
INVASION DYNAMICS IN EVOLUTIONARY GAME THEORY

AGASTYA MEHTA

Abstract. This paper investigates the emergence and persistence of cooperation in infin-
itely repeated Prisoner’s Dilemma games through the lens of evolutionary game theory. It
formalises the conditions under which cooperation can invade and resist invasion in envi-
ronments where defection is strictly dominant. The study quantifies the performance of
deterministic and stochastic strategies, in both mistake-free conditions and mistake-prone
environments, using Markov chains to compute long-run probability distributions and ex-
pected payoffs. The paper explains why and how strategies like Tit-for-Tat can initiate
cooperation, and why Win-Stay-Lose-Shift is evolutionarily stable in symmetric environ-
ments.

Introduction

The Prisoner’s Dilemma, the quintessential introductory game in game theory, presents
a striking implication: rational players would intentionally choose not to cooperate, despite
mutual cooperation leaving both better off.

Yet, countless real-world interactions - natural, social, and economic - can be decon-
structed into mechanisms similar to Prisoner’s Dilemma games. From microbial symbiosis
to oligopolies, we can empirically infer that not only has cooperative behaviour evolved, but
it has also become evolutionarily entrenched. This presents a fundamental paradox: the
emergence and persistence of cooperation within environments where defection is strictly
dominant over cooperation. Resolving this paradox has profound implications on our un-
derstanding of the dynamics of trust, competition, and cooperation. Thus, this paper aims
to formally examine the conditions under which cooperation emerges and persists in such
environments and the replicator dynamics associated with this process. Thereby, it aims to
systematically integrate frameworks to prepare a rigorous explanation behind the aforemen-
tioned examination.

This paper is most suited for curious mathematicians and social scientists with a keen
interest in game theory and behavioural tendencies. Familiarity with linear algebra and
basic calculus would help the reader understand the underlying math behind the reasoning,
however, the paper is structured such that the broader intuition remains accessible to a
passionate reader without a rigorous math background. Reading the examples will be helpful
in this regard. Those intrigued by the question the paper attempts to address will, it is hoped,
find this to be an engaging exploration.

1. Replicator Equation

In the context of evolutionary dynamics, this equation models exponential growth by mea-
suring time as a continuous quantity. It assumes that cell division occurs in an exponentially
distributed time period. Let x(t) be the abundance of a strategy at a time t, and the strategy
grows at a continuous rate r. Then, its differential equation is given by:
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(1.1)
dx

dt
= rx.

The solution for x(t) by separating variables is as follows:∫
dx

x
=

∫
r dt

log x = rt+ C

x(t) = ert+C

Let x(0) = x0, thus:

x0 = eC

(1.2) x(t) = x0e
rt.

Upon incorporating death at a continuous rate d, the differential equation becomes:

(1.3) ẋ =
dx

dt
= (r − d)x

where the effective growth rate is (r − d).
This equation highlights that for r > d, i.e. r

d
> 1, the population grows indefinitely. For

r < d, i.e. r
d
< 1, the population converges to 0. If r = d, i.e. r

d
= 1, the population remains

constant, yet this equilibrium is unstable. Any uneven perturbation in r or d will either lead
to exponential expansion, for:

ẋ = lim
(r−d)→0+

(r − d)x

or decay, for:
ẋ = lim

(r−d)→0−
(r − d)x

as ẋ = 0 precisely at r
d
= 1.

The study of evolutionary game theory emphasises the study of competitive advantages
of strategies represented by relative population dynamics, rather than absolute population
growth. This involves a normalisation exercise using the logistic equation:

(1.4) ẋ = rx(1− x

K
)

where K is the maximum carrying capacity of the environment. The logistic equation
limits the population growth toK, with the rate of growth declining as x→K. Normalisation
implies K = 1, whereby:

(1.5) ẋ = rx(1− x).

The “relative abundance” of a strategy is interpreted as its frequency and its “growth”
as its fitness. Henceforth, the replicator equation will imply this normalised equation that
models the change in the relative proportion (ẋ) of a strategy with respect to time, with x
denoting its relative abundance.
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The motivation behind normalisation is that it turns absolute growth rates into relative
competition dynamics and connects frequencies to the probability of encountering each strat-
egy in the population, linking directly to the computation of expected payoffs as described
in the following chapters. To intuitively understand the motive:

Example 1.1. Consider a competitive market and equate payoffs to market share gain.
The absolute sales growth of all the companies is less relevant than their relative growth
compared to the industry.

1.1. Natural Selection. For an environment consisting only of species A and B having
relative proportions (frequencies) of x and y, respectively:

(1.6) x+ y = 1.

Thus, the average fitness of the population is the following:

(1.7) ϕ = ax+ by

where a and b represent the fitness of x and y, respectively. The replicator equations for
the growth in the frequencies of A and B, respectively, are the following:

ẋ = x(a− ϕ)(1.8)

ẏ = y(b− ϕ).(1.9)

Thus, for the frequency of A to grow, its fitness must exceed the average fitness ϕ of the
population, i.e. a > ϕ, or else its relative abundance decays. Similarly, for B to grow, b > ϕ.
Selection can be described among n different types. For i = 1, . . . , n, let xi ∈ [0, 1] denote

the frequency of strategy i. Thus, the relative abundance of the population can be described
by the probability vector x⃗ = (x1, x2, . . . , xn), for

n∑
i=1

xi = 1.

Definition 1.1. Replicator Equation (Normalised): The replicator equation describes
how the relative abundance (frequency) of strategies in a population changes over time,
depending on the difference between a strategy’s fitness and the average fitness of the
population.[5]

Formally, for a population comprising n strategies, let xi be the frequency of strategy i,
fi its fitness, and ϕ the average fitness of the population given by:

ϕ =
n∑

j=1

xjfj

Then, the replicator equation is:

ẋi = xi (fi − ϕ)
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The interpretation of fitness as payoffs bridges evolutionary dynamics to evolutionary
game theory. Rephrasing natural selection in game-theoretic terms, strategies earning a
higher payoff than the average payoff of the population tend to increase their frequency,
while those earning below-average payoffs get outcompeted.

