The Outer Automorphism of S_6

Aeris Chang

Euler Circle

July 14, 2025

What is a Group?

Definition: Group

A **group** is a set G equipped with a binary operation $\cdot: G \times G \to G$ satisfying the following properties:

- Closure: For all $a, b \in G$, the combination $a \cdot b \in G$.
- Associativity: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **Identity:** There exists an element $e \in G$ such that for all $a \in G$, $e \cdot a = a \cdot e = a$.
- **Inverse:** For each $a \in G$, there exists $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Definition: Symmetric Group S_n

The **symmetric group** S_n is the group of all permutations (bijective functions) of the set $\{1, 2, ..., n\}$ with group operation given by composition.

Group Actions and Transitivity

Group Action

A group action is a map $G \times X \to X$, written $(g,x) \mapsto g \cdot x$, satisfying:

$$e \cdot x = x$$
, $(gh) \cdot x = g \cdot (h \cdot x)$.

Transitive Action

The action is **transitive** if for all $x, y \in X$, there exists $g \in G$ such that $g \cdot x = y$.

Examples:

- D_4 acts on the vertices of a square by rotation and reflection.
- \mathbb{Z} acts on \mathbb{R} by $n \cdot x = x + n$.
- G acts on itself by conjugation: $g \cdot x = gxg^{-1}$.

Automorphisms and an Example

Definition

An **automorphism** of a group G is an isomorphism from G to itself:

$$f: G \rightarrow G$$

- The set of all automorphisms, denoted Aut(G), forms a group under composition.
- **Example:** For the cyclic group $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ under addition mod n:
 - Every automorphism is determined by the image of the generator $1 \in \mathbb{Z}_n$.
 - Since the map must preserve order, 1 must be sent to an element coprime to *n*.
 - Thus,

$$\operatorname{Aut}(\mathbb{Z}_n) \cong (\mathbb{Z}_n)^{\times} = \{k \in \mathbb{Z}_n : \gcd(k, n) = 1\},$$

where $(\mathbb{Z}_n)^{\times}$ is the group of units modulo $n \cdot \mathbb{Z}_n \times \mathbb$

Inner Automorphisms

Definition

An **inner automorphism** of a group G is a map of the form

$$f_a(x) = a^{-1}xa$$
 for fixed $a \in G$ and all $x \in G$.

- The set of all inner automorphisms forms a subgroup of $\operatorname{Aut}(G)$, denoted $\operatorname{Inn}(G)$.
- **Key result:** $Inn(G) \cong G/Z(G)$, where Z(G) is the center of G.
- Inn(G) is a normal subgroup of Aut(G):

$$\operatorname{Inn}(G) \subseteq \operatorname{Aut}(G)$$
.

Outer Automorphisms

Definition

An ${f outer}$ automorphism of a group ${\it G}$ is an element of the quotient group

$$\mathrm{Out}(G) := \mathrm{Aut}(G)/\mathrm{Inn}(G).$$

It represents an automorphism that is not inner—that is, not of the form $f_a(x) = a^{-1}xa$ for any $a \in G$.

- If $Out(G) \neq \{e\}$, then G has at least one non-inner (i.e., outer) automorphism.
- For most symmetric groups, $\operatorname{Out}(S_n) = \{e\}$. But S_6 is special: it has a nontrivial outer automorphism.

Complete Groups and Symmetric Groups

Definition

A group *G* is called **complete** if:

- Its center is trivial: $Z(G) = \{e\}$
- Every automorphism is inner: Aut(G) = Inn(G)

Theorem

The symmetric group S_n is complete for all $n \neq 2, 6$.

The case n = 6 is exceptional:

- $|\operatorname{Inn}(S_6)| = |S_6| = 720$
- $|Aut(S_6)| = 1440$
- So $\operatorname{Aut}(S_6) \neq \operatorname{Inn}(S_6)$, and S_6 is *not* complete

This makes S_6 the only symmetric group with a nontrivial **outer** automorphism.

Transpositions and Inner Automorphisms

Definition: Transposition

A **transposition** is a 2-cycle in S_n that swaps two elements and fixes the rest. For example, $(1\ 2)\in S_n$ sends $1\mapsto 2,\ 2\mapsto 1$, and $k\mapsto k$ for all $k\neq 1,2$.

• More generally, let T_k denote the conjugacy class of elements in S_n that are products of k disjoint transpositions.

Proposition

If an automorphism of S_n sends each transposition in T_1 to another transposition in T_1 , then the automorphism is inner.

