bz2 = 0 has a non-trivial solution in K,

−1 otherwise.

Example 5.2. In Q7, both 5 and 6 are 7-adic units. The explicit formula for odd p gives

(5, 6)7 = 1, so x2 − 5y2 − 6z2 = 0 has a non-trivial 7-adic solution.

Example 5.3 (Computing Hilbert Symbols).

Over Q5, compute (2, 3)5. Since 2 and 3 are 5-adic units, we use the formula (a, b)p =

(−1)ϵ(a)ϵ(b)
(
a
p

)ϵ(b) (
b
p

)ϵ(a)
, where ϵ(x) =

x−[x]p
p is the p-adic valuation residue. Here, ϵ(2) =

ϵ(3) = 0 since 2, 3 ∈ Z×
5 . Thus, (2, 3)5 =

(
2
5

) (
3
5

)
. Since 22 ≡ 4 (mod 5) and 32 ≡ 4 (mod 5),

both are non-squares, so
(
2
5

)
=
(
3
5

)
= −1, giving (2, 3)5 = (−1)·(−1) = 1. Thus, z2 = 2x2+3y2

has a non-trivial solution in Q5.

Over R, compute (−1,−1)∞. Since both a = −1 and b = −1 are negative, the form z2 =

(−1)x2+(−1)y2 = −x2−y2 is negative definite and only zero at (0, 0). Thus, (−1,−1)∞ = −1,

indicating anisotropy.
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Proposition 5.4 (Basic properties of the Hilbert symbol). Let K be a local field with charK ̸=
2 and a, b, c ∈ K×. Then

1. Symmetry: (a, b)K = (b, a)K .

2. Bilinearity in the first slot: (ab, c)K = (a, c)K (b, c)K (and hence also in the second by (1)).

3. (a,−a)K = 1.

4. If a ̸= 1 then (a, 1− a)K = 1.

5. (a, b)K = 1 for every b iff a is a square in K (for K ̸= C).

Proof. Write Qa,b(x, y, z) = x2 − ay2 − bz2. (1) follows because Qa,b and Qb,a are isometric

via (x, y, z) 7→ (x, z, y). For (2) observe Qab,c(x, y, z) = x2 − ab y2 − cz2 splits into the direct

orthogonal sum of Qa,c and Qb,c on suitable 2-planes, so the symbol multiplies. Property (3) is

immediate from x2−ay2+az2 = 0 with (x, y, z) = (
√
a, 1, 1). For (4) note x2−ay2−(1−a)z2 = 0

has the rational solution (1, a, 1). Finally, (5) is a restatement of the fact that the 1-dimensional

quadratic form ⟨a⟩ is isotropic over K exactly when a is a square. [Con11b]

Example 5.5 (Bilinearity check). Over Q3: (30, 7)3 = (6 ·5, 7)3 = (6, 7)3(5, 7)3, matching

Proposition 5.4. Explicit calculation confirms each factor.

Theorem 5.6 (Hilbert Reciprocity). For a, b ∈ Q× one has∏
v

(a, b)v = 1,

where the product ranges over all places v : Q ↪→ R or Qp.

Sketch of proof. Let K = Q(
√
a) and write NK/Q( · ) for the norm. A classical argument shows

(a, b)v = 1 ⇐⇒ b is a norm from K ⊗Q Qv.

Class field theory (or the product formula for global Hilbert symbols) asserts that an element of

Q× is a global norm iff it is a local norm everywhere and the product of all local Hilbert symbols

equals 1. Applying this to both b and an auxiliary n ∈ Q× chosen so that (a, n)v = (a, b)v except

at one place, one deduces
∏

v(a, b)v = 1. See Cassels–Fröhlich, §VI.1 for a full, elementary

proof.

Example 5.7. Take a = 3, b = 5. Direct computation shows

(3, 5)∞ = 1, (3, 5)2 = 1, (3, 5)3 = −1, (3, 5)5 = −1,

and (3, 5)p = 1 for all other p, so
∏

v(3, 5)v = 1 as predicted by reciprocity.
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For R, (a, b)R = −1 if and only if a < 0 and b < 0. For Qp, the Hilbert symbol can be

computed using the Legendre symbol and local invariants. The Hasse invariant of a quadratic

form, defined using Hilbert symbols, helps classify forms over local fields. Hilbert reciprocity

states that for a, b ∈ Q×,
∏

v(a, b)v = 1, where v runs over all places.