Thus, “the key idea of evolutionary game theory is to consider a population consisting of
A and B players and to equate payoff with fitness”.[5, p. 49]

We require the framework of evolutionarily stable strategies to understand the mechanics
of evolutionary stability under replicator dynamics.

2. Nash equilibrium and Evolutionarily Stable Strategies

2.1. Nash equilibrium.

Definition 2.1. Nash Equilibrium: A Nash equilibrium is a strategy profile such that
no player can increase their payoff by unilaterally deviating from their strategy, given the
strategies chosen by the other players.[6] Formally, for a strategy profile s∗ = (s∗1, s

∗
2, . . . , s

∗
n),

a Nash equilibrium holds if for every player i,

ui

(
s∗i , s

∗
−i

)
≥ ui

(
si, s

∗
−i

)
∀ si ∈ Si

where ui is the payoff function for player i, s∗−i denotes the strategies of all other players,

and Si is the set of available strategies for player i.

Further, a strategy profile is considered a mixed-strategy Nash equilibrium when the fitness
of all strategies is equal. For i = 1, . . . , n,

f1 = f2 = f3 = · · · = fn
where fi represents the fitness of the strategy i.
It must be noted that there may be more than one Nash equilibrium in a game. Considering

the payoff matrix between two strategies A and B as follows:

(2.1)

(
10 6
7 2

)
where 10 is the payoff for A playing against A, 6 when A plays against B, 7 when B plays

against A and 2 when B plays against B.
When player 2 chooses strategy A, player 1 obtains a higher payoff selecting strategy A

since 10 > 7. When player 2 chooses strategy B, player 1 still obtains a higher payoff by
selecting strategy A since 6 > 2. The same logic symmetrically applies to player 2. Neither
player gains from switching from strategy A, and thus neither deviates.
This indicates that since A strictly dominates B for both players, (A,A) is the unique

Nash equilibrium of this game.
Its most popular example is the Prisoner’s Dilemma, the protagonist of the next section.

Further,

Definition 2.2. Subgame Perfect Nash Equilibrium A Nash equilibrium is subgame

perfect if it is a Nash equilibrium in every subgame of the extensive game.[3]

This definition is particularly used in the context of repeated games with fixed rounds and
is relevant to Subsection 4.1.
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2.2. ESS. Consider strategies A and B having the payoff matrix:

(2.2)

(
a b
c d

)
.

Then, by equating payoff with fitness, their expected frequencies are:

fA = ax+ by(2.3)

fB = cx+ dy(2.4)

where x is the frequency of the strategy A, y is the frequency of the strategy B, a is the
payoff when A plays against A, b when A plays against B, c when B plays against A and d
when B plays against B.

This assumes that the probability of interacting with an A player is the frequency of A
in the population. Similarly, the probability of interacting with a B player is its frequency.
This kind of selection is called frequency-dependent selection.

Consider a population of A players. In this population, players of strategy B are intro-
duced, having an infinitesimal initial frequency of ϵ, where ϵ → 0. Thus, A’s frequency is
1− ϵ.

For the population of A players to successfully resist invasion by B players, its fitness must
exceed B’s fitness. That is,

(2.5) a(1− ϵ) + bϵ > c(1− ϵ) + dϵ.

Taking the limit ϵ → 0,
a > c

If a = c,

bϵ > dϵ

b > d

Thus, a strategy is considered evolutionarily stable if it can successfully resist the invasion
of another strategy. Mathematically, it is an ESS if

a > c(2.6)

OR a = c and b > d(2.7)

if condition 1 fails.
Resultantly, the fitness of B is less than the average fitness of the pure A player population,

and thus gets outcompeted and cannot invade. To gain an intuitive understanding, consider
the following example:

Example 2.1. Consider ESS to be a home-field advantage test and A and B to be two
strategies adopted by football teams. Payoffs represent an increase in fans. If A beats B
when B visits A, then the second team cannot invade the home fanbase of the first team. If
the outcome is a tie at the first team’s home ground, then A must beat B more often at B’s
home turf to remain dominant.
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Definition 2.3. Evolutionarily Stable Strategy: A strategy is an evolutionarily stable
strategy (ESS) if, when it is common in the population, no mutant strategy can invade it.[4]
Formally, given strategies Sk and Sj and their payoffs E(Sk, Sj) and E(Sj, Sk) respectively,
this implies that the strategy Sk is an ESS if:

E(Sk, Sk) > E(Sj, Sk)

or if

E(Sk, Sk) = E(Sj, Sk) and E(Sk, Sj) > E(Sj, Sj)

Definition 2.4. Weak Evolutionarily Stable Strategy: A weak evolutionarily stable
strategy (weak ESS) is a strategy such that no alternative mutant strategy can invade it.[5]

Formally, for strategies Sk and Sj with payoff function E(Sk, Sj), strategy Sk is a weak
ESS if for all Sj ̸= Sk:

E(Sk, Sk) ≥ E(Sj, Sk)(2.8)

and if E(Sk, Sk) = E(Sj, Sk), then E(Sk, Sj) ≥ E(Sj, Sj)(2.9)

Thus, ESS is a subset of weak ESS from Definition 2.3 and Definition 2.4. In such a
condition, an infinitesimal proportion of the invading strategy persists but does not grow
until it disappears as a result of stochastic fluctuations (faults).

2.3. ESS vs. Nash equilibria in Two-Strategy Games. Systematising the notation of
Definition 2.1, a strategy profile is a Nash equilibrium if:

(2.10) E(Sk, Sk) ≥ E(Sj, Sk) ∀j.

A weak ESS naturally implies a Nash equilibrium, from Definition 2.1 and Definition 2.4.