- For $n \neq 6$, the sizes of the conjugacy classes T_k are all distinct. In particular, $|T_1| \neq |T_k|$ for any $k \neq 1$.
- Therefore, any automorphism of S_n must preserve T_1 , and by the lemma, it must be inner.

Proof Outline: Conjugacy Classes in S_n

• Recall: For each k, define T_k as the conjugacy class of elements in S_n that are products of k disjoint transpositions.

 $T_1 = \text{transpositions}, \quad T_2 = \text{products of two disjoint transpositions}, \dots$

• If $f \in Aut(S_n)$, then f sends conjugacy classes to conjugacy classes:

$$f(T_1) = T_k$$
 for some k .

• The size of T_1 is

$$|T_1| = \binom{n}{2} = \frac{n(n-1)}{2}.$$

• For $k \geq 1$,

$$|T_k| = \frac{1}{k!} \prod_{i=0}^{k-1} {n-2i \choose 2}.$$

These sizes count elements that are products of k disjoint transpositions.

Proof Outline: Uniqueness of T_1 and Completeness of S_n

• For $n \neq 6$, the sizes $|T_k|$ are all distinct, so

$$|T_1| \neq |T_k|$$
 for any $k \neq 1$.

• But for n = 6, there is a unique coincidence:

$$|T_1| = |T_3| = 15,$$

allowing a non-inner automorphism that maps transpositions to triple transpositions.

- Thus, for $n \neq 6$, automorphisms must preserve T_1 .
- ullet By the proposition, any automorphism that preserves \mathcal{T}_1 is inner.
- Since the center $Z(S_n) = \{e\}$ for $n \ge 3$, S_n is **complete** for $n \ne 6$.

Constructing the Outer Automorphism via Conjugacy Classes

• Because $|T_1| = |T_3| = 15$ in S_6 , there is a bijection:

$$\varphi: T_1 \longleftrightarrow T_3,$$

swapping transpositions with triple disjoint transpositions.

- Extend φ to an automorphism of S_6 by defining its action on generators (transpositions).
- \bullet Since inner automorphisms preserve cycle structure, φ cannot be inner.
- Thus, φ is the unique outer automorphism of S_6 .

Constructing the Outer Automorphism via The Group $\operatorname{PGL}_2(\mathbb{F}_5)$

• Consider the projective line over \mathbb{F}_5 :

$$\mathbb{P}^1(\mathbb{F}_5) = \{0,1,2,3,4,\infty\}.$$

• $\operatorname{PGL}_2(\mathbb{F}_5)$ consists of Möbius transformations:

$$x \mapsto \frac{ax+b}{cx+d}$$
, with $ad-bc \neq 0$.

• The order of $\operatorname{PGL}_2(\mathbb{F}_5)$ is 120.

Sharp 3-Transitivity on 6 Points

- $\bullet \ \mathrm{PGL}_2(\mathbb{F}_5)$ acts on the 6 points of $\mathbb{P}^1(\mathbb{F}_5).$
- The action is sharply 3-transitive:

For any two triples of distinct points, there is exactly one transformation

This gives an embedding:

$$\operatorname{PGL}_2(\mathbb{F}_5) \hookrightarrow \mathcal{S}_6.$$

Realizing the Outer Automorphism

- Consider the subgroup $H:=\operatorname{PGL}_2(\mathbb{F}_5)\cong S_5\subset S_6.$
- The action of S_6 on the coset space S_6/H defines a homomorphism:

$$f: S_6 \rightarrow S_6$$
.

- The image of f is isomorphic to S_5 , but H is not conjugate to the standard $S_5 \subset S_6$.
- This homomorphism f induces the **outer automorphism** of S_6 .

Several Ways to Construct the Outer Automorphism of S_6

- 1. Conjugacy Class Sizes
- 2. $PGL_2(\mathbb{F}_5)$ Action
- 3. Coset Action Representation: Construct a homomorphism from S_6 acting on cosets of a subgroup $H \cong S_5$ of order 120
- 4. Mystic Pentagons / Geometric Construction: Use the combinatorial structure of the six "mystic pentagons" related to S₅
- 5. Automorphisms of A_6 : Use the automorphism group structure of the alternating group A_6
- **6. Sylow Subgroups:** Analyze Sylow p-subgroups of S_6 to identify special subgroup embeddings that lead to non-conjugate S_5 subgroups

Thank You for Listening! Questions?