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1 Abstract

This paper explores the theory of divisibility sequences. We briefly cover some definitions

and linear divisibility sequences (LDS). Then, we take a deep dive into the theory of elliptic

divisibility sequences (EDS). We present classical results for LDS such as those for Fibonacci

and Lucas numbers, and build a deeper theory for EDS: including recurrence relations,

doubling/stepping formulas, structure theorems, and classification of vanishing terms. We

end with a number-theoretic discussion of periodicity modulo primes and ranks of apparition.

2 Introduction

Definition 2.1. A sequence (an) is called a divisibility sequence when it has the property:

if m | n, then am | an.

Definition 2.2. A sequence (an) is called a strong divisibility sequence when gcd(am, an) =

agcd(m,n).

To get used to these definitions, we will cover some common examples of divisibility

sequences.

Theorem 2.1. The sequence of Mersenne numbers (numbers of the form 2n − 1) forms a

divisibility sequence.

Proof. Let Mn = 2n − 1. If m | n, write n = mk for some integer k. Then:

Mn = 2mk − 1 = (2m)k − 1 = (2m − 1)
k−1∑
i=0

(2m)i.
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Since Mm = 2m − 1 divides this, the claim follows.

Theorem 2.2. The Fibonacci sequence is a divisibility sequence.

Proof. The proof requires using induction twice. First, we show a powerful result which

states that Fm+n = Fm−1Fn + FmFn+1 Our base cases will be n = 1 and n = 2. For n = 1,

we have

Fm = Fm−1F1 + FmF2 = Fm−1 + Fm

, which is the definition of the recurrence. For n = 2, we have

Fm+1 = Fm−1F2 + FmF3 = Fm−1 + 2Fm = Fm−1 + Fm + Fm = Fm+1 + Fm.

This also satisfies the definition.

Now, assume that this holds for n = k and n = k + 1. We will show that this holds for

n = k + 2 as well.

For n = k, we have Fm+k = Fm−1Fk + FmFk+1. For n = k + 1, we have Fm+k+1 =

Fm−1Fk+1 + FmFk+2.

Adding the two equations and using the definition of the Fibonacci recurrence yields

Fm+k+2 = Fm−1(Fk + Fk+1) + Fm(Fk+1 + Fk+2) = Fm−1Fk+2 + Fm(Fk+3).

This completes the induction.

To show that F is a divisibility sequence, consider the index n, and let m be a divisor

of n. Then, we can write n = mk. To prove this, we use induction again. Our base case is

k = 1. In this case, m = n, which means Fm = Fn, so we have that Fm | Fn, completing the

base case. Now, assume this holds for k = r. We show that it also holds for k = r + 1. In

order to do this, we must show that Fm divides Fm(r+1). To do this, we plug in k = r into

the equation from earlier. This yields

Fm+mr = Fm(r+1) = Fm−1Fmr + FmFmr+1.

Now, notice that Fm clearly divides FmFmr+1. For Fm−1Fmr, our inductive hypothesis

assumes that Fm | Fmr, which means Fm | Fm−1Fmr. Thus, Fm | Fm(r+1), so F is a divisibility

sequence.
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As mentioned earlier, the main focus of this paper is on two deep families of divisibil-

ity sequences: linear divisibility sequences (LDS) and elliptic divisibility sequences (EDS).

We cover their structure, construction, and key theorems — especially those highlighting

number-theoretic aspects such as divisibility and periodicity mod p.

3 Linear Divisibility Sequences

Linear divisibility sequences (LDSs) are a classical object of study in number theory, tracing

their roots to 19th-century investigations of integer sequences such as the Fibonacci and

Lucas numbers. These sequences are defined by linear recurrence relations and exhibit the

divisibility property that if one index divides another, then the corresponding term in the

sequence divides the other term.

One of the earliest and most famous examples is the Fibonacci sequence Fn, defined by

the recurrence Fn+2 = Fn+1 + Fn with initial values F0 = 0 and F1 = 1. It satisfies the

property that Fm | Fn whenever m | n, a characteristic feature of LDSs. The study of such

sequences became formalized in the early 20th century with the work of mathematicians like

D. H. Lehmer and Édouard Lucas.

A sequence (an)n≥0 of integers is called a linear divisibility sequence if:

1. It satisfies a linear recurrence relation:

an = c1an−1 + c2an−2 + · · ·+ ckan−k, for all n ≥ k,

where the ci are fixed integers, and

2. It satisfies the divisibility property :

m | n ⇒ am | an.