(2.11) E(Sk, Sk) > E(Sj, Sk)

in which case, the strategy Sk is an ESS, following from Definition 2.3. Thus, a strict
Nash equilibrium implies an ESS.

However, a Nash equilibrium may not be evolutionarily stable when

E(Sk, Sk) = E(Sj, Sk) and E(Sk, Sj) < E(Sj, Sj)(2.12)

Thus, a Nash equilibrium does not imply the presence of an ESS.

(2.13) Strict Nash → ESS → Weak ESS → Nash.

The concept of an ESS was developed because certain Nash equilibria were not evolution-
arily meaningful: while some can resist invasion, other equilibria described by the condition
(2.12) cannot. This makes the ESS a stricter and more relevant concept than the Nash
equilibrium for evolutionary conditions.
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Evolutionary game dynamics of two strategies can be represented by points on a simplex
S2, a closed interval [0, 1]. Consider the payoff matrix of the two strategies, A and B, to be
the matrix (2.2).

Case 1: When strategy A is dominant, i.e. a ≥ c, b ≥ d where at least one inequality is
strict, then the Nash equilibrium is (A,A) and the equilibrium is fixed at the corner point
x∗ = 1. A is the ESS that can resist invasion from B.

Case 1: A dominates

B A

Case 2: When strategy B is dominant, i.e. a ≤ c, b ≤ d where at least one inequality is
strict, then the Nash equilibrium is (B,B) and the equilibrium is fixed at the corner point
x∗ = 0. B is the ESS that can resist invasion from A.

Case 2: B dominates

B A

Case 3: When A and B are bistable, i.e. a > c, b < d, the best response for A is A,
and the best response for B is B. Thus, the selection dynamics of the population depends
on the initial condition. An unstable equilibrium in [0, 1], given by x∗ = d−b

a−b−c+d
exists. If

the initial condition x(0) > x∗, the system converges to x∗ = 1, an all-A population. If
x(0) < x∗, the system converges to x∗ = 0, an all-B population. The corner points x∗ = 1
and x∗ = 0 represent the two Nash equilibria for the strategy profile. However, neither pure
strategy is evolutionarily stable.

Case 3: Bistability, unstable equilibrium at x∗

B A

x∗ = 0 (Nash) x∗ = 1 (Nash)x∗

Case 4: When A and B coexist, i.e. a < c, b > d, the best response for A is B and the best
response for B is A. The system will converge to an interior stable equilibrium x∗ = d−b

a−b−c+d
.

In this equilibrium, the payoffs to A and B are equal. Thus, from Definition 2.1, the given
condition represents a Nash equilibrium. Yet neither pure strategy is evolutionarily stable.

Case 4: Coexistence, stable equilibrium at x∗

B A

x∗ = 0 x∗ = 1x∗

Case 5: When A and B are neutral, i.e. a = c, b = d, selection does not change the
composition of the population and every point on the simplex is an equilibrium. Thus, the
initial condition determines the equilibrium. The system possesses a Nash equilibrium at
every point on the simplex. However, neither strategy is evolutionarily stable.

Case 5: Neutral drift (every point is a Nash equilibrium)

B A

Every point is a Nash equilibrium

To illustrate these concepts and understand why the distinction between Nash equilibria
and ESS matters in evolutionary contexts, we now examine a fundamental game that appears
throughout biology and economics: the Prisoner’s Dilemma.
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3. The Prisoner’s Dilemma

3.1. An Example, and its Definition. An example is perhaps the best way to understand
the Prisoner’s Dilemma.

Example 3.1. Consider a one-shot game played between two rational firms in duopolistic
competition, selling a homogeneous product, and thus not having an inherent pricing ad-
vantage against each other. They have two choices, either to cooperate (C) by maintaining
current prices or to defect (D) by actively undercutting prices.

Considering payoffs to represent their relative market share gain compared to their current
and prospective competitors, let the payoff matrix for each be:

(3.1)

(
0 −12
10 −2

)
.

Here, 0 represents the payoff when both cooperate, +10 when the firm defects while its
competitor cooperates, −12 when the firm cooperates following its competitor’s defection,
and −2 when both defect.

This follows logically from the assumptions. If one firm cuts prices while the other does not,
demand shifts from the cooperating firm to the defecting firm, benefiting it to the detriment
of its competitor. The competitor becomes significantly weakened and more vulnerable
to competition. When both decide to defect by cutting prices, the market for the good
experiences a price race to the bottom, where both are equally worse off. This may make
both vulnerable to competition. On the other hand, when both decide to cooperate, both
are equally well off.

An intuitive exercise to find the most probable outcome would be to address the choice
of cooperation or defection from the perspective of a firm. The response of the firm to the
cooperation of its competitor would be defection, since 10 > 0. Its response to the defection
of its competitor would also be to defect, since −2 > −12. Thus, both rational firms would
choose to defect, making (D,D) the unique and singular outcome of the game.

This is a strict Nash equilibrium since neither firm benefits from switching strategies: both
choose only to defect. The strategy of pure defection is therefore also an ESS as shown by
(2.13). This is a classic example of the Prisoner’s Dilemma, a Case 1/Case 2 game.

Definition 3.1. The Prisoner’s Dilemma: The Prisoner’s Dilemma is a game in which
each player has two strategies: “cooperate” and “defect”, and the following inequalities hold
for the payoffs:

T > R > P > S

2R > T + S

where:

T = temptation payoff for unilateral defection

R = reward for mutual cooperation

P = punishment for mutual defection

S = sucker’s payoff for cooperating while the other defects

In such a game, mutual defection is the unique Nash equilibrium, even though mutual

cooperation would yield a higher payoff for both players.[6]
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In our example, (
R S
T P

)
=

(
0 −12
10 −2

)
.

This leads to a collectively suboptimal and Pareto inefficient outcome as the Nash equi-
librium outcome leaves both players worse off than if they had both cooperated.

