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1. Introduction

I’m really excited to share with my peers an introduction to Carmichael numbers.
We will assume a basic competitive math background, so basic number theory re-
sults such as Chinese Remainder Theorem and Fermat’s Little Theorem are all that
are necessary for this paper. Many results that come from Carmichael numbers re-
quire knowledge of pretty complicated abstract algebra, and I will try and provide
information that is not derived from those things.

Recall Fermat’s little theorem, which states that for a prime p, ap−1 ≡ 1 mod p
for all (a, p) = 1 (gcd of a and d is 1). Up until the early 20th century, many people
believed that the converse was true, although this was never proven. However, in 1885,
Václav Šimerka [Ši85] discovered the first seven composite numbers that disproved
this converse, although this discovery went unnoticed. It was Alwin Korselt [Kor99]
who first ”discovered” these numbers in 1899 and later Robert Carmichael in 1910
who studied them in depth, for which these numbers are now named after him.

Definition 1.1. An integer n is Carmichael if n is composite and for all integers a
coprime to n: an−1 ≡ 1 mod n. Alternatively, an integer n is Carmichael if n is
composite and for all integers a ∈ Z, an ≡ a mod n.

While this is the original definition of a Carmichael number, as you read this paper,
you will notice that Korselt’s criterion proves as a far more productive definition. For
the purposes of this paper, we will mostly be referencing Korselt’s criterion, which
will be the first thing proved in section 2.

Definition 1.2. Korselt’s criterion: n > 2 is Carmichael if and only if n is squarefree
and p− 1 divides n− 1 for all primes p dividing n.

We have the condition that n > 2 since n = 2 satisfies Korselt’s criterion, but is a
prime number.

Carmichael numbers have many interesting applications in cryptography. Because
of their uniqueness, they are indistinguishable from prime numbers when tested with
Fermat’s little theorem. This makes them useful in public key cryptography, most
popularly RSA algorithms. Another usage is in helping develop primality testing
algorithms, which make sure a number is prime.
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Because of their uniqueness, it was actually very hard to prove that Carmichael
numbers were infinitely extended. Up until the late 20th century, many mathemati-
cians believed it was true, but didn’t have the techniques to prove it. However, in
1994, Alford, Granville, and Pomerance [AGP94] proved this result, by putting a
lower bound on a function C(x), which gives the number of Carmichael numbers up
to x. They found that C(x) > x2/7. Since as x approaches infinity, so will C(x); thus,
there are infinitely many Carmichael numbers.

In this paper, I will dive into some questions and interesting topics of interest about
Carmichael numbers. One such question was on the relatedness between the number
of unknown primes and number of Carmichael numbers. Are there infinitely many
unknown primes that divide a Carmichael number given a fixed number of primes
that already do so? If we created an algorithm searching for all Carmichael numbers,
how much time would it take? These questions will be answered in this paper. To
begin, I will first begin with elementary properties of Carmichael numbers in section
2, such as Korselt’s criterion. In section 3, I will then go on to explain properties of
Carmichael numbers given fixed primes. These theorems will help us develop section
4 which is about finding and tabulating Carmichael numbers. Finally, section 5 is
dedicated to Chernick’s construction [Che39], where we can bring up generalizations
on how Chernick’s construction works and extending its properties to more prime
factors (Don’t worry we will explain what Chernick’s construction in section 2).

There is no one main result of this paper. However, there is a main section,
which is on tabulating and algorithmic generation for Carmichael numbers. This
is since section 4 builds off of all previous sections and introduces algorithms that
search for Carmichael numbers. Section 5 contains many generalizations to Chernick’s
constructions and those properties, so that is also something you may find interesting.

2. Elementary properties of Carmichael numbers

I will begin this section by proving Korselt’s criterion, and then a construction that
follows from it. I encourage the reader to work through Corollary 2.2 since it will
help you understand how Korselt’s criterion is used.

Theorem 2.1. Korselt’s criterion: A composite integer n is Carmichael if and only
if n is squarefree and for every prime factor p of n, p− 1 must also divide n− 1.

