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Introduction

What are Carmichael Numbers?

Fermat’s Little Theorem

If a number p is prime, then all integers a ∈ Z such that (a, p) = 1 satisfy
the congruence relation: ap−1 ≡ 1 mod p.

However, is the converse also true? Unfortunately (or fortunately), it was
found that there were indeed composite numbers that satisfied Fermat’s
little theorem.
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Introduction

Definition and Applications of Carmichael Numbers

Definition

A number n is Carmichael if it is composite and satisfies the congruence
relation: an−1 ≡ 1 mod n.

Because these numbers satisfy this congruence, they can seem
indistinguishable from prime numbers. These can be especially useful in
primality testing; as a result, have some applications in cryptography.
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Introduction

Korselt’s Criterion

Theorem

A number n > 2 is Carmichael if and only if n is squarefree and
(p − 1)|(n − 1) for all primes p dividing n.

Example

One Carmichael Number is 561. To test this case, we can see that
561 = 3 ∗ 11 ∗ 17. Since 560 is divisible by 3− 1, 11− 1, 17− 1, then 561
is a Carmichael number.
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Introduction

Corrolary that follows

Corollary

For a carmichael number with only three prime factors p, q, r , then
(r − 1)|(pq − 1).

Proof.

By Korselt’s Criterion, pqr − 1 is divisible by r − 1. We can rewrite
pqr − 1 = pqr − pq + pq − 1 = pq(r − 1) + (pq − 1). Obviously,
pq(r − 1) is divisible by r − 1, and that means so must pq − 1. ■
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Introduction

More properties of Carmichael numbers

Proposition

All Carmichael numbers are odd.

Proof.

Since an−1 ≡ 1 mod n for all a that is coprime to n, then we can make
a = n − 1 ≡ −1 mod n. Since (−1)n−1 must be 1, then n must be
odd. ■
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Introduction

More properties of Carmichael numbers

Proposition

Carmichael numbers have no prime factors greater than
√
n.

Proposition

Carmichael numbers have at least 3 prime factors.

Proposition

There are infinitely many Carmichael numbers.
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Constructions of Carmichael numbers

Chernick’s Construction

Theorem

For an integer k, (6k + 1)(12k + 1)(18k + 1) is a Carmichael number if
6k + 1, 12k + 1, 18k + 1 are prime.

Proof.

By Korselt’s Criterion, we must have (6k + 1)(12k + 1)(18k + 1)− 1
divisible by 6k, 12k , 18k . We can rewrite our product to
36k(36k2 + 11k + 1). Since 36k = lcm(6k , 12k, 18k) then our product is
divisible by 6k, 12k , and 18k . ■
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Constructions of Carmichael numbers

Other Constructions

There are many more constructions. Here are a few:

1 (1, 2, 3) → (6k + 1)(12k + 1)(18k + 1)

2 (1, 3, 5) → (15k + 13)(45k + 37)(75k + 61)

3 (1, 2, 5) → (10k + 7)(20k + 13)(50k + 31)

4 (1, 3, 4) → (12k + 5)(36k + 13)(48k + 17)

5 (2, 3, 5) → (60k + 41)(90k + 61)(150k + 101)
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Constructions of Carmichael numbers

Other Constructions

1 (15k + 13)(45k + 37)(75k + 61) →
((15k + 12) + 1)(3(15k + 12) + 1)(5(15k + 12) + 1)

2 (10k + 7)(20k + 13)(50k + 31) →
((10k + 6) + 1)(2(10k + 6) + 1)(3(10k + 6) + 1)

3 (12k + 5)(36k + 13)(48k + 17) →
((12k + 4) + 1)(3(12k + 4) + 1)(4(12k + 4) + 1)

4 (60k + 41)(90k + 61)(150k + 101) →
(2(30k + 20) + 1)(3(30k + 20) + 1)(5(30k + 20) + 1)
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Constructions of Carmichael numbers

Generating Constructions

Definition

Define a Chernick triple (a1, a2, a3) such that a1, a2, a3 share no common
factors in total. Then a universal construction is of the form:

(a1(Mk + r) + 1)(a2(Mk + r) + 1)(a3(Mk + r) + 1)

where M = lcm(a1, a2, a3) and 0 ≤ r < M.

Remark

Why must M = lcm(a1, a2, a3)?
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Constructions of Carmichael numbers

Generalized solve

Theorem

For a universal construction, r(a1a2 + a1a3 + a2a3) ≡ −(a1 + a2 + a3)
mod a1a2a3.

Solving for r is simple now, and we can use extended euclidean algorithm.
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Finding Carmichael Numbers

Method 1(bash)

We want to generate pqr that are Carmichael for prime p, q, r . To do this,
we will first fix a smallest prime p. From here, we will choose/iterate
through a q. To find r , we use the fact that r − 1|pq − 1 by Korselt’s
Criterion. We will also assume that p < q < r .

Lemma

q < r ≤ pq−1
2 + 1

Proof.

Since (r − 1)|(pq − 1), then r − 1 ≤ pq−1
2 . This is because r − 1 ̸= pq − 1

since r is prime. ■
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Finding Carmichael Numbers

Table 1

p q pq − 1 pq−1
2 + 1 r

3 5 14 8 None

3 11 32 17 17

3 17 50 26 None

3 23 68 35 None

5 7 34 18 None

5 13 64 33 17

5 17 84 43 29

5 19 94 48 None

7 11 76 39 None

7 13 90 46 19 and 31

7 17 118 60 None

11 13 142 72 None
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Finding Carmichael Numbers

Method 2(smarter)

We choose a smallest prime p. Instead of iterating through q, we iterate
through h3. Define h3 =

pq−1
r−1 and h2 =

pr−1
q−1 , for which d = h2h3 − p2. It

can be shown that 2 ≤ h3 ≤ p − 1.

Remark

One reason for this strange arrangement is that h3 being integer satisfies
pqr ≡ 1 mod r − 1 by Korselt’s criterion. Another reason for this strange
arragement is because this number d depends on p and h3, for which
these properties can be used to solve for h2.

Proposition

d has the following properties:

1 d ≡ −p2 mod h3
2 d = (p+h3)(p+1)

q−1

3 d ≤ p + h3 − 1.
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Finding Carmichael Numbers

Table 2

p h3 −p2 mod h3 (p − 1)(p + h3) p + h3 − 1 d q r

3 2 1 mod 2 2 ∗ 5 = 10 4 1 11 17

5 2 1 mod 2 4 ∗ 7 = 28 6 1 29 73

5 3 2 mod 3 4 ∗ 8 = 32 7 2 17 29

5 4 3 mod 4 4 ∗ 9 = 36 8 3 13 17

7 2 1 mod 2 6 ∗ 9 = 54 8 1 55

7 2 1 mod 2 6 ∗ 9 = 54 8 3 19 67

7 3 2 mod 3 6 ∗ 10 = 60 9 2 31 73

7 3 2 mod 3 6 ∗ 10 = 60 9 5 13 31

7 4 3 mod 4 6 ∗ 11 = 66 10 3 23 41

7 5 1 mod 5 6 ∗ 12 = 72 11 1 73 103

7 5 1 mod 5 6 ∗ 12 = 72 11 6 13 19

7 6 5 mod 6 6 ∗ 13 = 78 12

Table: Iterating using h3.
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Finding Carmichael Numbers

Pinch’s algorithm

Pinch’s algorithm follows a similar method at establishing and finding
these Carmichael number by starting with a set of primes and solving for
two more primes to find a Carmichael numbers. However, there are a few
key differences that set them apart.
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