
OUTER AUTOMORPHISMS ON S6
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Abstract. The symmetric group Sn, consisting of all permuta-
tions on n elements, is a cornerstone of finite group theory. While
the automorphism groups of most symmetric groups align precisely
with their inner automorphisms, the case of S6 stands as a unique
exception. This paper investigates outer automorphisms in group
theory, with a particular focus on the structure of Aut(S6). We
examine the definitions and consequences of group and symmetric
group automorphisms, delve into the role of conjugacy classes, and
explore several concrete constructions of the outer automorphism
of S6—including those arising from projective linear groups, coset
actions, and the combinatorics of mystic pentagons.

1. Introduction

Group theory originated in the 19th century through the work of
mathematicians such as Évariste Galois, who introduced the idea of a
group as a way to study the solvability of polynomial equations. In
this early framework, symmetric groups—denoted Sn, the groups of all
permutations on n elements—emerged as fundamental objects because
of their ”universality” for finite groups.
The study of automorphisms of a group, or symmetries of the group

itself, is a rich and central topic in group theory. In particular, we
are interested in distinguishing between inner automorphisms—those
arising from conjugation within the group—and outer automorphisms,
which do not derive from conjugation. For many groups, all automor-
phisms are inner. This is notably true for most symmetric groups: it
can be shown that Aut(Sn) ∼= Inn(Sn) for all n ̸= 2, 6.

Yet the symmetric group on six elements, S6, defies this pattern
as it possesses a outer automorphism that does not arise from the
conjugation by elements of S6 itself. This singularity makes S6 the only
symmetric group with a nontrivial outer automorphism, and its study
reveals an intersection between combinatorics, projective geometry over
finite fields, and representation theory.
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The outer automorphism of S6 has fascinated algebraists for over
a century. Its construction involves deep concepts such as the classi-
fication of conjugacy classes, embeddings of projective linear groups
like PGL2(F5), and geometric symmetries such as those found in the
“mystic pentagons”. Understanding why S6 is special provides both
a case study in group theory and an accessible glimpse into more ad-
vanced topics such as group actions, exceptional isomorphisms, and the
broader landscape of finite simple groups.

This paper aims to present a comprehensive exposition of the outer
automorphism of S6. We begin with the necessary background in group
theory and symmetric groups, then move toward the formal definition
of automorphisms and the distinction between inner and outer types.
From there, we explore multiple concrete constructions of the outer
automorphism of S6.

2. What is a Group?

Before diving into the complexities of symmetric groups and their
automorphisms, we must first establish the basic language and struc-
ture of group theory. The notion of a group is a fundamental concept
in modern algebra, and it arises naturally in a wide variety of mathe-
matical contexts—from solving polynomial equations to understanding
symmetries in geometry and physics.

2.1. Definition of a Group.

Definition 1. A group is a set G equipped with a binary operation
· : G×G→ G that satisfies the following four axioms:

(1) Closure: For all a, b ∈ G, the product ab ∈ G.
(2) Associativity: For all a, b, c ∈ G, we have (ab)c = a(bc).
(3) Identity: There exists an element e ∈ G such that for all

a ∈ G, ae = ea = a.
(4) Inverses: For every a ∈ G, there exists an element a−1 ∈ G

such that aa−1 = a−1a = e.

2.2. Examples and Motivation. Groups arise in many natural set-
tings. Here are a few classical examples to anchor the definition:

• The integers under addition: (Z,+) form a group. The
identity is 0, and each element n has an inverse −n.
• The nonzero real numbers under multiplication: (R×, ·)
form a group with identity 1 and inverses 1/x.
• Modular arithmetic: (Zn,+), the integers modulo n, form a
group under addition mod n.
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• Matrices: The set of invertible n×n matrices over R, denoted
GLn(R), forms a group under matrix multiplication.

However, one of the most important families of groups in mathemat-
ics is the symmetric groups, which we now define.

2.3. Symmetric Groups.

Definition 2. The symmetric group Sn is the group of all permuta-
tions (i.e., bijective functions) from the set {1, 2, . . . , n} to itself. The
group operation is function composition.

This group captures the idea of relabeling or shuffling elements and
it plays a central role in many branches of mathematics. Some key
points:

• The order of Sn is n!, the number of ways to permute n elements.
• S3 is the smallest non-abelian (non-commutative) group.
• Symmetric groups are prototypical examples in the classifica-
tion of finite groups and in the study of group actions.

