Divisibility Sequences

Aditya Bisain

Euler Circle

July 2025

A Brief History of Divisibility Sequences

• 19th century: Édouard Lucas studies linear recurrence sequences like Fibonacci and Lucas numbers.

A Brief History of Divisibility Sequences

- 19th century: Édouard Lucas studies linear recurrence sequences like Fibonacci and Lucas numbers.
- 1948: Morgan Ward defines elliptic divisibility sequences (EDS) in the context of division polynomials on elliptic curves.

A Brief History of Divisibility Sequences

- 19th century: Édouard Lucas studies linear recurrence sequences like Fibonacci and Lucas numbers.
- 1948: Morgan Ward defines elliptic divisibility sequences (EDS) in the context of division polynomials on elliptic curves.
- 2000s: Rachel Shipsey explores EDS modulo prime powers.

What is a Divisibility Sequence?

Definition

A sequence of integers (a_n) is a **divisibility sequence** if

$$m \mid n \implies a_m \mid a_n$$
.

What is a Divisibility Sequence?

Definition

A sequence of integers (a_n) is a **divisibility sequence** if

$$m \mid n \implies a_m \mid a_n$$
.

The most basic examples of divisibility sequences are constant sequences and the sequence $a_n = n$.

Example

Fibonacci Sequence:

$$F_0 = 0, \ F_1 = 1, \ F_n = F_{n-1} + F_{n-2}.$$

Example

Fibonacci Sequence:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

For example, $F_{10} = 55$ and $F_{20} = 6765$. Indeed, $6765 = 55 \cdot 123$.

Example

Fibonacci Sequence:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

For example, $F_{10} = 55$ and $F_{20} = 6765$. Indeed, $6765 = 55 \cdot 123$.

Example

Mersenne Numbers:

$$M_n = 2^n - 1$$
.

Example

Fibonacci Sequence:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

For example, $F_{10} = 55$ and $F_{20} = 6765$. Indeed, $6765 = 55 \cdot 123$.

Example

Mersenne Numbers:

$$M_n = 2^n - 1$$
.

For example, $M_7 = 127$ and $M_{21} = 2097151$. Indeed, one can check that $2097151 = 127 \cdot 16513$.

Both satisfy $m \mid n \implies a_m \mid a_n$.

Linear Divisibility Sequences (LDS)

Definition

A sequence (a_n) is a linear divisibility sequence (LDS) if:

1 It satisfies a linear recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k},$$

where $c_1, c_2, \ldots c_k$ are non-negative integers.

It satisfies the divisibility property

$$m \mid n \implies a_m \mid a_n$$
.

Theorem: Characterization of LDS

Theorem

Any order-2 LDS with $a_0 = 0$ can be written as

$$a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

where α, β are roots of a quadratic with integer coefficients.

Theorem: Characterization of LDS

Theorem

Any order-2 LDS with $a_0 = 0$ can be written as

$$a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

where α, β are roots of a quadratic with integer coefficients.

Example

The Fibonacci sequence:

$$F_n = \frac{\varphi^n - (1 - \varphi)^n}{\sqrt{5}}$$

where $\varphi = \frac{1+\sqrt{5}}{2}$.

Elliptic Sequences

Definition

A sequence (h_n) of integers satisfies

$$h_{m+n}h_{m-n} = h_{m+1}h_{m-1}h_n^2 - h_{n+1}h_{n-1}h_m^2$$

for all $m, n \in \mathbb{N}$ and is called an **elliptic sequence**. An elliptic sequence (h_n) is an **EDS** if it also satisfies the divisibility property

$$m \mid n \implies h_m \mid h_n$$
.

Proof: $h_n = n$ is an EDS

Theorem

The sequence $h_n = n$ satisfies the elliptic recurrence and is thus an EDS.

Proof: $h_n = n$ is an EDS

Theorem

The sequence $h_n = n$ satisfies the elliptic recurrence and is thus an EDS.

Proof.

$$h_{m+n}h_{m-n}=(m+n)(m-n)=m^2-n^2.$$

Proof: $h_n = n$ is an EDS

Theorem

The sequence $h_n = n$ satisfies the elliptic recurrence and is thus an EDS.