We first prove that n is squarefree, then prove that for every prime factor p that
divides n, (p− 1)|(n− 1). Finally, we prove that only Carmichael numbers have such
a property. If n is squarefree and for every prime factor p|n ⇒ (p− 1)|(n− 1).

Proof. Assume that integer n is Carmichael but not squarefree. Then, n = pk ∗ n′,
where k ≥ 2, and (p, n′) = 1. By Chinese Remainder Theorem, there exists an a ≡ 1
mod p, but a ̸≡ 1 mod p2. This is always true, because we can make a = p + 1. If
we use the definition of a Carmichael number, all we do now is use some modular
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arithmetic to find the contradiction:

an−1 ≡ 1 mod n

an−1 = (p+ 1)n−1 = 1n−1 +

(
n− 1

1

)
1n−2p+ p2(· · · ) ≡ 1 mod p2

(n− 1)p ≡ 0 mod p2

As you can see, either n ≡ 1 mod p, but since p is a factor of n, n ≡ 0 mod p, which
is a contradiction. Therefore, if n is Carmichael, it must be squarefree.

Arbitrarily pick a prime factor p such that Carmichael n = p1∗n′, since we know n is
squarefree. Choose a number a such that a ≡ 1 mod n′ and (a, n) = 1. By Fermat’s
little theorem, ap−1 ≡ 1 mod p. Since (a, n) = 1, an−1 ≡ 1 mod n ⇒ an−1 ≡ 1
mod p. Since order p− 1 is the smallest possible number such that ap−1 ≡ 1 mod p,
this implies that n− 1 is divisible by p− 1.
Let n be a composite integer that is squarefree, and for every prime p that divides

n, (p − 1)|(n − 1). By Fermat’s little theorem, if we choose a such that (a, n) = 1,
then a is also coprime to every prime p, meaning this equation holds for all primes p
that divide n: ap−1 ≡ 1 mod p. Since all p− 1 are factors of n− 1, an−1 ≡ 1 mod p
for all p. As a result, an−1 ≡ 1 mod n, proving that n must be Carmichael.

■

Corollary 2.2. (Chernick) If k is a positive integer such that (6k+1), (12k+1), (18k+
1) are all prime, then (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.

Proof. The verification of this construction becomes trivial once we use Korselt’s
criterion. Let n = (6k + 1)(12k + 1)(18k + 1). By definition, n is squarefree. By the
second criteria, n− 1 must be divisible by 6k, 12k, 18k.

n− 1 = 1296k3 + 396k2 + 36k = 36k(36k2 + 11k + 1)

Since 36k is divisible by 6k, 12k, 18k, and n − 1 is divisible by 36k, then n − 1 is
divisible by all p− 1; by Korselt’s criterion, n must be Carmichael. ■

Remark 2.3. The reader may be curious as to how the numbers 6, 12, and 18 come
about, as well as if there are other numbers that work. This question also made me
curious and is the motivation behind section 5.

Remark 2.4. Chernick’s construction makes it very easy to conjecture on the infinitude
of Carmichael numbers. However, this cannot be proven right now; as the bridge
involved is the First Hardy-Littlewood conjecture. This is still unproven to this day.
Of course, this conjecture is also intimately related to the twin primes conjecture.
For more information, you can look online at the wiki.

Now we explore some basic properties of Carmichael numbers, for which as you
will see, mostly all derive from Korselt’s criterion.

Lemma 2.5. If n is Carmichael, then n is odd.

https://en.wikipedia.org/wiki/First_Hardy%E2%80%93Littlewood_conjecture
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Proof. Since n− 1 and n are coprime:

(n− 1)n−1 ≡ (−1)n−1 ≡ 1 mod n

Since n− 1 must be even, n is odd. ■

Lemma 2.6. If n is Carmichael, then n has at least three prime factors.

Proof. Assume that n has two prime factors p and q(it cannot have one because n
is composite). By Korselt’s criterion, p ̸= q and (p − 1)|(n − 1). Without loss of
generality assume p > q, for which some algebra will show the rest:

n− 1

p− 1
=

pq − 1

p− 1
=

(p− 1)q + (q − 1)

p− 1
= q +

q − 1

p− 1

This means (q− 1)|(p− 1), which is impossible since q < p. Thus n has at least three
prime factors. ■

Lemma 2.7. If n is Carmichael, then every prime factor of n is less than
√
n.