2.4. Notation and Representations. Permutations in Sn can be
represented in several ways:

• Two-line notation: This notation lists the elements and their
images. For example, the permutation σ such that σ(1) =
2, σ(2) = 3, σ(3) = 1 is written:

σ =

(
1 2 3
2 3 1

)
.

• Cycle notation: This is a more compact and intuitive format
expresses how the permutation cycles elements. The above per-
mutation is written (1 2 3), indicating that 1 maps to 2, 2 to 3,
and 3 back to 1.

Cycle notation is especially helpful in analyzing the structure of per-
mutations, particularly when studying conjugacy classes and automor-
phisms.

3. Group Actions and Transitivity

3.1. Group Actions. In abstract algebra, a group action is a way to
relate a group to another mathematical object. The concept allows us
to interpret the elements of a group as symmetries or transformations
of a set, which helps us understand both the structure of the group and
the geometry or combinatorics of the set being acted upon.
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Definition 3. Let G be a group and let X be a set. A (left) group
action of G on X is a map

G×X → X, (g, x) 7→ g · x,
satisfying the following axioms for all g, h ∈ G and all x ∈ X:

(1) Identity: e · x = x, where e ∈ G is the identity element.
(2) Compatibility (associativity): (gh) · x = g · (h · x).

This definition captures the idea that each group element acts as a
transformation of the set X, and that the group structure is preserved
under this action. In particular, the composition of group elements
corresponds to the composition of their respective transformations on
X.

3.2. Transitive Actions.

Definition 4. A group action of G on a set X is called transitive if
for every pair of elements x, y ∈ X, there exists g ∈ G such that

g · x = y.

Intuitively, this means that there is a single orbit under the action:
the group can move any point of X to any other point. Transitivity is
an important property because it implies a high degree of symmetry in
the group’s action. For example, many classical geometric groups act
transitively on certain sets of points, lines, or configurations.

3.3. Examples of Group Actions. To illustrate these ideas con-
cretely, we now describe several examples of group actions. Each exam-
ple demonstrates how group elements operate as symmetries or trans-
formations of a given set.

Example 1 (Dihedral group acting on a square). Let D4 denote the
dihedral group of order 8, which consists of the symmetries of a
square. This includes:

• 4 rotations (including the identity),
• 4 reflections (over horizontal, vertical, and diagonal axes).

The group D4 acts on the set of vertices of the square by permuting
them according to these symmetries. This action satisfies the group
action axioms and is transitive on the set of vertices.

Example 2 (The integers acting on the real line). Let G = Z, the group
of integers under addition, and let X = R, the set of real numbers.
Define the action by

n · x = x+ n, for all n ∈ Z, x ∈ R.
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This is an example of a translation action. Each integer shifts the real
number line left or right by a fixed amount. The action is not transitive
on all of R, but it is transitive on the cosets R/Z, which plays a key
role in modular arithmetic and torus geometry.

Example 3 (Conjugation action). Let G be any group. Then G acts
on itself by conjugation, defined by

g · x = gxg−1, for g, x ∈ G.

We will cover conjugation in depth later. The orbits under this action
are called conjugacy classes, and they partition the group. The stabi-
lizer of an element x ∈ G under this action is the centralizer of x, and
the set of fixed points is the center Z(G) of the group. classes.

3.4. Permutation Representations. Every group action on a finite
set naturally gives rise to a group homomorphism from G into a
symmetric group. That is, the group G can be thought of as permuting
the elements of X, so there is an associated map

ϕ : G→ SX ,

where SX is the symmetric group on the set X. If |X| = n, then
SX
∼= Sn, and we can view G as a subgroup of Sn. This realization

is the essence of Cayley’s Theorem, which states that every group is
isomorphic to a subgroup of some symmetric group.

Group actions are thus the key bridge between abstract groups and
concrete permutation groups—a crucial step in understanding the in-
ternal symmetries of objects.

3.5. Orbits and Stabilizers. Every group action gives rise to impor-
tant associated concepts:

• The orbit of an element x ∈ X under G is the set:

Orb(x) = {g · x : g ∈ G}.