3.2. Why use the Prisoner’s Dilemma in this context? The Prisoner’s Dilemma is
a remarkably intuitive game that has direct real-world applications in various domains of
study, particularly in competitive environments. Its conclusion, that short-term incentives
drive mutual defection, is corroborated by biological, economic, and social evidence. It
structurally incentivises defection while having a Pareto-inefficient Nash equilibrium. It is
the only game of its class for which defection strictly dominates cooperation, yet mutual
cooperation offers a higher payoff than mutual defection for both the players.

Unlike cooperative games like the Stag-Hunt, where multiple Pareto-efficient equilibria
exist and mutual best responses are cyclic, the Prisoner’s Dilemma has an isolated, strict
Nash equilibrium which directly undermines cooperation.

It is precisely this perceived inexplicability of the evolution of cooperation in the face of
short-term incentives for mutual defection that is the focus of this exposition.

3.3. Biological Implications. This game demonstrates a fundamental paradox in evolu-
tionary biology, as it implies that populations of defectors are evolutionarily stable and
strictly dominant vis-à-vis cooperating mutants.

“Evolutionary progress, the construction of new features, often requires the cooperation of
simpler parts that are already available. But cooperation is always vulnerable to exploitation
by defectors.”[5, p. 72]

“Natural selection favours defection. In a mixed population of cooperators and defectors,
the latter will always have the higher payoff. In the framework of evolutionary game theory,
therefore, defectors reproduce faster and outcompete cooperators. Under natural selection,
the average fitness of the population continuously declines. When the population consists
only of defectors, the average fitness has reached its minimum. Specific mechanisms are
needed for natural selection to favour cooperation.”[5]

Replications of the Prisoner’s Dilemma are played out in countless interactions of players
in nature, as players naturally prioritise short-term incentives.

However, consider the example of the evolution of mitochondria.

Example 3.2. Individual bacteria had short-term incentives to defect by taking resources
without contributing toward energy production, yet the bacteria cooperated by providing
ATP (energy) to early eukaryotes, who in turn cooperated by providing protection and
nutrients to them. This symbiotic relationship was so successful that mitochondria are now
essential organelles in nearly all eukaryotic cells, demonstrating how cooperation can become
evolutionarily entrenched.

This suggests that evolutionary progress has been driven by mechanisms that have enabled
cooperation to persist with defection, rather than the strict natural selection of defection
even in conditions corresponding with the Prisoner’s Dilemma.
But how has cooperation prevailed in this ocean of defection?
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4. Cooperation in Repeated Games

Example 4.1. The development of cooperation is exemplified by the institution of trade on
credit. Consider a buyer and a seller of a good. The buyer is unable to make the payment
for the requisite quantity at the time of purchase, and the seller extends unsecured credit to
the buyer which is repaid in the short term. The buyer gains the highest immediate payoff
if it chooses to defect and default on the payment. The seller obtains the highest immediate
payoff if it chooses to defect on the offer for credit and demand immediate settlement from
the buyer. However, since the buyer has to continually interact with sellers, a default can
affect its reputation and creditability for future interactions with other sellers, which in turn
may force it into unfavourable terms. The seller, on the other hand, would lose out on a
prospective sticky customer and thus would bear an opportunity cost if it chose to defect.

Complex, long-run natural and social interactions are inherently repeated, rather than iso-
lated games. This necessitates extending the analysis to iterated games where the possibility
of direct reciprocity alters evolutionary outcomes.

“Direct reciprocity means that individuals use their own experience to decide whether to
cooperate with another person.”[8] The direct reciprocity associated with repeated games
incentivises cooperation.

4.1. Questioning the Persistence of Cooperation. Consider a Prisoner’s Dilemma (T,R, P, S)
game repeated m times. There are two strategies that a player can select: GRIM and ALLD.
GRIM involves cooperation with the other player until the other player defects. Following
this first defection, GRIM permanently switches to defection. In other words, GRIM does
not forgive defection. ALLD involves defecting regardless of the action of the other player.

The payoff matrix associated with this interaction is

(4.1)

(
mR S + (m− 1)P

T + (m− 1)P mP

)
where mR is the payoff when GRIM plays against GRIM, since both players cooperate

for all m rounds and receive R each round. S + (m − 1)P is the payoff when GRIM plays
against ALLD, as GRIM cooperates while ALLD defects in the first round, resulting in the
player incurring the sucker’s payoff of S. Following this, both defect for the next m − 1
rounds and receive P for each round. T + (m− 1)P is the payoff when ALLD plays against
GRIM, as ALLD defects in the first round while GRIM cooperates, resulting in the player
receiving the highest payoff T . Following this, both players defect for the next m− 1 rounds
and receive P for each round. mP is the payoff when ALLD plays against ALLD, as both
defect for all m rounds and receive P each round.

If

E(GRIM,GRIM) > E(ALLD,GRIM)

mR > T + (m− 1)P

i.e. if

(4.2) m >
T − P

R− P

then (GRIM,GRIM) is the strict Nash equilibrium. This is when cooperation over m
rounds pays more than the reward of defecting on the first round but receiving penalized
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payoffs for all subsequent rounds. Definition 2.3 and inequality (4.2) imply that GRIM is
an ESS and ALLD will not be able to invade a population of GRIM. This explains the
persistence of cooperation when faced with purely defective strategies once cooperation in
the form of a GRIM population is established.

However, (ALLD,ALLD) is also a strict Nash equilibrium with ALLD as an ESS, since
mP > S + (m − 1)P because P > S. However, this equilibrium does not account for the
emergence of cooperation in a defecting population.