Proof. Let’s write n =
∏k

i=1 pi and choose and arbitrary pi. Since n ≡ 1 mod pi −
1, then p1 . . . pk ≡ 1 mod pi − 1. Since pi ≡ 1 mod pi − 1, then the product
p1 . . . pi−1pi+1 . . . pk ≡ 1 mod pi − 1. ■

Lemma 2.8. If n is Carmichael, then n and φ(n) are coprime, where φ(n) denotes
the Euler totient function.

Proof. n is squarefree, so we can write n = p1 · · · pk, where k ≥ 2. φ(n) = (p1 −
1) . . . (pk − 1). By Korselt’s criterion, all pi − 1 divide n − 1, and since no p divide
n− 1, then φ(n) and n must be coprime. ■

Corollary 2.9. If n = pqr is Carmichael, then q ̸≡ 1 mod p.

Proof. If n = pqr, then pqr and (p− 1)(q − 1)(r − 1) cannot share any prime factors
by lemma 2.8. However, q−1 ≡ 0 mod p, meaning that (pqr, (p−1)(q−1)(r−1)) ≤
p. ■

Remark 2.10. This last corollary may seem trivial, but it is in fact quite useful in
generating Carmichael numbers as you will later see in Section 4.

3. Properties of Carmichael numbers given fixed primes

In section 3, I will begin by stating a few lemmas that involve one unknown primes.
The theorems involve two unknown primes. The applications of these can be found
in Section 4.

Lemma 3.1. For a fixed set of primes {p1 . . . pk} such that c = p1 · · · pk ∗ q is
carmichael, then there are only finite primes q that make c carmichael.
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Proof. By Korselt’s criterion, (q − 1)|(c− 1), meaning:

c = p1 . . . pkq ≡ p1 . . . pk ≡ 1 mod q − 1

This means that (q − 1)|(p1p2 · · · pk − 1), giving us the inequality q − 1 ≤ p1···pk
2

.

Since p1 . . . pk is odd, we can further improve this bound to q ≤ p1...pk−1
2

+1. Because
p1···pk−1

2
+ 1 is a constant, there can only be a finite number of primes q below this

constant. ■

Lemma 3.2. For a given carmichael c = p1 . . . pk, the product p1 . . . pkq is also a
Carmichael number if and only if prime q is of the form m∗ lcm(p1−1, . . . , pk−1)+1
for some m ∈ Z such that q ≤ c−1

2
+ 1 (Lemma 3.1).

Proof. Let c2 = p1 . . . pkq and c1 = p1 . . . pk. Choose an arbitrary i in range 1 ≤ i ≤ k.

c2 ≡ c1 ≡ 1 mod pi − 1

q ≡ 1 mod pi − 1

What we have showed is that q − 1 must be divisible by all pi − 1, meaning that:

q − 1 = m ∗ lcm(p1 − 1, . . . , pk − 1)

q = m ∗ lcm(p1 − 1, . . . , pk − 1) + 1

■

Remark 3.3. Using Lemma 3.2, we can try and find a recursive method for generating
Carmichael numbers. This lemma brings about a few interesting questions, such as
how often a Carmichael number can be generated from a given Carmichael number,
or in what conditions will q be a prime number. The greater the Carmichael number
however, the harder it is to find a prime q that will work, and I conjecture the number
of q is most likely linear with c.

Theorem 3.4. There are finitely many pairs of primes (q, r) such that make c =
p1 . . . pkqr a Carmichael number.

Theorem 3.5. Let N =
∏d

i=1 pi be Carmichael with p1 < p2 < . . . < pd and let

P =
∏d−2

i=1 pi. There are integers in range 2 ≤ D < P < C such that:

(1)

pd−1 =
(P − 1)(P +D)

CD − P 2
+ 1

(2)

pd =
(P − 1)(P + C)

CD − P 2
+ 1

(3)

P 2 < CD < P 2

(
pd−2 + 3

pd−2 + 1

)



6 ABRAHAM WANG

Proof. To make this proof easier to understand, make q = pd−1 and r = pd, so
N = p1 . . . pd−2qr. By Korselt’s criterion, q − 1|Pr − 1 and r − 1|Pq − 1. Let
D = Pq−1

r−1
, and C = Pr−1

q−1
. This gives us the inequality:

q < r → D < P < C

D ̸= 1, so our range becomes the statement’s: 2 ≤ D < P < C. Now, we solve for q
by eliminating r.