• The stabilizer of x is the subgroup:

StabG(x) = {g ∈ G : g · x = x}.

• The orbit-stabilizer theorem states that if G is finite, then

|G| = |Orb(x)| · |StabG(x)|.
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3.6. Importance in the Study of Sn. Group actions are central to
understanding the symmetric groups. Not only do symmetric groups
themselves arise as groups of permutations (actions on finite sets), but
much of their structure—such as conjugacy classes, normal subgroups,
and automorphisms—can be understood through their actions on sets,
partitions, or cosets. In particular, later in this paper we will examine
how S6 acts on cosets of certain subgroups and how this leads to a
construction of the outer automorphism.

4. Automorphisms of Groups

Understanding the symmetries within a group G is fundamental to
group theory. These symmetries are captured by automorphisms, which
are isomorphisms from the group to itself that preserve the group struc-
ture.

4.1. Automorphisms.

Definition 5. An automorphism of a group G is a bijective group
homomorphism

f : G→ G

such that for all a, b ∈ G,

f(ab) = f(a)f(b).

The set of all automorphisms of G, denoted Aut(G), forms a group
under composition. The identity automorphism acts as the identity
element in Aut(G), and every automorphism has an inverse which is
also an automorphism.
Example: Automorphisms of a Cyclic Group. Consider the cyclic group

Zn = {0, 1, . . . , n− 1}
with addition modulo n. Every automorphism of Zn is determined by
the image of the generator 1. Since the automorphism must preserve
order, 1 is sent to an element coprime to n. Hence,

Aut(Zn) ∼= (Zn)
× = {k ∈ Zn : gcd(k, n) = 1},

the multiplicative group of units modulo n.

4.2. Inner Automorphisms. Among automorphisms, a particularly
important subclass arises from conjugation by elements of G.

Definition 6. For a fixed element a ∈ G, the map

fa : G→ G, fa(x) = a−1xa

is called an inner automorphism.
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Each fa is an automorphism, and the collection of all such maps
forms a subgroup of Aut(G), called the inner automorphism group
Inn(G).

Proposition 1. The map

φ : G→ Inn(G), a 7→ fa

is a surjective group homomorphism with kernel equal to the center of
G,

Z(G) := {z ∈ G : zx = xz for all x ∈ G}.

By the First Isomorphism Theorem, we have the important isomor-
phism:

Inn(G) ∼= G/Z(G).

Moreover, Inn(G) is a normal subgroup of Aut(G):

Inn(G) ⊴ Aut(G).

Examples.

• If G is abelian, then Z(G) = G, and so Inn(G) is trivial.
• For the symmetric group Sn with n ≥ 3, the center is trivial, so

Inn(Sn) ∼= Sn.

4.3. Outer Automorphisms. Not all automorphisms are inner. Those
which are not can be detected by considering the quotient group

Definition 7. The outer automorphism group of G is the quotient

Out(G) := Aut(G)/Inn(G).

Elements of Out(G) represent automorphisms of G that cannot be
realized by conjugation by any element of G. If

Out(G) ̸= {e},
then G has at least one outer automorphism.
Notable facts.

• For most symmetric groups Sn, the outer automorphism group
is trivial:

Out(Sn) = {e} for n ̸= 6.

• The group S6 is exceptional: it admits a nontrivial outer auto-
morphism,

|Out(S6)| = 2,

making S6 the only symmetric group with non-inner automor-
phisms.
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5. Complete Groups and the Special Case of Symmetric
Groups

5.1. Definition of Complete Groups. In the study of group auto-
morphisms, a particularly important class of groups is that of complete
groups.

Definition 8. A group G is called complete if it satisfies two key
properties:

(1) The center of G is trivial, i.e.,

Z(G) = {e},
where

Z(G) = {z ∈ G : zx = xz for all x ∈ G}.
(2) Every automorphism of G is inner, that is,

Aut(G) = Inn(G).

The triviality of the center means no nontrivial element commutes
with every element of the group. The second condition ensures that all
symmetries of the group arise from conjugation within the group itself.

5.2. Completeness of Symmetric Groups. The symmetric groups
Sn, which are groups of all permutations on n elements, form a central
object of study in group theory. Their automorphism groups have
been well-characterized, yielding the following theorem about their
completeness.