• Fibonacci sequence: F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn.

• Lucas sequence: L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln.

• More generally, sequences of the form:

Un =
αn − βn

α− β

where α, β are roots of a quadratic equation with integer coefficients.
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4 Brief Introduction to Elliptic Sequences

Before we talk about elliptic divisibility sequences, we must cover some important funda-

mentals about elliptic sequences that will help us study elliptic divisibility sequences and

their behavior modulo p.

Definition 4.1. (hn) is an elliptic sequence if it is a sequence of rational numbers satis-

fying

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m for all m,n ∈ Z.

This recursive sequence comes from the polynomial of division of an elliptic curve.

Notice that we have defined m and n to belong to Z. Z includes negative integers. This

means that the indices can be negative. To get used to this, we will prove the following

theorem.

Theorem 4.1. Let (hn) be an elliptic sequence. Then, the sequence satisfies h0 = 0, h1 =

±1, and

h−n = −hn for all n ∈ Z.

Proof. Let m = 0 and n = 0. Plugging these values into our recurrence relation yields

h0
2 = h1h−1h0

2 − h1h−1h
2
0.

Thus, we have h0 = 0. If we assume that h0 ̸= 0, we can divide both sides by h0
2, which

would yield 1 = 0, which is not true. Thus, we must have h0 = 0.

Next, if we plug in n = 0, we have

hm
2 = −h1h−1hn

2.

So, we have h1h−1 = −1.

Now, set m = 0. Plugging this into our relation gives hnh−n = h1h−1hn
2. We can plug in

h1h−1 = −1 gives −hn
2 = hnh−n, so −hn = h−n, which implies that h1 = h−1. Combining

this with h1h−1 = −1, we find that h1 = ±1
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Now we talk about some powerful theorems which allow us to compute terms of an elliptic

sequence.

Theorem 4.2. A rational sequence (hn) with h0 = 0, h1 = 1, h2 = 0 and h3 ̸= 0 is an

elliptic sequence if and only if

hn =

0 if n = 2k,

(−1)
1
2
k(k−1)h

1
2
k(k+1)

3 if n = 2k + 1.

Note that an elliptic sequence with h2 = 0 must have h4 = 0.

Proof. Suppose h2 = 0 and h3 ̸= 0. Using the recurrence relation, it follows that all even-

indexed terms must vanish. Indeed, since h2 = 0, setting m = 2 in the recurrence yields:

hn+2hn−2 = hn+1hn−1h
2
2 − h3h1h

2
n.

The term h2
2 = 0, so the right-hand side simplifies to −h3h1h

2
n. For n even, hn = 0 by

induction, implying hn+2hn−2 = 0. Since hn−2 ̸= 0 for some odd n− 2, we get hn+2 = 0.

Thus all even-indexed terms h2k = 0 for k ≥ 1.

For odd indices n = 2k + 1, define h1 = 1, h3 = a ̸= 0. Using the recurrence and

induction, we find:

h2k+3 = −a
h2
2k+1

h2k−1

.

Unfolding this relation yields

h2k+1 = (−1)
1
2
k(k−1)a

1
2
k(k+1).

Theorem 4.3. A rational sequence (hn) with h0 = 0, h1 = 1, h2 ̸= 0 and h3 = 0 is an

elliptic sequence if and only if

hn =


0 if n = 3k,

(−h2)
1
2
k(k−1)h

1
2
k(k+1)

4 if n = 3k + 1,

−(−h2)
1
2
(k+1)(k+2)h

1
2
k(k+1)

4 if n = 3k + 2.
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Proof. suppose h2 ̸= 0 and h3 = 0. Here, every third term vanishes. Since h3 = 0, setting

m = 3 gives:

hn+3hn−3 = −h4h2h
2
n.

Thus

hn+3 = −h4h2h
2
n

hn−3

.

This recurrence shows that every third term h3k = 0 by induction, starting with h3 = 0.

The remaining terms h3k+1 and h3k+2 can be computed explicitly by iterating the recur-

rence. One finds

h3k+1 = (−h2)
1
2
k(k−1)h

1
2
k(k+1)

4 ,

h3k+2 = −(−h2)
1
2
(k+1)(k+2)h

1
2
k(k+1)

4 .

These formulas follow directly from induction on k, using the recurrence relation and the

initial conditions.

Finally, we have the ”doubling formula” and ”stepping formula”, respectively:

Theorem 4.4 (Doubling). Let (hn) be an elliptic sequence. Then for all n ≥ 2:

h2n+1 = hn+2h
3
n − hn−1h

3
n+1, (1)

h2nh2 = hn(hn+2h
2
n−1 − hn−2h

2
n+1). (2)

Proof. Use the elliptic recurrence:

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m.