D(r − 1) = Pq − 1 → r − 1 =
Pq − 1

D
→ r =

Pq − 1 +D

D

C(q − 1) = Pr − 1 → Cq − C + 1 = Pr → r =
Cq − C + 1

P
Equating the two:

Pq − 1 +D

D
=

Cq − C + 1

P
→ P 2q − P +DP = CDq − CD +D

q(CD − P 2) = CD +DP −D − P → q =
CD +DP −D − P

CD − P 2

q =
CD − P 2 + P 2 +DP −D − P

CD − P 2
=

(P − 1)(P +D)

CD − P 2
+ 1

By symmetry, and using the same technique, we can solve for r, giving us:

r =
(P − 1)(P + C)

CD − P 2
+ 1.

Now for the inequalities:

CD =
Pq − 1

q − 1
∗ Pr − 1

r − 1

Pr − P

r − 1
<

Pr − 1

r − 1
→ P <

Pr − 1

r − 1
Therefore:

CD > P 2

Since pd−2 + 2 ≤ q, and we have D < P , so

pd−2 + 2 ≤ q → pd−2 + 1 ≤ (P − 1)(P +D)

CD − P 2
<

P (P + P )

CD − P 2

(CD − P 2)(pd−2 + 1) < 2P 2 → CD < P 2

(
1 +

2

pd−2 + 1

)
P 2 < CD < P 2

(
pd−2 + 3

pd−2 + 1

)
■
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The proof of theorem 3.4 easily follows from theorem 3.5. Since p1 . . . pd−2 are fixed,
this implies that P is also fixed, which gives us the upper bound on CD. This means
that there are only finitely many C and D that satisfy this. Since q and r can be
written in terms of P , C, and D, then there must only be finitely many q and r as
well.

Definition 3.6. Let carmichael c = pqr for prime p, q, r such that p < q < r. Define
h1, h2, h3 as:

(1) h1 =
qr−1
p−1

(2) h2 =
pr−1
q−1

(3) h3 =
pq−1
r−1

Since (p− 1)|(qr − 1) by Korselt’s criterion, then all hi are integers.

Lemma 3.7. We can restrict h3 such that 2 ≤ h3 ≤ p− 1.

Proof. By definition, q < r, and since q and r are odd, then q < r − 1, so we can say
that

qh3 < (r − 1)h3 = pq − 1 < pq.

This shows that h3 < p or because h3 and p are integers, we can say that h3 ≤ p− 1.
Now, h3 ̸= 1 or else pq − 1 = r − 1, implying that r is composite. This contradicts
our definition, so h3 ̸= 1. This means that 2 ≤ h3 ≤ p− 1. ■

Remark 3.8. Using a similar method, we can restrict h1 and h2 and derive that
h1 ≥ r + 1 and p+ 1 ≤ h2 ≤ r − 1.

Lemma 3.9. We can rewrite q in terms of p, h3, and h2. The reason we do this is
so that we can get rid of one unknown, which is r. We can say that

q =
(p− 1)(p+ h3)

h2h3 − p2
+ 1.