6 Hasse-Minkowski Theorem and Proof

Theorem 6.1 (Hasse-Minkowski Theorem). Let Q be a quadratic form over Q. Then Q(x) = 0

has a non-trivial solution over Q if and only if it has a non-trivial solution over R and over Qp

for every prime p. Moreover, two quadratic forms over Q are equivalent if and only if they are

equivalent over R and every Qp.

Proof. We prove first the isotropy statement and then the equivalence statement, following the

classical dimension–4–induction route.

Step 1. Local invariants. For a local field F of characteristic ̸= 2 and a non-degenerate

quadratic form Q ∼= ⟨a1, . . . , an⟩ define

dimQ = n, dF (Q) = (−1)n(n−1)/2det(Q) ∈ F×/F×2,

ϵF (Q) =
∏

1≤i<j≤n

(ai, aj)F ∈ {±1},

where (·, ·)F is the Hilbert symbol (Definition 5.1). Cassels–Fröhlich (VI.2) shows that the

triple (dim, dF , ϵF ) classifies quadratic forms over F : two forms are F -isometric iff their triples

coincide. We shall use this fact tacitly whenever we pass from global to local data and back.

Step 2. A four-variable core lemma. Let Q = ⟨a, b, c, d⟩ with abcd ∈ Q×2. Form the

quaternion algebra

(a, b) = Q⟨i, j | i2 = a, j2 = b, ij = −ji⟩.

Its norm form is precisely N(a,b)(x) = x21 − ax22 − bx23 + abx24 = Q. Hence

Q is isotropic over a field F ⇐⇒ (a, b) is split over F,

because a non-trivial zero of N is a zero-divisor in the algebra. By the Albert–Brauer–Hasse–Noether

theorem (or, equivalently, Hilbert-symbol reciprocity) a quaternion algebra over Q splits glob-

ally iff it splits at every completion. Therefore

a diagonal 4-fold with square total product is isotropic over Q precisely when it is isotropic in

R and in every Qp.
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Step 3. Local ⇒ global isotropy (all n). We proceed by induction on n = dimQ.

Base n = 1, 2. A binary form ax2 + by2 that is anisotropic over Q must have a, b of the

same square-class in every completion, contradicting local isotropy; hence a locally isotropic

binary form has a rational zero.

n = 3. A ternary form isotropic everywhere must be isotropic at some finite prime p. Choose

an integral p-adic zero, then use the Chinese Remainder Theorem and weak approximation to

lift it to Q; details appear in [Ser73].

n = 4. Reduce to the diagonal case with square total product and invoke the core lemma

of Step 2.

Induction n ≥ 5. Let Q be locally isotropic. Because Q is dense in each Qv, choose

v ∈ Qn such that α := Q(v) ̸= 0 but α is v-adically small for some place where Q already

has an isotropic vector. Since BQ is non-degenerate, pick w ∈ Qn with BQ(v,w) = 1. Then

H = span{v,w} is a hyperbolic plane, and Q ∼= H ⊥ Q0 with dimQ0 = n− 2. Local isotropy

of Q forces local isotropy of Q0; by the induction hypothesis Q0 is isotropic over Q, whence so

is Q.

Thus the “local ⇒ global” direction for isotropy holds for every dimension, completing part

(i) of the theorem.

Step 4. Local ⇒ global equivalence. Assume Q and Q′ are isometric in R and in

each Qp. Then dimQ = dimQ′, dQ(Q) = dQ(Q
′), because these invariants already agree

everywhere locally and lie in Q×/Q×2. For the Hasse invariant note ϵv(Q) = ϵv(Q
′) (∀v). Taking

the product over all v and invoking Hilbert reciprocity (Theorem 5.6) gives 1 =
∏

v ϵv(Q) =∏
v ϵv(Q

′), so the common value of ϵv(Q) = ϵv(Q
′) is +1 at all but (possibly) one place, hence

at every place by the local coincidence already observed. Consequently, the global triples

(dim, d, ϵ) of Q and Q′ coincide.

