The Outer Automorphism of S_6 Aeris Chang Euler Circle July 14, 2025 # What is a Group? #### Definition: Group A **group** is a set G equipped with a binary operation $\cdot: G \times G \to G$ satisfying the following properties: - Closure: For all $a, b \in G$, the combination $a \cdot b \in G$. - Associativity: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. - **Identity:** There exists an element $e \in G$ such that for all $a \in G$, $e \cdot a = a \cdot e = a$. - **Inverse:** For each $a \in G$, there exists $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$. ### Definition: Symmetric Group S_n The **symmetric group** S_n is the group of all permutations (bijective functions) of the set $\{1, 2, ..., n\}$ with group operation given by composition. # Group Actions and Transitivity #### **Group Action** A group action is a map $G \times X \to X$, written $(g,x) \mapsto g \cdot x$, satisfying: $$e \cdot x = x$$, $(gh) \cdot x = g \cdot (h \cdot x)$. #### Transitive Action The action is **transitive** if for all $x, y \in X$, there exists $g \in G$ such that $g \cdot x = y$. #### **Examples:** - D_4 acts on the vertices of a square by rotation and reflection. - \mathbb{Z} acts on \mathbb{R} by $n \cdot x = x + n$. - G acts on itself by conjugation: $g \cdot x = gxg^{-1}$. ## Automorphisms and an Example #### Definition An **automorphism** of a group G is an isomorphism from G to itself: $$f: G \rightarrow G$$ - The set of all automorphisms, denoted Aut(G), forms a group under composition. - **Example:** For the cyclic group $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ under addition mod n: - Every automorphism is determined by the image of the generator $1 \in \mathbb{Z}_n$. - Since the map must preserve order, 1 must be sent to an element coprime to *n*. - Thus, $$\operatorname{Aut}(\mathbb{Z}_n) \cong (\mathbb{Z}_n)^{\times} = \{k \in \mathbb{Z}_n : \gcd(k, n) = 1\},$$ where $(\mathbb{Z}_n)^{\times}$ is the group of units modulo $n \cdot \mathbb{Z}_n \times \mathbb$ # Inner Automorphisms #### **Definition** An **inner automorphism** of a group G is a map of the form $$f_a(x) = a^{-1}xa$$ for fixed $a \in G$ and all $x \in G$. - The set of all inner automorphisms forms a subgroup of $\operatorname{Aut}(G)$, denoted $\operatorname{Inn}(G)$. - **Key result:** $Inn(G) \cong G/Z(G)$, where Z(G) is the center of G. - Inn(G) is a normal subgroup of Aut(G): $$\operatorname{Inn}(G) \subseteq \operatorname{Aut}(G)$$. # Outer Automorphisms #### **Definition** An ${f outer}$ automorphism of a group ${\it G}$ is an element of the quotient group $$\mathrm{Out}(G) := \mathrm{Aut}(G)/\mathrm{Inn}(G).$$ It represents an automorphism that is not inner—that is, not of the form $f_a(x) = a^{-1}xa$ for any $a \in G$. - If $Out(G) \neq \{e\}$, then G has at least one non-inner (i.e., outer) automorphism. - For most symmetric groups, $\operatorname{Out}(S_n) = \{e\}$. But S_6 is special: it has a nontrivial outer automorphism. # Complete Groups and Symmetric Groups #### Definition A group *G* is called **complete** if: - Its center is trivial: $Z(G) = \{e\}$ - Every automorphism is inner: Aut(G) = Inn(G) #### Theorem The symmetric group S_n is complete for all $n \neq 2, 6$. The case n = 6 is exceptional: - $|\operatorname{Inn}(S_6)| = |S_6| = 720$ - $|Aut(S_6)| = 1440$ - So $\operatorname{Aut}(S_6) \neq \operatorname{Inn}(S_6)$, and S_6 is *not* complete This makes S_6 the only symmetric group with a nontrivial **outer** automorphism. ## Transpositions and Inner Automorphisms #### Definition: Transposition A **transposition** is a 2-cycle in S_n that swaps two elements and fixes the rest. For example, $(1\ 2)\in S_n$ sends $1\mapsto 2,\ 2\mapsto 1$, and $k\mapsto k$ for all $k\neq 1,2$. • More generally, let T_k