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Motivation: Primality in Cryptography

▶ RSA relies on large prime generation for secure keys.

▶ Primes as big as 2048 bits are needed so efficient primality
tests are important.

▶ Probabilistic vs. Deterministic Tests: probabalistic provide
faster runtimes but have error.



Fermat’s Little Theorem

If p is prime and gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p).

The Fermat test checks an−1 ≡ 1 (mod n) to declare probably
prime. Carmichael numbers can pass Fermat’s test for all a
coprime to n.



Deriving Miller–Rabin from Fermat’s Theorem

▶ Fermat’s Little Theorem: if n is prime and gcd(a, n) = 1, then

an−1 ≡ 1 (mod n).

▶ Write n − 1 = 2ed with d odd.

▶ Then

an−1−1 = a2
ed−1 = (ad−1)(ad+1)(a2d+1) . . . (a2

e−1d+1).

▶ So if n is prime, then for any a coprime to n:

ad ≡ 1 (mod n) or a2
rd ≡ −1 (mod n) for some 0 ≤ r < e.

▶ Miller–Rabin tests whether one of these congruences holds. If
not, n is composite.

▶ We keep picking a at random to retest the same number



Miller–Rabin: Witnesses and Nonwitnesses

Composite n = 9: 9− 1 = 8 = 23 · 1.
▶ a = 8:

81 mod 9 = 8 ≡ −1 (mod 9)

passes immediately non-witness.

▶ a = 2:

21 mod 9 = 2, 22 mod 9 = 4, 24 mod 9 = 7 ̸= −1

no ±1 ever appears composite detected witness.

Prime n = 7: pick a = 3,

33 mod 7 = 27 mod 7 = 6 ≡ −1,

so always passes for any valid a.



Proof: Error Bound for Prime Powers

Theorem: Let n = px for an odd prime p and x ≥ 2. Then the
error bound is at most 1

4 because at most 1
4 of the numbers are

nonwitnesses. Proof Outline:

▶ By Theorem: nonwitnesses a must be coprime to n and satisfy
an−1 ≡ 1 (mod n) and aφ(n) ≡ 1 (mod n).

▶ (n − 1, φ(n)) = (px − 1, px−1(p − 1)) = p − 1.

▶ So all nonwitnesses satisfy ap−1 ≡ 1 (mod n).

▶ Inductively construct exactly p − 1 such a mod px by lifting
from mod px−1 and use binomial expansion:

(a + cpx)p−1 ≡ ap−1 + (p − 1)ap−2cpx (mod px+1).

▶ Solve for c uniquely ⇒ only p − 1 nonwitnesses for all x .



Proof: MR Error Bound for Non-Carmichael Numbers

Theorem: If n is an odd composite and not a Carmichael number,
then the error bound is at most 1

4 because at most 1
4 of the

numbers are nonwitnesses.
Outline:

▶ Fn = {1 ≤ a ≤ n − 1 : (a, n) = 1}
▶ Gn = {1 ≤ a ≤ n − 1 : an−1 ≡ 1 (mod n)}
▶ Hn = {1 ≤ a ≤ n − 1 : a2

r0d ≡ ±1 (mod n)}. r0 is the largest
r ∈ {0, 1, ..., e − 1} such that for some a0, a

2r0
0 ≡ −1 (mod )

▶ Since n is not Carmichael, Gn is a proper .subgroup of Fn.

▶ Use Lagrange’s theorem: |Gn| ≤ |Fn|
2 .

▶ Also, Hn is a proper subgroup of Gn because there exists a
such that an−1 ≡ 1 but a2

rd ̸≡ ±1.

▶ Then |Hn| ≤ |Gn|
2 ≤ |Fn|

4 .

Therefore, the fraction of nonwitnesses is at most 1
4 .



Solovay–Strassen Test and Jacobi Symbol

Solovay–Strassen Test: Let n be odd and a such that
gcd(a, n) = 1. Then n passes the test if:

a(n−1)/2 ≡
(a
n

)
(mod n).

Otherwise, a is a witness and n is composite.
Jacobi Symbol: For odd n = pe11 · · · pekk , define:

(a
n

)
=

k∏
i=1

(
a

pi

)ei

,

where each
(

a
pi

)
is the Legendre symbol. If x2 = a for some

integer x , ( a
pi
) = 1. Otherwise ( a

pi
) = −1



Solovay–Strassen: Witnesses and Nonwitnesses

Composite n = 14:

▶ a = 9: (
9
14

)
= 1, 96 mod 14 = 1

test passes non-witness.

▶ a = 11: (
11
14

)
= −1, 116 mod 14 = 13 ̸= −1

test fails composite detected witness.

Prime n = 7: pick a = 3,(
3
7

)
= −1, 33 mod 7 = 6 ≡ −1

test passes for all valid bases.



Error Bound of Solovay–Strassen Test
Theorem: For odd composite n, at most half of the integers
coprime to n pass the test. Error ≤ 1

2 .

Sets:

F = {a : gcd(a, n) = 1, a(n−1)/2 ≡
(a
n

)
mod n}

G = {a : gcd(a, n) = 1, a(n−1)/2 ̸≡
(a
n

)
mod n}

H = {a : gcd(a, n) > 1}

Construction: Pick any a0 ∈ G . Define:

G0 = {ba0 mod n : b ∈ F}

Then G0 ⊆ G since multiplication by a0 preserves failure of the
test.

⇒ |G | ≥ |G0| = |F | ⇒ fraction of nonwitnesses:

|F |
|F |+ |G |+ |H|

≤ |F |
2|F |+ 1

<
1

2



Runtime: Miller–Rabin

Main cost: Modular exponentiation.

▶ First, write n − 1 = 2ed — takes at most O(log n) divisions.

▶ Compute ad mod n using binary exponentiation:
▶ d has O(log n) bits.
▶ Each modular multiplication takes O(log2 n) time.
▶ Total time: O(log3 n).

▶ continuously square to compute a2
ed mod n.

▶ Total cost O(log3 n)



Runtime: Solovay–Strassen

Two main computations per test round:

▶ Compute a(n−1)/2 mod n using binary exponentiation:
▶ Like Miller–Rabin, this costs O(log3 n).

▶ Compute the Jacobi symbol
(
a
n

)
:

▶ Based on quadratic reciprocity and reductions.
▶ Runs in O(log2 n) time.

Conclusion: Total cost per iteration is still O(log3 n).



Comparison and Conclusion

▶ Both tests O(log3 n), MR has smaller error per round (4−k vs
2−k).

▶ MR more accurate than SS and faster than AKS for large
primes (AKS’s runtime is log6 n).

▶ MR is standard in cryptographic libraries for prime generation.
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