Proof. Using Definition 3.6, we can write h2(q − 1) = pr − 1 and h3(r − 1) = pq − 1.
If we solve for r, then we can equate the two equations.

h2(q − 1) + 1

p
=

pq − 1

h3

+ 1

h3h2(q − 1) + h3 = p2q − p+ ph3

h2h3(q − 1)− p2q + p2 = p2 − p+ ph3 − h3

(h2h3 − p2)(q − 1) = (p− 1)(p+ h3)

q =
(p− 1)(p+ h3)

h2h3 − p2
+ 1

■

Lemma 3.10. The sum
∑n

i=2 1/n is always less than ln(n).
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Proof. It is easy to see that the average value of [n−1, n] of 1/n will always be greater
than 1/n. This is since all values [n− 1, n) of 1/n is greater than 1/n. Therefore, by
the average value formula:

1

n− (n− 1)

∫ n

n−1

1

n
dn = ln(n)− ln(n− 1) >

1

n

. Using this fact, we can use our summation formula to put an upper bound to 1/n:
n∑

i=2

1

n
< (ln(n)− ln(n− 1)) + (ln(n− 1)− ln(n− 2)) + · · ·+ (ln 2− ln 1)

n∑
i=2

1

n
< ln(n)− ln(1) = ln(n)

■

Theorem 3.11. Define f3(p) to be the number of Carmichael numbers with three
prime factors with smallest prime p. Then, f3(p) < (p− 2)(ln(p− 1) + 2).

Proof. For our proof, we begin by using Definition 3.6 to avoid confusion. Let d =
h2h3 − p2, and pick an h3 satisfying 2 ≤ h3 ≤ p− 1 (Lemma 3.7). By Lemma 3.9,

d =
(p− 1)(p+ h3)

q − 1
.

Since d is a positive integer by it’s definition and p − 1 < q − 1, then d < p + h3

implies d ≤ p + h3 − 1. Since d must be congruent to −p2 mod h3, we can set an
upper bound on the number of possible d given this construction. Let d = a + kh3,
where a ≡ −p2 mod h3. If we count the number of k which satisfy the inequalities,
it will also equal to the number of d that also satisfy these inequalities. By these
inequalities, 1 ≤ a + kh3 ≤ p + h3 − 1. Solving for k, it is bounded between the
integers: ⌈

1− a

h3

⌉
≤ k ≤

⌊
p+ h3 − 1− a

h3

⌋
Thus, the number of choices of k are:⌊

p+ h3 − 1− a

h3

⌋
−

⌈
1− a

h3

⌉
+ 1 ≤ p+ h3 − 1− a

h3

− 1− a

h3

+ 1 =
p− 2

h3

+ 2

If we iterate through all possible h3, we can determine the number of choices for k,
which is the same as the number of d. Using k to solve d, we can find a solution by
solving for h2, q, and finally r. At most, this gives us one solution. Therefore, we can
state the following(in combination with Lemma 3.10) to get:

f3(p) ≤
p−1∑
h3=2

(
p− 2

h3

+ 2

)
< (p− 2)(ln(p− 1) + 2).
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■

4. Algorithms + Tabulating Carmichael numbers

In this section we will overview some algorithms on generating Carmichael numbers,
and be discussing some possible alternatives and current optimal algorithms. The
first subsection will be dedicated to tabulating Carmichael numbers and then we will
discuss possible algorithms. Our Lemmas/Theorems from section 3 will prove to be
quite useful.

Let’s begin with a method of quickly calculating all Carmichael numbers below
3000, for which they are all below 3 prime factors. This table will begin by choosing
the smallest prime p for which we will choose another prime q. From there, we will
search for an r that will make pqr Carmichael using the following steps:

(1) Make sure you find q such that q ̸≡ 1 mod p by Corollary 2.9. To make
this formula more useful, we can use the fact that q is odd to say that q ̸≡ 1
mod 2p.

(2) Assume p < q < r
(3) Calculate pq − 1 (multiple of r − 1) and find even factors (possible r − 1)
(4) Test r using the following criteria:

(a) Find possible r − 1 through pq − 1
(b) By lemma 3.1, find possible q < r ≤ pq−1

2
+ 1

(c) Test whether q − 1|pr − 1 and p− 1|qr − 1
(d) If these conditions are met, then pqr is Carmichael.

p q pq − 1 pq−1
2

+ 1 r pqr
3 5 14 = 2 ∗ 7 8 None None
3 11 32 = 26 17 17 3 ∗ 11 ∗ 17 = 561
3 17 50 = 2 ∗ 52 26 None None
3 23 68 35 None None
5 7 34 18 None None
5 13 64 33 17 5 ∗ 13 ∗ 17 = 1105
5 17 84 43 29 5 ∗ 17 ∗ 29 = 2465
5 19 94 48 None None
7 11 76 39 None None
7 13 90 46 19 and 31 7 ∗ 13 ∗ 19 = 1729 and 7 ∗ 13 ∗ 31 = 2821
7 17 118 60 None None
11 13 142 72 None None

Table 1. Iterating using q.
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Pretty evidently, this method is pretty inefficient, since we must do a lot of work
for little results. Additionally, as we go onto larger and larger Carmichael numbers,
they become much harder to find; as a result, this method will not suffice.