As Nowak highlights in [5, p. 76], a major problem arises when both players know exactly
how many rounds the game lasts. Since direct reciprocity does not add weight to the decision
to cooperate in the last round, neither player has an incentive to do so. The last round thus
becomes a classic one-shot Prisoner’s Dilemma. The GRIM strategy with a modification
— a last round defection — is strictly dominant against the original GRIM and is thus the
ESS:

(4.3)

(
mR S + (m− 1)R

T + (m− 1)R mR + P

)
.

The same analysis can be extended to the second-last round. Since the last round will be
a one-shot Prisoner’s Dilemma with a fixed (D,D) outcome, neither player has an incentive
to cooperate in the penultimate round. Thus, the modification of the GRIM strategy that
defects in the last two rounds strictly dominates the modification that defects in only the last
round. Backward induction implies that the ESS reaches ALLD from GRIM as each variant
is replaced by another variant that defects one round before it. No cooperative strategy is
part of the subgame perfect Nash equilibrium, i.e. SPNE (Definition 2.2), as it is rational
to defect in every round.

Formalising this backward induction argument, let Ht be the set of all histories up to
round t, where a history ht−1 ∈ Ht−1 records all actions taken from round 1 to t− 1. For a
strategy profile σ = (σ1, σ2) and history ht−1:

(4.4) Vt(σ, ht−1) = the expected payoff from round t onward for player 1

For the mth round,

(4.5) Vm(σ
∗, hm−1) = P ∀hm−1

where σ∗ is the SPNE. For earlier rounds, t < m:

(4.6) Vt(σ
∗, ht−1) = P + Vt+1(σ

∗, ht) = P + P + · · ·+ P = (m− t+ 1)P.

Any deviation from σ∗ ∀t, yields at most:

any unilateral deviation + (m− t)P = S + (m− t)P < P + (m− t)P = (m− t+ 1)P

since the deviating player receives the sucker’s payoff if they unilaterally deviate from the
SPNE strategy of defection. Thus, σ∗, i.e. ALLD is the only strict Nash equilibrium through-
out the game. This threatens the explanation for the persistence of cooperation in fixed
repeated games.
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4.2. Infinitely Repeated Games. Nowak, in [5, p. 76], notes that in the case of both
natural and human interactions the players do not know how many rounds the game will
last. With an uncertain number of rounds, defection becomes more costly as premature
defection risks forfeiting future payoffs if the game continues longer than anticipated.

“An infinitely repeated game is a game in which the same stage game is played an infinite
number of times, or when each round continues with a fixed probability after the previous
round, independently of history.”[6]

Consider a repeated Prisoner’s Dilemma where the probability that another round will be
played is w and the number of rounds is m̄. The expected number of rounds is:

(4.7) m̄ =
1

1− w
.

The greater the w, the higher the payoff for cooperation as w discounts future payoffs and
makes immediate payoffs less salient. There is no GRIM variant that can simply defect on
the last move in this game. Thus, GRIM is an ESS when:

(4.8) m̄ >
T − P

R− P
.

However, GRIM is not ideal since it is unforgiving once defected against. This may risk
a significant payoff opportunity cost in the case of premature defection. Which strategy has
the highest average payoff in its interactions with other strategies in a strategy profile in
an infinitely repeated game? Does the pursuit of this inquiry hint toward the emergence of
cooperation?

5. Axelrod’s Tournaments, Stochastic Strategies and their Payoffs

Robert Axelrod, a political scientist at the University of Michigan, invited people to submit
strategies for the repeated Prisoner’s Dilemma game, where every strategy would be played
against every other strategy and the payoff for each strategy was summed and ranked.[1]
The tournaments assumed deterministic and error-free conditions. The winning strategy
was Tit-For-Tat (TFT). TFT starts with C and then replicates the opponent’s action in the
previous round. TFT is a “nice” strategy – it is never the first to defect and never earns
a payoff that is higher than its opponent. However, the payoff sum over all matches is the
highest for TFT, implying that its success is due to high average payoffs per round. TFT
is an ESS against ALLD when condition (4.2) is satisfied for m̄. TFT betters GRIM as it
forgives defection.

However, TFT has a flaw: its performance is significantly hampered by mistakes.“Real-
world situations are permeated by mistakes. A “trembling hand” can lead to a misimplemen-
tation of one’s own action. A “fuzzy mind” can cause a misinterpretation of the opponent’s
move.”[5, p. 79]

Consider a game between two TFT players. One mistake can move the game from mutual
cooperation to alternate cooperation and defection. The mistake being at t = 2,

TFT : CCCCḊCDCDC . . .(5.1)

TFT : CCCCCDCDCD . . .(5.2)

A second mistake can lead to mutual defection.
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TFT : CCCCCḊCDḊD . . .

TFT : CCCCCCDCDD . . .

In the limit as m̄ → ∞, with two TFT players having a probability ϵ (taking ϵ → 0)
of making mistakes, the game approximates a Markov process, preventing the system from
remaining at (C,C). Therefore, the payoff for the two players is:

(5.3) E(TFT, TFT ) = m̄(
R + P + T + S

4
) < m̄R.

Thus, TFT cannot correct mistakes. This reduces its average payoff considerably. Since
Axelrod’s tournaments did not factor mistakes they did not expose TFT’s “Achilles Heel”.
[5, p. 79]

Unlike deterministic strategies such as TFT, GRIM, ALLD and ALLC, which assign a
binary probability to C or D, memory-1 stochastic strategies (M1SS) assign a probability
p ∈ [0, 1] for C after the cooperation of the opponent and q ∈ [0, 1] for C after the opponent’s
defection. M1SS can assign a non-zero probability for q, thus helping to correct mistakes.
The payoff matrix for a repeated Prisoner’s Dilemma between two M1SS is a Markov chain

for the four states in order, (C,C), (C,D), (D,C), (D,D). Consider two M1SS, S(p1, q1)
and S(p2, q2). The Markov chain is defined by the transition matrix M = [aij], with each
entry aij indicating the probability of shifting from state i to j, as being:

(5.4) M =


p1p2 p1(1− p2) (1− p1)p2 (1− p1)(1− p2)
q1p2 q1(1− p2) (1− q1)p2 (1− q1)(1− p2)
p1q2 p1(1− q2) (1− p1)q2 (1− p1)(1− q2)
q1q2 q1(1− q2) (1− q1)q2 (1− q1)(1− q2)

 .