denote the conjugacy class of elements in S_n that are products of k disjoint transpositions. #### Proposition If an automorphism of S_n sends each transposition in T_1 to another transposition in T_1 , then the automorphism is inner. - For $n \neq 6$, the sizes of the conjugacy classes T_k are all distinct. In particular, $|T_1| \neq |T_k|$ for any $k \neq 1$. - Therefore, any automorphism of S_n must preserve T_1 , and by the lemma, it must be inner. # Proof Outline: Conjugacy Classes in S_n • Recall: For each k, define T_k as the conjugacy class of elements in S_n that are products of k disjoint transpositions. $T_1 = \text{transpositions}, \quad T_2 = \text{products of two disjoint transpositions}, \dots$ • If $f \in Aut(S_n)$, then f sends conjugacy classes to conjugacy classes: $$f(T_1) = T_k$$ for some k . • The size of T_1 is $$|T_1| = \binom{n}{2} = \frac{n(n-1)}{2}.$$ • For $k \geq 1$, $$|T_k| = \frac{1}{k!} \prod_{i=0}^{k-1} {n-2i \choose 2}.$$ These sizes count elements that are products of k disjoint transpositions. # Proof Outline: Uniqueness of T_1 and Completeness of S_n • For $n \neq 6$, the sizes $|T_k|$ are all distinct, so $$|T_1| \neq |T_k|$$ for any $k \neq 1$. • But for n = 6, there is a unique coincidence: $$|T_1| = |T_3| = 15,$$ allowing a non-inner automorphism that maps transpositions to triple transpositions. - Thus, for $n \neq 6$, automorphisms must preserve T_1 . - ullet By the proposition, any automorphism that preserves \mathcal{T}_1 is inner. - Since the center $Z(S_n) = \{e\}$ for $n \ge 3$, S_n is **complete** for $n \ne 6$. # Constructing the Outer Automorphism via Conjugacy Classes • Because $|T_1| = |T_3| = 15$ in S_6 , there is a bijection: $$\varphi: T_1 \longleftrightarrow T_3,$$ swapping transpositions with triple disjoint transpositions. - Extend φ to an automorphism of S_6 by defining its action on generators (transpositions). - \bullet Since inner automorphisms preserve cycle structure, φ cannot be inner. - Thus, φ is the unique outer automorphism of S_6 . # Constructing the Outer Automorphism via The Group $\operatorname{PGL}_2(\mathbb{F}_5)$ • Consider the projective line over \mathbb{F}_5 : $$\mathbb{P}^1(\mathbb{F}_5) = \{0,1,2,3,4,\infty\}.$$ • $\operatorname{PGL}_2(\mathbb{F}_5)$ consists of Möbius transformations: $$x \mapsto \frac{ax+b}{cx+d}$$, with $ad-bc \neq 0$. • The order of $\operatorname{PGL}_2(\mathbb{F}_5)$ is 120. # Sharp 3-Transitivity on 6 Points - $\bullet \ \mathrm{PGL}_2(\mathbb{F}_5)$ acts on the 6 points of $\mathbb{P}^1(\mathbb{F}_5).$ - The action is sharply 3-transitive: For any two triples of distinct points, there is exactly one transformation This gives an embedding: $$\operatorname{PGL}_2(\mathbb{F}_5) \hookrightarrow \mathcal{S}_6.$$ # Realizing the Outer Automorphism - Consider the subgroup $H:=\operatorname{PGL}_2(\mathbb{F}_5)\cong S_5\subset S_6.$ - The action of S_6 on the coset space S_6/H defines a homomorphism: $$f: S_6 \rightarrow S_6$$. - The image of f is isomorphic to S_5 , but H is not conjugate to the standard $S_5 \subset S_6$. - This homomorphism f induces the **outer automorphism** of S_6 . # Several Ways to Construct the Outer Automorphism of S_6 - 1. Conjugacy Class Sizes - 2. $PGL_2(\mathbb{F}_5)$ Action - 3. Coset Action Representation: Construct a homomorphism from S_6 acting on cosets of a subgroup $H \cong S_5$ of order 120 - 4. Mystic Pentagons / Geometric Construction: Use the combinatorial structure of the six "mystic pentagons" related to S₅ - 5. Automorphisms of A_6 : Use the automorphism group structure of the alternating group A_6 - **6. Sylow Subgroups:** Analyze Sylow p-subgroups of S_6 to identify special subgroup embeddings that lead to non-conjugate S_5 subgroups # Thank You for Listening! Questions?