Finally, any two rational forms with identical global triples are isometric over Q: adjoin

hyperbolic planes until the difference of the two diagonalisations becomes a multiple of a split

2-plane, then cancel iteratively.

Step 5. The “global ⇒ local” direction. The forward implications in both parts of the

theorem are immediate: a rational isotropic vector or an Q-isometry remains so after embedding

Q ↪→ R,Qp.

Together, Steps 3–5 establish both assertions of the Hasse–Minkowski Theorem.

7 Applications

We highlight three classical consequences of the Hasse–Minkowski theorem and sketch the

underlying proofs.
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7.1 Sums of squares

Theorem 7.1 (Lagrange, 1770). Every positive integer is a sum of four squares.

Sketch via Hasse–Minkowski. Fix n ∈ N. Consider the difference form

Qn(x1, x2, x3, x4, z) = x21 + x22 + x23 + x24 − nz2.

A non-trivial rational zero with z ̸= 0 gives n as a sum of four squares after scaling. Hence, it

suffices to show Qn is isotropic over Q.

Local check. Over R, the form is clearly isotropic because it has positive and negative

coefficients. Over each Qp, write n = pku with u ∈ Z×
p . If p ̸= 2 then u is a sum of three

squares in Fp, so Hensel’s lemma lifts to a p-adic zero with z ≡ 1. For p = 2, an explicit check

shows Qn is isotropic in Q2 as well [Cas78].

Global step. Since Qn is isotropic in R and every Qp, Hasse–Minkowski (Theorem 6.1)

implies Qn is isotropic over Q, completing the proof.

The same reasoning with the ternary difference form x2+y2+z2−nw2 recovers Legendre’s

three-square criterion n ̸≡ 0, 4, 7 (mod 8).

7.2 Application to Sums of Three Squares

Legendre’s three-square theorem states that a positive integer n can be represented as a sum

of three squares if and only if it is not of the form 4k(8m + 7). Using Hasse-Minkowski, we

check local conditions at infinity (real positive definite fails for negative, but difference form is

indefinite) and at p=2 (anisotropic for forbidden forms mod 8). This local failure at p=2 or

infinity explains the criterion.

n Representation

1 12 + 02 + 02

2 12 + 12 + 02

3 12 + 12 + 12

7 No representation

9 32 + 02 + 02

Table 1: First few positives and three-square representations.
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7.3 Classification of quadratic forms over Q

Theorem 7.2. Two non-degenerate quadratic forms Q,Q′ over Q are equivalent over Q if and

only if

dimQ = dimQ′, disc(Q) = disc(Q′) ∈ Q×/Q×2, (ai, aj)v = (a′i, a
′
j)v for all v,

i.e. they have the same dimension, the same discriminant, and matching Hilbert invariants at

every place.

Idea. Over each completion Qv, the triple (dim,disc, ϵv) with ϵv(Q) =
∏

i<j(ai, aj)v classifies

quadratic forms [Cas78]. If the three data agree globally, then Q ∼= Q′ locally everywhere. The

second part of Theorem 6.1 (equivalence) then upgrades these local isometries to a rational

isometry.

Algorithmic test for Q-equivalence

A practical version of Theorem 7.2 is the Cassels–Ehrlich algorithm. Given two non-degenerate

forms Q,Q′ in the same number of variables, it decides (in polynomial time for fixed dimension)

whether they are Q-equivalent.

1. Diagonalise. Use Proposition 2.7 to write Q ∼= ⟨a1, . . . , an⟩ and Q′ ∼= ⟨a′1, . . . , a′n⟩.

2. Match discriminants. If disc(Q) ̸= disc(Q′) ∈ Q×/Q×2 return No.

3. Compute local symbols. For each finite set of primes dividing 2 disc(Q) disc(Q′) and

for v = ∞: evaluate (ai, aj)v and (a′i, a
′
j)v. If any place disagrees, return No.

4. Solve a gluing problem. Having identical local invariants, construct an explicit isom-

etry matrix T ∈ GLn(Q) by CRT-patching the local isometries; see [Cas78].