Let x⃗t denote the probability distribution of the four states of the game at time t, implying
the time spent in each state by the system. Therefore,

(5.5) x⃗t =


πCC

πCD

πDC

πDD


where πCC , πCD, πDC , and πDD represent the long-term probabilities that the system

is in state (C,C), (C,D), (D,C), and (D,D), respectively. Therefore, at time t + 1, the
distribution evolves as:

(5.6) ⃗xt+1 = Mx⃗t.

The probability distribution vector of a given round is transformed after each round by
the transition matrix and thus is dependent only on the probability distribution vector of
the previous round, highlighting its Markov memory-1 characteristic.

Definition 5.1. Eigenvector and Eigenvalue: A non-zero vector x⃗ is called an eigen-
vector of a square matrix M if there exists a scalar λ (called the eigenvalue) such that:

Mx⃗ = λx⃗
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Definition 5.2. Regular Matrix: A real square matrix M is said to be regular if there

exists a positive integer k such that all entries of Mk are strictly positive.

The Perron-Frobenius Theorem states:

Theorem 5.3. Let M be a real, non-negative square matrix of size n× n. If M is regular,
i.e. there exists some power k such that all entries of Mk are positive, then:

(1) M has a unique largest real eigenvalue λmax (called the Perron-Frobenius eigenvalue).
(2) This eigenvalue is simple (has algebraic multiplicity 1) and positive.
(3) All other eigenvalues λ of M satisfy |λ| < λmax.
(4) There exists a unique (up to scaling) positive left-hand eigenvector x⃗ associated with

λmax.

[2][7].

.
For any probability distribution x⃗t,

∑4
i=1 xi,t = 1 ∀ t since all states are mutually exclusive

and collectively exhaustive. Thus, λ = 1, proven by Theorem 5.3.
The components of x⃗ represent the stationary long-run distribution of the Markov chain,

for the limit t → ∞. Thus,

(5.7) x⃗ = Mx⃗.

The Markov chain converges to this x⃗t if and only if all eigenvalues other than λ = 1
satisfy |λ| < 1.

And therefore, the expected average payoff per round for t → ∞ is:

(5.8) E[S(p1, q1), S(p2, q2)] =
(
R S T P

)
x⃗

Let:

r1 = p1 − q1(5.9)

r2 = p2 − q2.(5.10)

Each measures the responsiveness of the strategy to the action of the opponent.
Let s1 and s2 denote the long-run probabilities of cooperation for players 1 and 2.

(5.11) s1 = πCCp1 + πCDq1 + πDCp1 + πDDq1

s2 = πCCp2 + πCDq2 + πDCp2 + πDDq2

Thus,

(5.12) x⃗ =


s1s2

s1(1− s2)
s2(1− s1)

(1− s1)(1− s2)

 .

By substituting equation (5.12) into equation (5.11),

(5.13) s1 = s1s2p1 + s1(1− s2)q1 + (1− s1)s2p1 + (1− s1)(1− s2)q1

(5.14) s2 = s1s2p2 + s1(1− s2)q2 + (1− s1)s2p2 + (1− s1)(1− s2)q2.
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Taking s1 and simplifying the equation (5.13),

s1 = s1s2p1 + s1q1 − s1s2q1 + s2p1 − s1s2p1 + q1 − s1q1 − s2q1 + s1s2q1.

(5.15) s1 = s2p1 − s2q1 + q1 = s2r1 + q1

Similarly,

(5.16) s2 = s1r2 + q2

Substituting equation (5.16) into equation (5.15),

s1 = s1r2r1 + r1q2 + q1

s1 (1− r2r1) = r1q2 + q1

(5.17) s1 =
r1q2 + q1
1− r2r1

.

Similarly,

(5.18) s2 =
r2q1 + q2
1− r2r1

.

Thus, from equations (5.8) and (5.12), the per round payoff is:

(5.19) E(S1, S2) = Rs1s2 + Ss1(1− s2) + T (1− s1)s2 + P (1− s1)(1− s2).

For equations (5.17) and (5.18) to hold, |r1r2| < 1. Or else, it implies infinite (|r1r2| = 1)
or negative (|r1r2| > 1) probabilities for s1 and s2, which is not possible. This probabilistic
intuition is theoretically supported by Theorem 5.3 to necessitate |r1r2| < 1 for the Markov
chain to be regular, which is, in turn, required for convergence to a unique stable probability
distribution.

Therefore, this condition is necessary for convergence to a unique stationary and stable
probability distribution eigenvector having λ = 1.

For deterministic strategies having |r1r2| = 1, in a mistake-free environment, convergence
is either trivial (such as in a game between TFT and TFT, there is a stable state (C,C)) or
is cyclic with known periodicity.

6. The Emergence of Cooperation

Let a strategy be described by its parameters S = (pCC , pCD, pDC , pDD).
Using the method mentioned in the previous chapter for the computation of payoffs for

interactions between stochastic strategies, Nowak, in [5, p. 84], investigates the evolution
of cooperation through in silico evolution that factored in mistakes, taking n strategies. In
most cases, the n strategies converge to the one closest to ALLD. However, he noted that
in cases where n included a strategy close to TFT (1, 0, 1, 0), this strategy increased in
frequency versus the strategy closest to ALLD once almost all other strategies disappeared,
because its average payoff is higher than ALLD’s above a certain frequency of TFT players
in the population. This threshold depends on the particular payoff matrix of the game. This
is because:

(6.1) E(TFT, TFT ) = m̄R > E(ALLD,ALLD) = m̄P.
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TFT is, in turn, replaced by more cooperative strategies such as the “Generous” Tit-for-
Tat (1, 1/3, 1, 1/3). This is because:

(6.2) E(GTFT,GTFT ) > E(TFT, TFT ) = m̄(
R + P + T + S

4
).