Theorem 1 (Completeness of Symmetric Groups). For all n ̸= 2, 6,
the symmetric group Sn is complete. That is,

Z(Sn) = {e} and Aut(Sn) = Inn(Sn).

Remarks:

• For n = 1, S1 is trivial.
• For n = 2, S2

∼= Z2 is abelian, so the center is nontrivial, and
the group is not complete.

5.3. The Exceptional Case n = 6. The case n = 6 is famously
exceptional in the theory of symmetric groups.

• The order of S6 is

|S6| = 6! = 720.

• Since the center of S6 is trivial (as for all n ≥ 3), the inner
automorphism group has order

|Inn(S6)| = |S6| = 720.
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• However, it can be shown that the automorphism group of S6

is strictly larger:

|Aut(S6)| = 1440 = 2× 720.

Thus,
Aut(S6) ̸= Inn(S6),

and S6 is not complete.
This indicates the existence of a nontrivial outer automorphism of

S6, a phenomenon unique to this group among the symmetric groups.

6. Proof: Conjugacy Classes and the Outer
Automorphism of S6

6.1. Conjugacy Classes of Products of Disjoint Transpositions.
Recall that for the symmetric group Sn, the conjugacy classes corre-
spond to cycle types of permutations. One important family of conju-
gacy classes arises from products of disjoint transpositions.

Definition 9. For each integer k with 1 ≤ k ≤ ⌊n/2⌋, define
Tk := {σ ∈ Sn : σ is a product of k disjoint transpositions}.

The conjugacy classes Tk are disjoint subsets of Sn, and each Tk

consists of elements whose cycle decomposition has exactly k 2-cycles
and n− 2k fixed points.

The first few classes are:

T1, T2, T3, . . .

where

T1 = transpositions,

T2 = products of two disjoint transpositions,

T3 = products of three disjoint transpositions.

6.2. Sizes of the Conjugacy Classes Tk. The size of each conjugacy
class Tk can be computed combinatorially as follows:

Proposition 2. For k ≥ 1,

|Tk| =
1

k!

k−1∏
i=0

(
n− 2i

2

)
.

Proof. To construct a product of k disjoint transpositions, select pairs
sequentially:

• For the first transposition, choose 2 elements out of n, which
can be done in

(
n
2

)
ways.
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• For the second transposition, choose 2 elements out of the re-
maining n− 2 elements, giving

(
n−2
2

)
choices.

• Continue similarly until the k-th transposition is chosen from
n− 2(k − 1) elements, with

(
n−2(k−1)

2

)
choices.

Since the order in which the k transpositions are chosen does not
matter, divide by k! to account for permutations of these transpositions.

Hence the formula follows. □

In particular, for k = 1,

|T1| =
(
n

2

)
=

n(n− 1)

2
.

6.3. Automorphisms and Conjugacy Classes. Since any automor-
phism f ∈ Aut(Sn) must map conjugacy classes to conjugacy classes
(because conjugacy is preserved under group isomorphisms), we have

f(T1) = Tk for some k,

meaning the image of the conjugacy class of transpositions must be
some other conjugacy class Tk.

However, because conjugacy classes of symmetric groups are specifi-
cally identified by their cycle structure and size, f can only send T1 to
a conjugacy class of the same size.

6.4. Uniqueness of T1 for n ̸= 6. For most n, the sizes |Tk| are all
distinct. Thus:

|T1| ≠ |Tk| for all k ̸= 1,

which implies that f must send the transpositions to transpositions.
However, when n = 6, an exceptional coincidence occurs:

|T1| = |T3| = 15.

This equality allows the possibility of an automorphism that sends
transpositions to triple disjoint transpositions.

6.5. Completeness of Sn for n ̸= 6. By the proposition from the pre-
vious section, any automorphism that preserves T1 (the transpositions)
is inner. Hence for n ̸= 6, all automorphisms are inner.

Moreover, the center of Sn is trivial for n ≥ 3:

Z(Sn) = {e}.
This implies that for n ̸= 6, Sn is a complete group, meaning:

Aut(Sn) = Inn(Sn).
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6.6. The Special Case n = 6: Existence of an Outer Automor-
phism. The coincidence

|T1| = |T3| = 15

permits the construction of a non-inner automorphism:

Theorem 2. There exists an automorphism φ ∈ Aut(S6) such that

φ : T1 ←→ T3,

exchanging transpositions and triple disjoint transpositions. This au-
tomorphism is not inner and is the outer automorphism of S6.