5. Return. Output T (or Yes) if the gluing succeeds, otherwise No.

Example 7.3 (Two equivalent quaternary forms). Let Q = ⟨1, 1, 1,−1⟩, Q′ = ⟨2, 2, 2,−2⟩.
Step 1: already diagonal. Step 2: disc(Q) = disc(Q′) = +1. Step 3: for every place v,

(1, 1)v = (2, 2)v = 1 and the mixed symbols coincide, so local data match. Step 4: a CRT

construction gives T = diag(1, 1, 1, 12) ∈ GL4(Q) with Q′(x) = Q(Tx). Hence, the algorithm

outputs Yes.

This result may be viewed as the global analogue of Witt’s local classification and is a

template for more sophisticated adelic invariants in higher-degree forms.
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7.4 Rational points on conics

Let a, b ∈ Q×. The projective conic

Ca,b : ax2 + by2 = z2

has a Q-rational point [x : y : z] ̸= [0 : 0 : 0] if and only if the following local conditions hold:

1. Real place: a and b are not both negative.

2. p-adic places: (a, b)p = 1 for every prime p | 2ab.

Proof sketch. Write the associated ternary quadratic form Qa,b(x, y, z) = ax2 + by2 − z2. A

rational point on Ca,b corresponds to an isotropic vector for Qa,b. Condition (a) is exactly

isotropy over R. Condition (b) is equivalent to isotropy over each Qp by Definition 5.1. Applying

Theorem 6.1 yields the desired equivalence.

Remark 7.4. Once a single rational point is known, one obtains all rational solutions by a

standard line-through-a-point parameterisation.

A cubic counter-example: Selmer’s form

Hasse–Minkowski is sharp: for degree >2 local solvability need not imply a rational solution.

Proposition 7.5 (Selmer, 1951). The homogeneous cubic

S(x, y, z) = 3x3 + 4y3 + 5z3 = 0

has a non-trivial zero in R and in every Qp, yet no non-trivial solution in Q.

Local solvability. • Real. Take (x, y, z) = (−1, 1, 0): S = −3+ 4 = 1 > 0 and by continuity

a nearby point makes S = 0.

• p ̸= 2, 3, 5. By Hensel, there is always a solution to S ≡ 0 (mod p): choose x ≡ 1, y ≡
−1, z ≡ 0.

• p = 2, 3, 5. An explicit check shows a solution modulo p2 which then lifts p-adically.

Global failure is proved by a 3-descent on the elliptic curve X3 + Y 3 + 60Z3 = 0 obtained

after clearing a common factor; see [Cas78]. One finds that any rational point would force 60

to be a cube in Q×/Q×3, which is false. Hence, S = 0 has no non-trivial rational solution.

Remark 7.6. Selmer’s cubic marks the first explicit failure of the Hasse principle. Modern

language interprets the obstruction via the non-trivial element of the Tate–Shafarevich group of

the associated elliptic curve.
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7.5 Quadratic Forms in Cryptography

Quadratic forms play a crucial role in modern cryptography, particularly in lattice-based cryp-

tography, where the Hasse-Minkowski Theorem facilitates the analysis of Diophantine equations

underlying secure systems. Consider a quadratic form Q(x1, . . . , xn) =
∑

aijxixj over Z, used

to define a lattice L = {x ∈ Zn : Q(x) = m} for some integer m. The security of lattice-based

cryptosystems, such as NTRU, relies on the difficulty of finding short vectors in such lattices,

which can be formulated as solving Q(x) = 0 over Q.

The Hasse-Minkowski Theorem helps by ensuring that if Q is isotropic over Q (i.e., has a

non-trivial rational solution), it must be isotropic over R and all Qp. For example, in designing

cryptographic protocols, one might need to verify whether a form like x2 + y2 − pz2 = 0

(for a prime p) has rational solutions, which could weaken the lattice’s security if solutions

exist. By checking local isotropy (e.g., using Hilbert symbols), cryptographers can ensure

the form is anisotropic over Q, strengthening the system. This application highlights the

theorem’s relevance beyond pure mathematics, connecting number theory to real-world security

challenges.
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