GTFT forgiveness of defections with a probability 1
3
, results in a significantly higher payoff

when it plays against itself, compared to TFT’s when it plays against itself, since GTFT
can make up for mistakes. Thus, cooperation evolves further from TFT to GTFT. This
highlights TFT’s second weakness: its vulnerability toward a drift toward a greater degree
of cooperation.

However:

(6.3) E(GTFT,ALLD) < E(TFT,ALLD)

as stochastically forgiving defections results in a greater S for GTFT against ALLD compared
to TFT against ALLD. Thus, the minimum frequency threshold for GTFT to be an ESS in
an ALLD environment is significantly higher than the same for TFT.

Therefore, TFT is needed to initiate cooperation. But once cooperation is established,
GTFT shall replace TFT.

GTFT is defined as the following:

(6.4) GTFT : p = 1 and q = min{1− T −R

R− S
,
R− P

T − P
}

where q is the highest probability of forgiveness that is an ESS. Increasing q invites invasion
by ALLD. q is derived by maximising E(q) over q in [0,1]. Thus, GTFT provides the highest
payoff for a strategy that resists invasion by ALLD.

Resultantly, the strategy profile evolves from defective strategies to cooperative strategies.
This causes the q for GTFT to reduce over generations, resulting in a cooperative drift from
GTFT to ALLC. Thus, GTFT is by definition vulnerable to cooperative drift, which invites
defectors, initiating an evolutionary race toward ALLD.

The Chain of Evolution

ALLD

TFT

GTFT

ALLC

Thus, while TFT explains the emergence of cooperation against ALLD, the subsequent chain
of evolution does not explain its persistence.

Example 6.1. This natural sequence of events occurs in the financial markets.
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(1) In a prosperous economic environment, institutions with greater risk tolerance (anal-
ogous to cooperators) gain market share against more conservative peers. As a result,
the degree of forgiveness (risk appetite) in the economy increases.

(2) This makes the environment increasingly fragile. When a shock or a wave of defaults
occurs, the overly forgiving institutions are unable to absorb the losses.

(3) Post-collapse, risk-averse institutions (defectors) who survive this dominate by gain-
ing market share from their risk-tolerant competitors.

(4) As market confidence returns, cautiously cooperative institutions (TFTs) begin out-
performing defectors by selectively raising risk tolerance. This plays a role in initiat-
ing a prosperous economic environment.

(5) The cycle repeats.

7. Win-Stay-Lose-Shift, The Gamechanger

Until now, we have analysed four cooperative strategies: ALLC, GRIM, TFT and GTFT.
None is evolutionarily stable, as each has its weaknesses.

(1) ALLC is vulnerable to defectors.
(2) GRIM is vulnerable to ALLD in repeated games with fixed rounds and is weakened

due to its punitive defective stance in infinitely repeated games.
(3) TFT is vulnerable to mistakes and an eventual cooperative drift as it evolves into

GTFT.
(4) GTFT is naturally vulnerable to a cooperative drift as its frequency in the environ-

ment increases.

Fortunately, a semi-cooperative Win-Stay, Lose-Shift (WSLS) strategy also evolved from
ALLC in the in-silico evolution experiment, described deterministically by S = (1, 0, 0, 1).
This strategy can be considered “out-of-the-box” since it responds to the outcome of the
previous round rather than action of the opponent, unlike ALLC, GRIM, TFT and GTFT.

WSLS cooperates when the previous outcome is a (C,C) or (D,D) and defects when the
previous outcome is a (D,C) or (C,D). This implies that for the “winning” outcomes, i.e.
T or R, the strategy “stays” with its action while for the “losing” outcomes i.e. S or P , it
“shifts” its action.

7.1. Assessing WSLS’ Evolutionary Stability. The first step is to evaluate the stability
of WSLS against invasion by defective strategies.

E(WSLS,WSLS) = m̄R while E(ALLD,WSLS) = m̄(T+P
2

) for m̄ → ∞.
Thus, from (2.10), WSLS is an ESS against ALLD only if:

(7.1) R >
(T + P )

2

Therefore, WSLS (1, 0, 0, 1 − ϵ), taking ϵ → 0, is an ESS against ALLD. For R < (T+P )
2

,

WSLS (1, 0, 0, x) for x < R−P
T−R

is an ESS against ALLD. Thus, WSLS overcomes ALLC’s
weakness of susceptibility to defective strategies.

WSLS is also capable of correcting its mistakes. For a game between two WSLS players,
both start with a sequence of cooperative decisions resulting in (C,C) until one defects
by mistake. Following this defection, the other player also defects, since (D,C) is losing for
them, while the first player repeats their defection since (D,C) is winning for them, resulting
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in a (D,D) outcome in the subsequent round. As this outcome is considered “losing” for
both, both players shift to cooperation, i.e. (C,C).

WSLS : CCCCCCḊDCC . . .

WSLS : CCCCCCCDCC . . .

Thereby, WSLS overcomes TFT’s susceptibility to mistakes.
Further, for a game between two players, one adopting WSLS and the other adopting

ALLC, both start by a sequence of cooperative decisions resulting in (C,C) until the WSLS
player defects by mistake. Resultantly, the outcome is (D,C) which is in the favour of the
WSLS player. This is considered a “winning” outcome and thus, the WSLS player will
continue to defect for the rest of the rounds. On the other hand, ALLC does not reciprocate
the defection. Thereby WSLS is resistant to cooperative drift, further outperforming TFT
and bettering GTFT.

WSLS : CCCCCCḊDDD . . .

ALLC : CCCCCCCCCC . . .

Therefore, the WSLS strategy is evolutionarily stable against deterministic defective strate-
gies once established, and thus ensures the persistence of cooperation.