Idea of construction. Since T1 and T3 have the same size, one can define
a bijection φ : T1 → T3. Extending this map to the whole group by
homomorphism property, and verifying it respects group operations,
yields an automorphism.

Because inner automorphisms preserve cycle structure (and thus can-
not interchange transpositions and triple transpositions), this φ is an
outer automorphism. □

7. Constructing the Outer Automorphism via PGL2(F5)

7.1. The Projective Line over F5. Consider the finite field F5 =
{0, 1, 2, 3, 4} with arithmetic modulo 5. The projective line over F5 is
defined as

P1(F5) := F5 ∪ {∞} = {0, 1, 2, 3, 4,∞}.
This set can be interpreted as the set of one-dimensional linear sub-
spaces of the two-dimensional vector space F2

5. The addition of the
point at infinity ∞ ”completes” the line, making it a natural domain
for projective transformations.

7.2. The Group PGL2(F5). The group PGL2(F5), or the projective
general linear group, is defined as the quotient

PGL2(F5) := GL2(F5)/Z,

where GL2(F5) is the group of invertible 2× 2 matrices over F5, and Z
is its center consisting of scalar multiples of the identity matrix. Con-
cretely, PGL2(F5) acts faithfully on P1(F5) by Möbius transformations:

x 7→ ax+ b

cx+ d
,

where a, b, c, d ∈ F5 satisfy ad− bc ̸= 0, and by convention

a · ∞+ b

c · ∞+ d
=

a

c
, and

ax+ b

0 · x+ d
=

ax+ b

d
.
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The cardinality of PGL2(F5) can be computed using the formula for
GL2(F5):

|GL2(F5)| = (52 − 1)(52 − 5) = 24× 20 = 480,

and the center Z ∼= F×
5 has order 4 (all nonzero scalars mod 5), so

|PGL2(F5)| =
480

4
= 120.

Remarkably, this order coincides with that of the symmetric group
S5, hinting at a deep connection between these groups.

7.3. Sharp 3-Transitivity on Six Points. The action of PGL2(F5)
on P1(F5) is sharply 3-transitive, meaning:

Definition 10. An action of a group G on a set X is sharply k-
transitive if for any two ordered k-tuples of distinct elements (x1, . . . , xk)
and (y1, . . . , yk) in X, there exists a unique group element g ∈ G such
that g · xi = yi for all 1 ≤ i ≤ k.

For PGL2(F5) acting on the six points P1(F5), it can be shown that
this action is sharply 3-transitive:

• Transitivity: Given any two triples of distinct points, there
is some Möbius transformation sending the first triple to the
second.
• Uniqueness: This transformation is unique, which means the
group action is ”as transitive as possible” for triples.

This symmetry property allows us to embed PGL2(F5) into the sym-
metric group on 6 points:

PGL2(F5) ↪→ S6,

via its natural action on P1(F5).

7.4. Realizing the Outer Automorphism. Inside S6, consider the
subgroup

H := PGL2(F5) ∼= S5.

Note that this embedding is not the ”standard” one given by fixing
one point and permuting the remaining five elements. Instead, it cor-
responds to a more subtle embedding arising from the projective ge-
ometry of P1(F5).

The symmetric group S6 acts on the set of left cosets S6/H, a set of
size

|S6/H| =
|S6|
|H|

=
720

120
= 6.
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This induces a group homomorphism:

f : S6 → S6,

defined by the action on these cosets. The image of f is isomorphic to
S6, but the crucial point is that H is not conjugate to the ”standard”
S5 ⊂ S6. Thus, this conjugation action yields a non-inner automor-
phism of S6.

More precisely, f induces an automorphism of S6 which is not given
by conjugation by an element of S6. By definition, this automorphism
represents the (up to inner automorphisms) outer automorphism of
S6.

8. Mystic Pentagons: A Combinatorial Realization of the
Outer Automorphism

One of the most elegant and historically rich constructions of the
outer automorphism of S6 arises from a 19th-century discovery by J.
J. Sylvester, who introduced a set of six combinatorial configurations
called the mystic pentagons. This geometric insight reveals an unex-
pected symmetry hidden in the structure of the symmetric group on
six elements.