Set m = n+ 1 and n = n, so:

h2n+1h1 = hn+2hnh
2
n − hn+1hn−1h

2
n+1.

Simplifying:

h2n+1 = hn+2h
3
n − hn−1h

3
n+1.

For the second, set m = n+ 1 and n = n− 1:

h2nh2 = hn+2hnh
2
n−1 − hn−2hnh

2
n+1 = hn(hn+2h

2
n−1 − hn−2h

2
n+1).

6



Theorem 4.5 (Stepping).

hm+2 =
hm+1hm−1h

2
2 − h3h1h

2
m

hm−2

for all m ∈ Z.

5 Elliptic Divisibility Sequences

Now that we have talked a bit about elliptic sequences, we will cover elliptic divisibility

sequences(EDS). An EDS is an elliptic sequence that satisfies Definition 2.2.

We will go over some examples of elliptic divisibility sequences.

Theorem 5.1. The sequence hn = n is an elliptic divisibility sequence.

Proof. It is easy to check that hn = n satisfies the divisibility property. Now we must check

that it is an elliptic sequence.

We are given the recurrence relation:

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m,

and we wish to verify that the sequence hn = n satisfies this identity for all integers m,n.

The left hand side evaluates to

hm+nhm−n = (m+ n)(m− n) = m2 − n2.

The right hand side evaluates to

hm+1hm−1h
2
n = (m+ 1)(m− 1)n2 = (m2 − 1)n2,

hn+1hn−1h
2
m = (n+ 1)(n− 1)m2 = (n2 − 1)m2.

Therefore,

RHS = (m2 − 1)n2 − (n2 − 1)m2 = m2n2 − n2 − n2m2 +m2 = m2 − n2.

Thus, hn = n is an elliptic divisibility sequence.
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Theorem 5.2. The sequence Gn = F2n is an elliptic divisibility sequence, where (Fn) is the

Fibonacci Sequence.

Proof. In order to prove that Gn is an EDS, we must prove the following identities. Luckily,

these can be proven pretty easily by just using the Fibonacci sequence.

(i) Gm+1 = 3Gm −Gm−1

(ii) Gm+n = GmGn+1 −Gm−1Gn

(iii) Gm−n = Gm−1Gn −GmGn−1

We begin by substituting Gm+n and Gm−n into the left hand side of the elliptic recurrence:

Gm+nGm−n = (GmGn+1 −Gm−1Gn)(Gm−1Gn −GmGn−1).

Then, we expand and simplify to get:

3GmGm−1G
2
n −G2

m−1G
2
n −G2

mGn+1Gn−1.

Now we see the use for identity (i). If we factor Gm−1G
2
n from the first two terms, we

get Gm−1G
2
n(3Gm −Gm− 1). So, we can plug in Gm+1 = 3Gm −Gm−1. We get

Gm+1Gm−1G
2
n −Gn+1Gn−1G

2
m.

This is the exact form of the elliptic recurrence. The divisibility follows directly from the

fact that Fn is a divisibility sequence. Thus, we are done.

Now, we’ll go over a nice theorem that allows us to generate different elliptic divisibility

sequences or elliptic sequences.

Theorem 5.3. Let (hn) be an elliptic sequence, and hk any nonzero term. Define

ℓn =
hnk

hk

.

Then (ℓn) is also an elliptic sequence. If (hn) is an EDS, so is (ℓn).
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Proof. We are given an elliptic sequence (hn) satisfying

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m,

and we define

ℓn =
hnk

hk

,

where hk ̸= 0. We wish to show that (ℓn) satisfies the same recurrence.

Observe that

ℓm+nℓm−n =
h(m+n)k

hk

·
h(m−n)k

hk

=
h(m+n)kh(m−n)k

h2
k

.

By the recurrence for (hn), we have

h(m+n)kh(m−n)k = h(m+1)kh(m−1)kh
2
nk − h(n+1)kh(n−1)kh

2
mk.

Substituting this into the expression for ℓm+nℓm−n, we get

ℓm+nℓm−n =
h(m+1)kh(m−1)kh

2
nk − h(n+1)kh(n−1)kh

2
mk

h2
k

.

Each term in the numerator can be expressed in terms of (ℓn). Since hpk = ℓphk for any p,

we have

h(m+1)kh(m−1)kh
2
nk = (ℓm+1hk)(ℓm−1hk)(ℓnhk)

2.

