Comparing Primality Tests

Agastya Prabhu

July 2025

Motivation: Primality in Cryptography

- RSA relies on large prime generation for secure keys.
- Primes as big as 2048 bits are needed so efficient primality tests are important.
- Probabilistic vs. Deterministic Tests: probabalistic provide faster runtimes but have error.

Fermat's Little Theorem

If p is prime and gcd(a, p) = 1, then

$$a^{p-1} \equiv 1 \pmod{p}$$
.

The Fermat test checks $a^{n-1} \equiv 1 \pmod{n}$ to declare *probably prime*. Carmichael numbers can pass Fermat's test for all a coprime to n.

Deriving Miller-Rabin from Fermat's Theorem

Fermat's Little Theorem: if n is prime and gcd(a, n) = 1, then

$$a^{n-1} \equiv 1 \pmod{n}$$
.

- ▶ Write $n-1=2^e d$ with d odd.
- ► Then

$$a^{n-1}-1=a^{2^ed}-1=(a^d-1)(a^d+1)(a^{2d}+1)\dots(a^{2^{e-1}d}+1).$$

So if *n* is prime, then for any *a* coprime to *n*:

$$a^d \equiv 1 \pmod{n}$$
 or $a^{2^r d} \equiv -1 \pmod{n}$ for some $0 \le r < e$.

- Miller-Rabin tests whether one of these congruences holds. If not, n is composite.
- ▶ We keep picking a at random to retest the same number

Miller-Rabin: Witnesses and Nonwitnesses

Composite
$$n = 9$$
: $9 - 1 = 8 = 2^3 \cdot 1$.

► *a* = 8:

$$8^1 \bmod 9 = 8 \equiv -1 \pmod 9$$

passes immediately non-witness.

ightharpoonup a = 2:

$$2^1 \mod 9 = 2$$
, $2^2 \mod 9 = 4$, $2^4 \mod 9 = 7 \neq -1$

no ± 1 ever appears composite detected $\it witness.$

Prime n = 7: pick a = 3,

$$3^3 \mod 7 = 27 \mod 7 = 6 \equiv -1,$$

so always passes for any valid a.

Proof: Error Bound for Prime Powers

Theorem: Let $n = p^x$ for an odd prime p and $x \ge 2$. Then the error bound is at most $\frac{1}{4}$ because at most $\frac{1}{4}$ of the numbers are nonwitnesses. **Proof Outline:**

- By Theorem: nonwitnesses a must be coprime to n and satisfy $a^{n-1} \equiv 1 \pmod{n}$ and $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- $(n-1,\varphi(n)) = (p^{x}-1,p^{x-1}(p-1)) = p-1.$
- ▶ So all nonwitnesses satisfy $a^{p-1} \equiv 1 \pmod{n}$.
- ▶ Inductively construct exactly p-1 such $a \mod p^x$ by lifting from mod p^{x-1} and use binomial expansion:

$$(a + cp^x)^{p-1} \equiv a^{p-1} + (p-1)a^{p-2}cp^x \pmod{p^{x+1}}.$$

▶ Solve for *c* uniquely \Rightarrow only p-1 nonwitnesses for all *x*.

Proof: MR Error Bound for Non-Carmichael Numbers

Theorem: If n is an odd composite and not a Carmichael number, then the error bound is at most $\frac{1}{4}$ because at most $\frac{1}{4}$ of the numbers are nonwitnesses.

Outline:

- ► $F_n = \{1 \le a \le n-1 : (a, n) = 1\}$
- $G_n = \{1 \le a \le n-1 : a^{n-1} \equiv 1 \pmod{n}\}$
- ▶ $H_n = \{1 \le a \le n-1 : a^{2^{r_0}d} \equiv \pm 1 \pmod{n}\}.$ r_0 is the largest $r \in \{0, 1, ..., e-1\}$ such that for some $a_0, a_0^{2^{r_0}} \equiv -1 \pmod{n}$
- ▶ Since n is not Carmichael, G_n is a proper .subgroup of F_n .
- Use Lagrange's theorem: $|G_n| \leq \frac{|F_n|}{2}$.
- Also, H_n is a proper subgroup of G_n because there exists a such that $a^{n-1} \equiv 1$ but $a^{2^r d} \not\equiv \pm 1$.
- ▶ Then $|H_n| \leq \frac{|G_n|}{2} \leq \frac{|F_n|}{4}$.