8.1. Definition of Mystic Pentagons. Let the six elements of the
set be {1, 2, 3, 4, 5, 6}. A mystic pentagon is defined as a configura-
tion consisting of a 5-cycle — that is, five elements arranged cyclically
— and one isolated vertex. There are precisely six such configura-
tions, corresponding to the six choices of which vertex is left out of the
pentagon.

Each mystic pentagon can be viewed as a cyclic ordering of five
points:

(1→ 2→ 3→ 4→ 5→ 1) with vertex 6 excluded,

and similarly for the other five exclusions. Up to relabeling and sym-
metry, these six mystic pentagons form a distinct set on which S6 can
act.

8.2. Action of S6 on the Mystic Pentagons. The symmetric group
S6 acts on the set of mystic pentagons by permuting the labels of the
vertices. This gives a homomorphism:

ϕ : S6 −→ S6,

where the codomain is the group of permutations of the six mystic
pentagons.
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However, this homomorphism is not the identity map, nor is it an
inner automorphism — it is an example of a nontrivial outer automor-
phism of S6. That is, the action of S6 on the mystic pentagons induces
an automorphism that does not arise from conjugation by an element
of S6.

8.3. Consequences. This construction demonstrates that:

Inn(S6) ⊊ Aut(S6),

so that the quotient

Out(S6) := Aut(S6)/Inn(S6)

is nontrivial — in fact, Out(S6) ∼= Z2. This is unique among symmetric
groups: for all n ̸= 6, we have Out(Sn) = {e}. The symmetry in
conjugacy class sizes and the special action on mystic pentagons only
occurs when n = 6, making this construction an exception in group
theory.

9. Outer Automorphism via Coset Action

Let us present a construction of the outer automorphism of S6 by
analyzing its action on cosets of a carefully chosen subgroup.

9.1. Step 1: Subgroup H ∼= S5 ⊂ S6. Let S6 be the symmetric
group on 6 elements. Consider a subgroup H ≤ S6 isomorphic to S5.
For example, we may take H to be the stabilizer of a point in the
natural action of S6 on {1, 2, 3, 4, 5, 6}. That is,

H = {σ ∈ S6 | σ(6) = 6} ∼= S5.

The index of this subgroup is 6, since there are 6 choices for the image
of the fixed point under a general element of S6. So:

[S6 : H] = 6.

9.2. Step 2: Permutation Representation via Cosets. Let S6 act
on the left coset space S6/H by left multiplication:

g · (xH) := (gx)H for g, x ∈ S6.

This defines a group homomorphism:

φ : S6 → Sym(S6/H) ∼= S6.

Why is this isomorphic to S6? Because the action is on a 6-element
set, and so the group of permutations of that set is again S6.
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9.3. Step 3: Kernel and Image. The kernel of this homomorphism
is the largest normal subgroup of S6 contained in H. But since S6 is
simple modulo its alternating subgroup, and A6 ⊴ S6 is of index 2, any
normal subgroup must be either trivial, A6, or S6. Since H ∼= S5 and
A6 ̸⊂ H, the kernel is trivial. Hence, φ is injective.

Therefore, φ gives an embedding:

S6 ↪→ S6.

9.4. Step 4: Non-inner Automorphism. Now, note that φ is a
homomorphism from S6 into itself, and by standard identification, we
view it as an automorphism:

φ ∈ Aut(S6).

The key question is: is this automorphism inner?
To answer this, observe that the image φ(S6) ⊂ S6 has a subgroup

isomorphic to S5 — namely, the stabilizer of a point in the coset action
— but this S5 is not conjugate to the original point stabilizer in the
standard action of S6 on 6 letters.
More precisely, the subgroup H ∼= S5 does not lie in the same con-

jugacy class of subgroups of S6 as the standard embedded copy of S5.
Thus, φ cannot be implemented by conjugation inside S6. Therefore,
φ is an outer automorphism.

9.5. Conclusion. This construction shows the existence of a non-inner
automorphism of S6. Hence,

Out(S6) = Aut(S6)/Inn(S6)

is nontrivial. In fact, it is of order 2, and S6 is the only symmetric
group Sn for which Out(Sn) ̸= {e}.