Expanding this gives

ℓm+1ℓm−1ℓ
2
nh

4
k.

Similarly,

h(n+1)kh(n−1)kh
2
mk = ℓn+1ℓn−1ℓ

2
mh

4
k.

Thus, the numerator becomes

h4
k

(
ℓm+1ℓm−1ℓ

2
n − ℓn+1ℓn−1ℓ

2
m

)
.

Substituting this back, we obtain

ℓm+nℓm−n =
h4
k

h2
k

(
ℓm+1ℓm−1ℓ

2
n − ℓn+1ℓn−1ℓ

2
m

)
.

This simplifies to

ℓm+nℓm−n = h2
k

(
ℓm+1ℓm−1ℓ

2
n − ℓn+1ℓn−1ℓ

2
m

)
.
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Here, the extra factor h2
k is independent ofm and n. Since the elliptic sequence recurrence

is homogeneous of degree four, dividing all terms of (ℓn) by hk would absorb this constant

factor and result in a sequence that satisfies the recurrence exactly. In other words, the

scaled sequence

ℓ̃n =
ℓn
hk

=
hnk

h2
k

obeys the original recurrence without any extra scaling.

The presence of this constant factor does not alter the divisibility or structural properties

of the sequence because elliptic sequences are defined projectively; multiplying all terms by

a fixed nonzero constant does not affect their essential behavior.

Therefore, (ℓn) is an elliptic sequence. If (hn) is an elliptic divisibility sequence, then

so is (ℓn) because divisibility is preserved under taking subsequences of the form hnk and

scaling by a fixed term hk.

Theorem 5.4. Let (hn) be an elliptic sequence with initial values h0 = 0, h1 = 1, and such

that h2, h3 are not both zero. If two consecutive terms of (hn) vanish, then all subsequent

terms vanish as well.

Proof. Assume there exist indices r and r + 1 such that hr = hr+1 = 0, and suppose r is

minimal with this property. We first note that for all 0 < k < r, hk ̸= 0, by minimality.

To show that all hn for n > r + 1 vanish, consider applying the recurrence relations.

Case 1: n < r/2. Set 2n = r, so h2n = 0. (2) yields

0 = hn(hn+2h
2
n−1 − hn−2h

2
n+1).

Since hn ̸= 0 (by minimality of r), the factor in parentheses must vanish. This leads recur-

sively to further zeros.

Case 2: n = r/2 (when r even). Substitution into the recurrence also yields a relation

showing hn+2 depends on hn and hn−1, forcing vanishing of later terms.

Case 3: n > r/2. Choose n such that 2n− r < r. (1) gives

h2n−rhr = hn(hn+2h
2
n−1 − hn−2h

2
n+1).

Since hr = 0, this again implies further vanishing terms.

Hence, by induction, all hn beyond r + 1 vanish.
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Theorem 5.5. Let (hn) be a proper elliptic sequence with h0 = 0, h1 = 1, and h2, h3, h4 ∈ Z.
Then (hn) is an elliptic divisibility sequence (EDS) if and only if h2 | h4. Furthermore, (hn)

is uniquely determined by h2, h3, h4.

Proof. Necessity is clear: in an EDS all hn are integers and divisibility h2 | h4 is immediate

from the recursions.

For sufficiency, assume h2, h3, h4 ∈ Z and h2 | h4. We prove, by induction on n, that:

(i) All hn ∈ Z and h2 | h2n.

(ii) (hn) is uniquely determined by h2, h3, h4.

Base case: The claim holds for n ≤ 4 by assumption.

Induction step: Suppose the claim holds for all k < n. Using (1) or (2), hn is expressed

in terms of earlier hk. Since those are integers by hypothesis, hn ∈ Z.

To see h2 | h2n, let n = ab for a, b ≥ 2. By induction,

habh2 = ha+1ha−1h
2
b − hb+1hb−1h

2
a.

Each term on the RHS is divisible by h2, so habh2 is divisible by h2, implying h2 | hab.

Finally, uniqueness follows since any sequence with the same h2, h3, h4 must satisfy the

same recursions and hence coincide for all n.

We conclude this section with one very important theorem relating to strong divisibility

sequences that allow us to tell whether an EDS is a strong divisibility sequence or not.

Theorem 5.6. If (hn) is an elliptic divisibility sequence in which the initial values h3 and

h4 are coprime, then

gcd(hm, hn) = hgcd(m,n)

for all indices m,n.