For a similar method but more efficient, we can iterate through a different variable.
To do this, we use Definition 3.6 to help with our tabulation and Lemma 3.9. Define
d = h2h3 − p2. If we assign a value for a prime p and iterate through h3, we can find
d using a few properties that will be proven here.

Lemma 4.1. Let d = h2h3 − p2, where h2 and h3 are defined using Definition 3.6.
Then:

(1) d ≤ p+ h3 − 1
(2) d ≡ −p2 mod h3

(3) d|(p− 1)(p+ h3)

Proof. (1) By Lemma 3.9, we can rewrite d as

d =
(p− 1)(p+ h3)

(q − 1)

Since we know that p < q, then d < p + h3. Since both these values are
integers, we can say that d ≤ p+ h3 − 1.

(2) If we take the definition of d modulo h3, we get:

h2h3 − p2 ≡ −p2 mod h3.

(3) We can rewrite q − 1 as:

q − 1 =
(p− 1)(p+ h3)

d
.

Since q − 1 is an integer, then d must divide (p− 1)(p+ h3).
■

Using the properties discussed in Lemma 4.1, we can find d quickly. Afterwards,
we can then solve for q and r, respectively.
Let’s first given an example to show how the process works.

Example. Lets start with p = 3. By Lemma 3.7, h3 is bounded by 2 ≤ h3 ≤ 2, which
means that h3 = 2. From here, we can find that d ≤ 4, d|10, and d ≡ 1 mod h3.
This makes d = 1. By Lemma 3.9, we can solve for q = 11. Finally, using Definition
3.6 of h3 =

pq−1
r−1

, we can solve r to get r = 17.

Remark 4.2. As you may have noticed, there can be multiple solutions to d for a
certain h3. The upper bound for this is defined as p−2

h3
+ 2, for which this is proved

in Theorem 3.11.
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p h3 −p2 mod h3 (p− 1)(p+ h3) p+ h3 − 1 d q r
3 2 1 mod 2 2 ∗ 5 = 10 4 1 11 17
5 2 1 mod 2 4 ∗ 7 = 28 6 1 29 73
5 3 2 mod 3 4 ∗ 8 = 32 7 2 17 29
5 4 3 mod 4 4 ∗ 9 = 36 8 3 13 17
7 2 1 mod 2 6 ∗ 9 = 54 8 1 55
7 2 1 mod 2 6 ∗ 9 = 54 8 3 19 67
7 3 2 mod 3 6 ∗ 10 = 60 9 2 31 73
7 3 2 mod 3 6 ∗ 10 = 60 9 5 13 31
7 4 3 mod 4 6 ∗ 11 = 66 10 3 23 41
7 5 1 mod 5 6 ∗ 12 = 72 11 1 73 103
7 5 1 mod 5 6 ∗ 12 = 72 11 6 13 19
7 6 5 mod 6 6 ∗ 13 = 78 12

Table 2. Iterating using h3.

As you may have noticed, this method has a success rate that is much higher than
of our previous method. Not only does it produce more Carmichael numbers, it is
able to produce all Carmichael numbers with three prime factors for a certain prime
p. This is great for Carmichael numbers with three prime factors, but what happens
when we reach Carmichael numbers with four, five, or more prime factors? This
segues nicely into how algorithms search for Carmichael numbers. In particular, we
describe the algorithm Pinch [Pin93] uses to find all Carmichael numbers up to 1015.

Before we discuss Pinch’s algorithm, we must start by defining some terms and
prove a few lemmas, as they will be quite important to understanding the process by
which we will find Carmichael numbers.