Therefore, the fraction of nonwitnesses is at most $\frac{1}{4}$.

Solovay-Strassen Test and Jacobi Symbol

Solovay–Strassen Test: Let n be odd and a such that gcd(a, n) = 1. Then n passes the test if:

$$a^{(n-1)/2} \equiv \left(\frac{a}{n}\right) \pmod{n}.$$

Otherwise, a is a **witness** and n is composite.

Jacobi Symbol: For odd $n = p_1^{e_1} \cdots p_k^{e_k}$, define:

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i},$$

where each $\left(\frac{a}{p_i}\right)$ is the Legendre symbol. If $x^2 = a$ for some integer x, $\left(\frac{a}{p_i}\right) = 1$. Otherwise $\left(\frac{a}{p_i}\right) = -1$

Solovay-Strassen: Witnesses and Nonwitnesses

Composite n = 14:

► *a* = 9:

$$\left(\frac{9}{14}\right) = 1, \quad 9^6 \text{ mod } 14 = 1$$

test passes non-witness.

► *a* = 11:

$$\left(\frac{11}{14}\right) = -1, \quad 11^6 \bmod 14 = 13 \neq -1$$

test fails composite detected witness.

Prime n = 7: pick a = 3,

$$\left(\frac{3}{7}\right) = -1, \quad 3^3 \bmod 7 = 6 \equiv -1$$

test passes for all valid bases.

Error Bound of Solovay-Strassen Test

Theorem: For odd composite n, at most half of the integers coprime to n pass the test. Error $\leq \frac{1}{2}$.

Sets:

$$F = \{a : \gcd(a, n) = 1, \ a^{(n-1)/2} \equiv \left(\frac{a}{n}\right) \bmod n\}$$

$$G = \{a : \gcd(a, n) = 1, \ a^{(n-1)/2} \not\equiv \left(\frac{a}{n}\right) \bmod n\}$$

$$H = \{a : \gcd(a, n) > 1\}$$

Construction: Pick any $a_0 \in G$. Define:

$$G_0 = \{ba_0 \bmod n : b \in F\}$$

Then $G_0 \subseteq G$ since multiplication by a_0 preserves failure of the test.

$$\Rightarrow |G| \ge |G_0| = |F| \Rightarrow$$
 fraction of nonwitnesses:

$$\frac{|F|}{|F|+|G|+|H|} \le \frac{|F|}{2|F|+1} < \frac{1}{2}$$

Runtime: Miller-Rabin

Main cost: Modular exponentiation.

- First, write $n-1=2^e d$ takes at most $O(\log n)$ divisions.
- ▶ Compute a^d mod n using **binary exponentiation**:
 - ightharpoonup d has $O(\log n)$ bits.
 - Each modular multiplication takes $O(\log^2 n)$ time.
 - ► Total time: $O(\log^3 n)$.
- continuously square to compute $a^{2^e d} \mod n$.
- ► Total cost $O(\log^3 n)$

Runtime: Solovay-Strassen

Two main computations per test round:

- ► Compute $a^{(n-1)/2}$ mod n using **binary exponentiation**:
 - Like Miller–Rabin, this costs $O(\log^3 n)$.
- ► Compute the **Jacobi symbol** $\left(\frac{a}{n}\right)$:
 - Based on quadratic reciprocity and reductions.
 - Runs in $O(\log^2 n)$ time.

Conclusion: Total cost per iteration is still $O(\log^3 n)$.

Comparison and Conclusion

- ▶ Both tests $O(\log^3 n)$, MR has smaller error per round $(4^{-k} \text{ vs } 2^{-k})$.
- MR more accurate than SS and faster than AKS for large primes (AKS's runtime is $\log^6 n$).
- ▶ MR is standard in cryptographic libraries for prime generation.