However, WSLS evidently cannot initiate cooperation, as for that, E(ALLD,ALLD) <
E(ALLD,WSLS). But:

E(ALLD,ALLD) = m̄P

E(WSLS,ALLD) =
m̄(S + P )

2

(7.2) ∴ E(ALLD,ALLD) > E(WSLS,ALLD).

A diagrammatic representation of the evolution and persistence of cooperation is:

The Emergence and Persistence of Cooperation

ALLD

TFT

GTFT

ALLC

WSLS
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7.2. WSLS’ Vulnerability to Asymmetry, and an Insight into Rationality. WSLS
is an unfathomably robust strategy in the standard infinitely repeated Prisoner’s Dilemma
with symmetric preferences when the condition (7.1) is satisfied, apart from its inability to
initiate cooperation.

However, WSLS is vulnerable to asymmetric preferences. Let this table be an asymmetric
Prisoner’s Dilemma game between players A and B:

Outcome A’s Payoff B’s Payoff
(C,C) 3 2
(C,D) 0 5
(D,C) 5 0
(D,D) 1 1

In this distinct game, let the payoff threshold for “winning” outcomes for A be E(A,B) > 1
and for B be E(B,A) ≥ 1.

If a sequence of (C,C) outcomes is followed by a mistake that generates a (C,D) outcome,
A shifts from C to D as it is “losing” for A, while B will stay with D as it is “winning” for
B. This results in (D,D). A shifts once again from D to C, however, B does not, as the
payoff for (D,D) meets its requisite threshold.

This is followed by similar alternating sequence of C and D as in TFT’s case (5.1). This
occurrence results in:

(7.3) E(A,B) = m̄(
R + T + P + S

4
)

which is equivalent to E(TFT, TFT ) in symmetric games, i.e. condition (5.3).
Such asymmetric games arise, either from unequal payoffs or from unequal payoff-based

definitions of “winning” outcomes for the two players. These differences reflect the revealed
preference of the two players: preferences inferred from observed historical behaviour of
each player rather than assumed symmetric payoff matrices. The Revealed Preference Hy-
pothesis empirically investigates subjective rationality. Thus, for real-life infinitely repeated
Prisoner’s Dilemma games, WSLS may not remain as resolute a strategy as it does under
the assumption of objective rationality, i.e. consistent payoffs and preference orderings.

Exceedingly rarely, yet possibly, in an infinitely repeated symmetric Prisoner’s Dilemma,
WSLS may witness a cooperative drift in case the probability of mistakes occurring in games
between WSLS and ALLC (ϵ) exceeds the probability of mistakes occurring in games between
WSLS and WSLS. This, in turn, initiates the chain of evolution until a strategy similar to
WSLS breaks out from a cooperative strategy profile.

8. Appendix: An Example of Long-run Payoff Calculations: Axelrod’s
Tournaments

The strategy profile S for the environment comprises (TFT,ALLD,ALLC,GTFT,WSLS),
where each is defined deterministically as (1, 0, 1, 0), (0, 0, 0, 0), (1, 1, 1, 1), (1, 1

3
, 1, 1

3
), and

(1, 0, 0, 1), respectively. This environment will not be susceptible to mistakes. Let:
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(8.1) S =


1/5
1/5
1/5
1/5
1/5


Let the Prisoner’s Dilemma payoff matrix for this environment be:

(8.2)

(
3 0
5 1

)

8.1. Payoff Table. Thus, the payoff table for every strategy is:

Table 1. (Axelrod’s PD: T=5, R=3, P=1, S=0)

vs TFT ALLC ALLD GTFT WSLS
TFT (1,0,1,0) 3m̄ 3m̄ 1m̄ 3m̄ 3m̄
ALLC (1,1,1,1) 3m̄ 3m̄ 0m̄ 3m̄ 3m̄
ALLD (0,0,0,0) 1m̄ 5m̄ 1m̄ 2.33m̄ 3m̄

GTFT (1,1/3,1,1/3) 3m̄ 3m̄ 0.67m̄ 3m̄ 3m̄
WSLS (1,0,0,1) 3m̄ 3m̄ 0.5m̄ 3m̄ 3m̄

8.2. Using the Replicator Equation. The average payoffs, i.e. the fitness f for each
strategy is:

fTFT =
1

5
∗ (3 + 3 + 1 + 3 + 3)m̄ = 2.6m̄

fALLC =
1

5
∗ (3 + 3 + 0 + 3 + 3)m̄ = 2.4m̄

fALLD =
1

5
∗ (1 + 5 + 1 + 2.33 + 3)m̄ = 2.46m̄

fGTFT =
1

5
∗ (3 + 3 + 0.67 + 3 + 3)m̄ = 2.54m̄

fWSLS =
1

5
∗ (3 + 3 + 0.5 + 3 + 3)m̄ = 2.5m̄

Therefore, the average fitness ϕ for the strategy profile, from Definition 1.1, is:

(8.3) ϕ =
1

5
∗ (2.6 + 2.4 + 2.46 + 2.54 + 2.5)m̄ = 2.5m̄

By inserting the calculated inputs into the replicator equation, from Definition 1.1:



INVASION DYNAMICS IN EVOLUTIONARY GAME THEORY 21

ẋTFT =
1

5
∗ (2.6− 2.5) = 0.02

ẋALLC =
1

5
∗ (2.4− 2.5) = −0.02

ẋALLD =
1

5
∗ (2.46− 2.5) = −0.008

ẋGTFT =
1

5
∗ (2.54− 2.5) = 0.008

ẋWSLS =
1

5
∗ (2.5− 2.5) = 0

This corroborates with the results of Axelrod’s Tournaments, where in a symmetric infin-
itely repeated Prisoner’s Dilemma without mistakes, TFT emerged as the winner by having
the greatest differential for frequency with respect to time.
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