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What is a Group?

Definition: Group

A group is a set G equipped with a binary operation - : G X G — G
satisfying the following properties:

@ Closure: For all a,b € G, the combination a- b € G.

o Associativity: For all a,b,c € G, (a-b)-c=a-(b-c).

o Identity: There exists an element e € G such that for all a € G,
e-a=a-e=a.

@ Inverse: For each a € G, there exists a~! € G such that

1:a_1-a:e.

a-a

Definition: Symmetric Group S,

The symmetric group S, is the group of all permutations (bijective
functions) of the set {1,2,...,n} with group operation given by
composition.
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Group Actions and Transitivity

A group action is a map G x X — X, written (g, x) — g - x, satisfying:

e-x=x, (gh)-x=g-(h-x).

Transitive Action
The action is transitive if for all x, y € X, there exists g € G such that

g-x=y. )

Examples:
@ D, acts on the vertices of a square by rotation and reflection.
@ Zactson Rby n-x=x+n.

e G acts on itself by conjugation: g-x = gxg~*.
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Automorphisms and an Example

Definition
An automorphism of a group G is an isomorphism from G to itself:

f:G— G,

@ The set of all automorphisms, denoted Aut(G), forms a group under

composition.
e Example: For the cyclic group Z, = {0,1,...,n— 1} under addition
mod n:
o Every automorphism is determined by the image of the generator
1€Z,.

e Since the map must preserve order, 1 must be sent to an element
coprime to n.

o Thus,
Aut(Zp) = (Zp)* ={k € Zy, : ged(k, n) = 1},

where (Z,)* is the group of units modulo n.
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Inner Automorphisms

Definition

An inner automorphism of a group G is a map of the form

fa(x) = a 'xa forfixed a€ G and all x € G.

@ The set of all inner automorphisms forms a subgroup of Aut(G),
denoted Inn(G).

o Key result: Inn(G) = G/Z(G), where Z(G) is the center of G.
e Inn(G) is a normal subgroup of Aut(G):

Inn(G) < Aut(G).
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Outer Automorphisms

Definition
An outer automorphism of a group G is an element of the quotient group

Out(G) := Aut(G)/Inn(G).

It represents an automorphism that is not inner—that is, not of the form
fa(x) = a—lxa for any a € G.

o If Out(G) # {e}, then G has at least one non-inner (i.e., outer)
automorphism.

e For most symmetric groups, Out(S,) = {e}. But S¢ is special: it has
a nontrivial outer automorphism.
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Complete Groups and Symmetric Groups

Definition

A group G is called complete if:
@ lts center is trivial: Z(G) = {e}
@ Every automorphism is inner: Aut(G) = Inn(G)

The symmetric group S, is complete for all n # 2, 6.

The case n = 6 is exceptional:
o |Inn(Se)| = |Se| = 720
o |Aut(Se)| = 1440
@ So Aut(Se) # Inn(Se), and S is not complete

This makes Sg the only symmetric group with a nontrivial outer

automorphism.
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Transpositions and Inner Automorphisms

Definition: Transposition

A transposition is a 2-cycle in S,, that swaps two elements and fixes the
rest. For example, (1 2) € S, sends 1 — 2, 2— 1, and k — k for all
k#1,2.

@ More generally, let T, denote the conjugacy class of elements in S,
that are products of k disjoint transpositions.

Proposition

If an automorphism of S, sends each transposition in T; to another
transposition in Ty, then the automorphism is inner.

@ For n # 6, the sizes of the conjugacy classes Ty are all distinct. In
particular, | T1| # | Tk| for any k # 1.

@ Therefore, any automorphism of S, must preserve T1, and by the
lemma, it must be inner.
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Proof Outline: Conjugacy Classes in S,

@ Recall: For each k, define Ty as the conjugacy class of elements in S,
that are products of k disjoint transpositions.

T1 = transpositions, T = products of two disjoint transpositions, . . .
o If f € Aut(S,), then f sends conjugacy classes to conjugacy classes:

f(T1) = Ty for some k.

- (7) -

Tl = 1 i
K= 2 )
=0

These sizes count elements that are products of k disjoint
transpositions.

@ Thesize of Ty is

o For k > 1,
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Proof Outline: Uniqueness of T; and Completeness of S,

e For n # 6, the sizes | T| are all distinct, so
| T1] # | Tx| for any k # 1.
@ But for n = 6, there is a unique coincidence:

| T1| = | T3] = 15,

allowing a non-inner automorphism that maps transpositions to triple
transpositions.

Thus, for n # 6, automorphisms must preserve Ti.

By the proposition, any automorphism that preserves T3 is inner.

Since the center Z(S,) = {e} for n > 3, S, is complete for n # 6.
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Constructing the Outer Automorphism via Conjugacy

Classes

Because | T1| = | T3| = 15 in Sg, there is a bijection:
Q. Ty <— T3,

swapping transpositions with triple disjoint transpositions.

Extend ¢ to an automorphism of Sg by defining its action on
generators (transpositions).

@ Since inner automorphisms preserve cycle structure, ¢ cannot be
inner.

Thus, ¢ is the unique outer automorphism of Se.
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Constructing the Outer Automorphism via The Group

PGLy(Fs)

@ Consider the projective line over Fs:
PY(Fs) = {0,1,2,3,4,00}.
o PGLy(Fs) consists of Mobius transformations:

ax+b
= )
cx+d

@ The order of PGLy(Fs) is 120.

with ad — bc # 0.

Aeris Chang

The Outer Automorphism of Sg

July 14, 2025



Sharp 3-Transitivity on 6 Points

o PGLy(Fs) acts on the 6 points of P*(Fs).

@ The action is sharply 3-transitive:
For any two triples of distinct points, there is exactly one transformation
@ This gives an embedding:

PGLy(Fs) < Se.
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Realizing the Outer Automorphism

Consider the subgroup H := PGLy(Fs5) = S5 C Se.

The action of Sg on the coset space Sg/H defines a homomorphism:

f:56—>55.

@ The image of f is isomorphic to S5, but H is not conjugate to the
standard S5 C Se.

This homomorphism f induces the outer automorphism of Sg.
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Several Ways to Construct the Outer Automorphism of Sg

1. Conjugacy Class Sizes
2. PGL,(F5) Action

3. Coset Action Representation: Construct a homomorphism from
Se acting on cosets of a subgroup H = Sg of order 120

4. Mystic Pentagons / Geometric Construction: Use the
combinatorial structure of the six “mystic pentagons” related to Ss

@ 5. Automorphisms of Ag: Use the automorphism group structure of
the alternating group Ag

@ 6. Sylow Subgroups: Analyze Sylow p-subgroups of Sg to identify
special subgroup embeddings that lead to non-conjugate S5 subgroups
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Thank You!

Thank You for Listening!

Questions?
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