Proof.

$$h_{m+n}h_{m-n}=(m+n)(m-n)=m^2-n^2.$$

$$h_{m+1}h_{m-1}h_n^2 - (h_{n+1}h_{n-1})h_m^2$$

= $(m+1)(m-1)n^2 - (n+1)(n-1)m^2$
= $(m^2-1)n^2 - (n^2-1)m^2 = m^2 - n^2$.

Both sides are equal, so $h_n = n$ satisfies the recurrence.

Theorem

The sequence $G_n = F_{2n}$ satisfies the elliptic recurrence:

$$G_{m+n}G_{m-n} = G_{m+1}G_{m-1}G_n^2 - G_{n+1}G_{n-1}G_m^2$$

and is thus an EDS.

Theorem

The sequence $G_n = F_{2n}$ satisfies the elliptic recurrence:

$$G_{m+n}G_{m-n} = G_{m+1}G_{m-1}G_n^2 - G_{n+1}G_{n-1}G_m^2$$

and is thus an EDS.

• Divisibility is immediate since F_n is a divisibility sequence.

Theorem

The sequence $G_n = F_{2n}$ satisfies the elliptic recurrence:

$$G_{m+n}G_{m-n} = G_{m+1}G_{m-1}G_n^2 - G_{n+1}G_{n-1}G_m^2$$

and is thus an EDS.

- Divisibility is immediate since F_n is a divisibility sequence.
- It remains to check the elliptic recurrence.

Theorem

The sequence $G_n = F_{2n}$ satisfies the elliptic recurrence:

$$G_{m+n}G_{m-n} = G_{m+1}G_{m-1}G_n^2 - G_{n+1}G_{n-1}G_m^2$$

and is thus an EDS.

- Divisibility is immediate since F_n is a divisibility sequence.
- It remains to check the elliptic recurrence.

We use the following identities for G_n :

$$G_{m+1} = 3G_m - G_{m-1}$$

 $G_{m+n} = G_mG_{n+1} - G_{m-1}G_n$
 $G_{m-n} = G_{m-1}G_n - G_mG_{n-1}$

We use the following identities for G_n :

$$G_{m+1} = 3G_m - G_{m-1}$$

 $G_{m+n} = G_m G_{n+1} - G_{m-1} G_n$
 $G_{m-n} = G_{m-1} G_n - G_m G_{n-1}$

Substitute G_{m+n} and G_{m-n} into the recurrence:

$$G_{m+n}G_{m-n} = (G_mG_{n+1} - G_{m-1}G_n)(G_{m-1}G_n - G_mG_{n-1}).$$

We use the following identities for G_n :

$$G_{m+1} = 3G_m - G_{m-1}$$

 $G_{m+n} = G_mG_{n+1} - G_{m-1}G_n$
 $G_{m-n} = G_{m-1}G_n - G_mG_{n-1}$

Substitute G_{m+n} and G_{m-n} into the recurrence:

$$G_{m+n}G_{m-n} = (G_mG_{n+1} - G_{m-1}G_n)(G_{m-1}G_n - G_mG_{n-1}).$$

Expand and simplify to get:

$$3G_mG_{m-1}G_n^2-G_{m-1}^2G_n^2-G_m^2G_{n+1}G_{n-1}.$$

We use the following identities for G_n :

$$G_{m+1} = 3G_m - G_{m-1}$$

 $G_{m+n} = G_m G_{n+1} - G_{m-1} G_n$
 $G_{m-n} = G_{m-1} G_n - G_m G_{n-1}$

Substitute G_{m+n} and G_{m-n} into the recurrence:

$$G_{m+n}G_{m-n} = (G_mG_{n+1} - G_{m-1}G_n)(G_{m-1}G_n - G_mG_{n-1}).$$

Expand and simplify to get:

$$3G_mG_{m-1}G_n^2 - G_{m-1}^2G_n^2 - G_m^2G_{n+1}G_{n-1}.$$

If we factor $G_{m-1}G_n^2$ from the first two terms and then plug in $G_{m+1}=3G_m-G_{m-1}$, we get

$$G_{m+1}G_{m-1}G_n^2 - G_{n+1}G_{n-1}G_m^2$$

Thus G_n satisfies the elliptic recurrence.