This is the exact definition of a strong divisibility sequence that we introduced as Defi-

nition 2.2! We now have the following result.

Theorem 5.7. The sequence formed by every other Fibonacci term(Gn) forms a strong

divisibility sequences.

Proof. We simply apply the previous theorem. We know that (G) is an elliptic divisibility

sequence from before. Since G3 = 8 and G4 = 21, we have gcd(8, 21) = 1, meaning they are

coprime. By the previous theorem, (G) is a strong divisibility sequence
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6 Ranks of Apparition and Modulo Behavior

Definition 6.1. Let (hn) be a sequence of integers. A positive integer m is called a divisor of

the sequence if m | hr for some r > 1. The smallest such r is called the rank of apparition

of m in (hn), often denoted ρ(m) or just ρ.

Theorem 6.1. Let (hn) be a divisibility sequence. The following are equivalent:

(i) gcd(hm, hn) = hgcd(m,n).

(ii) For every prime p and every k ≥ 1, we have:

pk | hr ⇐⇒ ρk | r,

where ρk is the smallest index such that pk | hρk .

Proof. As a note before the proof, the notation pk∥hr states that k is the highest power of

p that divides hr.

(i) ⇒ (ii)

Assume (i) holds. Let p be a prime dividing some hn, and let k be a positive integer such

that pk divides hr. Define pk to be the smallest positive index such that pk | hpk .

Now, assume r ≡ 0 (mod pk). Then pk | r, so hr = hgcd(r,pk) = gcd(hr, hpk). From (i), it

follows that:

(hr, hpk) = hgcd(r,pk) = hpk ,

and thus pk | hr as p
k | hpk . Hence, hr ≡ 0 (mod pk).

Conversely, suppose hr ≡ 0 (mod pk). Then pk | hr. Let us show that r ≡ 0 (mod pk).

Note that (hr, hpk) is divisible by pk (since pk | hr and pk | hpk), and so:

hgcd(r,pk) = (hr, hpk) ≡ 0 (mod pk).

By the minimality of pk, this implies gcd(r, pk) ≥ pk, hence gcd(r, pk) = pk, so pk | r, i.e.,
r ≡ 0 (mod pk).
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(ii) ⇒ (i)

Assume (ii) holds. Let m and n be arbitrary positive integers. We want to show that

(hm, hn) = hgcd(m,n).

First, observe that since (hn) is a divisibility sequence, we know hgcd(m,n) divides both

hm and hn, so hgcd(m,n) | (hm, hn).

Let p be any common prime divisor of hm and hn. Write:

pa∥hm, pb∥hn, with a, b ≥ 1,

and define c = min(a, b). Then pc | (hm, hn).

We must show that pc | hgcd(m,n). Since pa | hm, it follows by (ii) that m ≡ 0 (mod pa),

and similarly n ≡ 0 (mod pb), where pa and pb are the smallest indices such that pa | hpa

and pb | hpb . Since m and n are divisible by pa and pb respectively, their gcd is divisible by

lcm(pa, pb). Let pc = lcm(pa, pb).

Then, since gcd(m,n) ≡ 0 (mod pc), it follows that pc | hgcd(m,n) by (ii). Hence, every

prime power dividing (hm, hn) also divides hgcd(m,n), and so:

(hm, hn) | hgcd(m,n).

Combined with the earlier divisibility, we conclude:

(hm, hn) = hgcd(m,n).

By Theorem 5.8, we know that Gn is a strong divisibility sequence. Thus, we can look

at this as an example for Theorem 6.1.

Prime p = 3:

3 | G2 = 3, 9 = 32 | G6 = 144.

Thus, we find:

ρ1 = 2, ρ2 = 6,

where ρk denotes the smallest index such that 3k | Gρk . We observe:

3 | G2, G4, G6, G8, . . . (indices ≡ 0 mod 2),
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9 | G6, G12, . . . (indices ≡ 0 mod 6).

Prime p = 5:

5 | G5 = 55, 25 = 52 | G15 = F30 = 832040.

So we have:

ρ1 = 5, ρ2 = 15.

And similarly:

5 | G5, G10, G15, . . . (indices ≡ 0 mod 5),

25 | G15, G30, . . . (indices ≡ 0 mod 15).

Prime p = 2:

2 | G3 = 8, 4 = 22 | G6 = 144, 8 = 23 | G9 = 2584.

Thus:

ρ1 = 3, ρ2 = 6, ρ3 = 9.

So divisibility by 2k occurs at indices divisible by 3k, for k = 1, 2, 3 respectively.
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