10. Overview of Constructions and Applications of the
Outer Automorphism of S6

The nature of the symmetric group S6 is highlighted by the existence
of a nontrivial outer automorphism. Several distinct constructions illus-
trate this phenomenon, each of which sheds light on different algebraic
or geometric aspects of S6:

• 1. Conjugacy Class Sizes: By examining the sizes of conju-
gacy classes of elements in S6, particularly the equality of sizes
between single transpositions and triple disjoint transpositions,
one can define a permutation of these classes that cannot arise
from an inner automorphism. This combinatorial perspective
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offers a purely group-theoretic characterization of the outer au-
tomorphism.
• 2. PGL2(F5) Action: The projective linear group PGL2(F5)
acts sharply 3-transitively on 6 points, giving an embedding
into S6. This subgroup is isomorphic to S5, but remains distinct
from the standard one. The action on cosets yields the outer au-
tomorphism. This approach connects group theory with finite
geometry and projective lines over finite fields.
• 3. Coset Action Representation: We construct an auto-
morphism by considering the action of S6 on the coset space
S6/H, where H ∼= S5 is a subgroup of order 120. This leads
to a homomorphism whose image is isomorphic to S6, but not
conjugate to the original copy. This blends representation the-
ory and subgroup analysis to exhibit the outer automorphism
concretely.
• 4. Mystic Pentagons / Geometric Construction: The
mystic pentagons comes from a combinatorial and geometric
configuration related to S5 which reveals symmetries that cor-
respond to the outer automorphism. This viewpoint provides a
visual and intuitive understanding of the concept, linking group
theory to combinatorics and geometry.
• 5. Automorphisms of A6: The alternating group A6 has
an automorphism group strictly larger than itself, and since
A6 ⊴ S6, the automorphisms of A6 extend to S6. This approach
utilizes structural properties of normal subgroups and simple
groups.
• 6. Sylow Subgroups: By analyzing the Sylow p-subgroups
of S6, we identify special embeddings of subgroups isomorphic
to S5 that are not conjugate within S6. These embeddings
lead to non-inner automorphisms which emphasizes the role of
subgroup structure in understanding Out(S6).

Takeaways.

• Uniqueness in Group Theory: S6 is the only symmetric
group with a nontrivial outer automorphism, making it an ex-
ceptional object of study and a classical exception in the clas-
sification of symmetric groups.
• Connections to Finite Geometry and Algebraic Combi-
natorics: The relationship with projective linear groups and
combinatorial structures such as the mystic pentagons ties S6

to geometric frameworks.
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• Role in Classification of Finite Simple Groups: Under-
standing outer automorphisms of groups like A6 and S6 is cru-
cial for the classification and characterization of finite simple
groups and their automorphism groups.
• Implications in Algebraic Topology and Galois Theory:
Outer automorphisms can correspond to symmetries of alge-
braic structures in topology and field extensions, linking ab-
stract group properties to concrete algebraic objects.
• Use in Mathematical Physics and Coding Theory: Ex-
ceptional symmetries of S6 appear in various physical models
and error-correcting codes where symmetry groups govern sys-
tem properties.

11. Acknowledgments

The author would like to thank Ophir Horovitz and Simon Rubinstein-
Salzedo for providing help with writing this paper. Similarly, the au-
thor would like to thank all of their classmates for their support and
for listening to the author’s presentation.

References

[1] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd ed., Wiley, 2004.
[2] J. J. Rotman, An Introduction to the Theory of Groups, Springer, 1995.
[3] I. Stewart, Galois Theory, 3rd ed., Chapman and Hall/CRC, 2004.
[4] M. Artin, Algebra, 2nd ed., Pearson, 2010.
[5] K. Matsuoka, The outer automorphism of S6 and related topics, International

Journal of Algebra, Vol. 9, No. 8, 2015.
[6] F. Thorne, Math 701 Homework 4, University of South Carolina, 2020.
[7] nLab contributors, Projective special linear group, nLab, 2024.
[8] K. Landesman, Exercises on the outer automorphism of S6, Harvard University,

2023.
[9] S. Karnik and S. Jagadeesan, Prime Number Theory, MIT PRIMES, 2016.
[10] R. Vakil, Notes on the outer automorphism of S6, Stanford University, 2008.