Elliptic Divisibility Sequences (EDS)

Theorem

Every EDS is a strong divisibility sequence:

$$\gcd(h_m,h_n)=h_{\gcd(m,n)}$$

if h_3 , h_4 are coprime.

Elliptic Divisibility Sequences (EDS)

Theorem

Every EDS is a strong divisibility sequence:

$$\gcd(h_m,h_n)=h_{\gcd(m,n)}$$

if h_3 , h_4 are coprime.

Example

$$gcd(G_4, G_6) = gcd(21, 144) = 3$$

 $G_{gcd(4,6)} = G_2 = F_4 = 3$

Thus,

$$\gcd(\mathit{G}_4,\mathit{G}_6)=\mathit{G}_{\gcd(4,6)}$$

Theorem

Let (h_n) be an elliptic sequence, and h_k any nonzero term. Define

$$\ell_n = \frac{h_{nk}}{h_k}.$$

Then (ℓ_n) is also an elliptic sequence. If (h_n) is an EDS, so is (ℓ_n) .

Let's look at an example with (G_n) .

Example

Choose k = 3 and let $h_n = G_n$. Define

$$\ell_n = \frac{h_{nk}}{h_k} = \frac{h_{3n}}{8} = \frac{F_{6n}}{8}.$$

The first terms of (ℓ_n) are

$$\ell_1 = 1, \quad \ell_2 = 18, \quad \ell_3 = 323, \quad \ell_4 = 5796, \dots$$

By the previous theorem, (ℓ_n) , or $\frac{F_{6n}}{8}$ is also an EDS.

Rank of Apparition: Definition

Definition

The **rank of apparition** of an integer m in a sequence (h_n) is the smallest positive integer n such that

$$m \mid h_n$$
.

Rank of Apparition: Definition

Definition

The **rank of apparition** of an integer m in a sequence (h_n) is the smallest positive integer n such that

$$m \mid h_n$$
.

- We consider $m = p^k$, where p is a prime and $k \ge 1$.
- Intuitively, the rank of apparition is the first index where *p* divides the term.

Rank of Apparition: Theorem

Theorem

Let (h_n) be an elliptic divisibility sequence (EDS), and fix a prime integer p. Denote the rank of apparition of p^k to be ρ_k . Then

$$p^k \mid h_r \iff \rho_k \mid r.$$

That is, divisibility by powers of p occurs exactly at multiples of ρ_k .

Consider G_n as our EDS. The first few terms are:

Consider G_n as our EDS. The first few terms are:

$$G_1 = 1$$
, $G_2 = 3$, $G_3 = 8$, $G_4 = 21$, $G_5 = 55$, $G_6 = 144$.

Consider G_n as our EDS. The first few terms are:

$$G_1=1, \quad G_2=3, \quad G_3=8, \quad G_4=21, \quad G_5=55, \quad G_6=144.$$

For prime p = 3:

$$3 \mid G_2 = 3, \quad 9 = 3^2 \mid G_6 = 144,$$

Consider G_n as our EDS. The first few terms are:

$$G_1=1, \quad G_2=3, \quad G_3=8, \quad G_4=21, \quad G_5=55, \quad G_6=144.$$

For prime p = 3:

$$3 \mid G_2 = 3, \quad 9 = 3^2 \mid G_6 = 144,$$

SO

$$\rho_1 = 2, \quad \rho_2 = 6.$$

Consider G_n as our EDS. The first few terms are:

$$G_1=1, \quad G_2=3, \quad G_3=8, \quad G_4=21, \quad G_5=55, \quad G_6=144.$$

For prime p = 3:

$$3 \mid G_2 = 3, \quad 9 = 3^2 \mid G_6 = 144,$$

SO

$$\rho_1 = 2, \quad \rho_2 = 6.$$

Divisibility by 3 happens at multiples of $2(G_8 = 987)$, and divisibility by 9 happens at multiples of $6(G_{12} = 46, 368)$.