Lemma 4.3. Let N =
∏d

i=1 pi be a Carmichael number less than some number X.

(1) Let r < d and P =
∏r

i=1 pi. Then, pr+1 < (X
P
)1/d−r

(2) Put P =
∏d−1

i=1 pi and L = lcm{p1 − 1, . . . , pd−1 − 1}. Then, Ppd ≡ 1 mod L
and pd − 1|P − 1.

(3) Each pi satisfies pi <
√
N <

√
X.

Proof. (1) Because pr+1 < pr+2 < . . . < pd, then (pr+1)
d−(r+1)+1 < pr+1 · · · pd =

N/P . Since N/P < X/P , we can say that (pr+1)
d−r < X/P . Thus, pr+1 <

(X
P
)1/d−r.

(2) Ppd = N , and so since N ≡ 1 mod pi − 1 for all 1 ≤ i ≤ d, then N ≡ 1
mod L.

(3) This is simply satisfied by Lemma 2.7.
■

Lemma 4.4. Let P =
∏d−2

i=1 pi. Then
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(1) pd−1 < 2P 2

(2) pd < P 3

Proof. This proof relies on all the facts from Lemma 3.4, for which they are stated
below:

(1)

pd−1 =
(P − 1)(P +D)

CD − P 2
+ 1

Since by definition D < P and CD − P 2 ≥ 1, we can say:

pd−1 =
(P − 1)(P +D)

CD − P 2
+ 1 <

(P − 1)(P + P )

1
+ 1 = 2P 2 − 2P + 1 < 2P 2

pd−1 < 2P 2

(2)

pd =
(P − 1)(P + C)

CD − P 2
+ 1

(3)

CD < P 2

(
pd−2 + 3

pd−2 + 1

)
We use the fact that D ≥ 2 by definition and pd−2 ≥ 3 since 3 is the least
prime number.

C ∗ 2 < C ∗D < P 23 + 3

3 + 1
=

3P 2

2

C <
3P 2

4

This inequality will help us use our second fact from Lemma 3.4, since we can
substitute it in.

pd =
(P − 1)(P + C)

CD − P 2
+ 1 <

(P − 1)(P + 3P 2/4)

1
+ 1

3P 3/4 + P 2 − 3P 2/4− P + 1 = 3P 3/4 + P 2/4− P + 1 < 3P 3/4 + P 2/4

pd < 3P 3/4 + P 2/4 < P 3

■

Remark 4.5. Pinch’s algorithm was used to compute all 105,212 Carmichael numbers
below 1015.
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Now, we will explain the methodology of Pinch’s algorithm. Pinch first produced
lists of primes up to p1, . . . , pd−2 up to a certain number X, using the first statement
in Lemma 4.3. Once here, Pinch described two different ways of finding the last two
primes.

Let P =
∏d−2

i=1 . If P is small enough, then we can use Lemma 3.4, looping through
all D and C such that CD are within the third statement of Lemma 3.4. For each
pair (C,D), they test whether pd−1 and pd are prime by the first two statements of

Lemma 3.4. Finally, test whether
∏d

i=1 pi is Carmichael using Korselt’s Criterion.
Let’s say that P is large, and then we loop over all values pd−1 using the statements

from Lemmas 3.4 and 4.4. Once we find pd−1, we can use the second statement from
Lemma 4.3 to find pd that satisfy Ppd ≡ 1 mod L and use bounds from Lemmas 4.3
and 4.4.

To verify that this process actually works, Pinch used a sieving method to verify
that the list of Carmichael numbers. First, he would precompute the list of prime p
up to a certain number

√
X. Because by Lemma 2.7, a prime will be less than the

square root of a Carmichael number, which means that we are finding Carmichael
numbers up to a number X.

This sieving method involves forming a table of entries for the integers up to X;
for each p in the list of primes, and finding possible values of N by making N ≡ 0
mod p and N ≡ 1 mod p− 1, or in other words, N ≡ p mod p(p− 1). Additionally,
the use of the fact that N ≥ p2 and the square-freeness of N is also applied. This
helps eliminate many candidates and N is Carmichael if all prime factors of N can
be found within the precomputed list of primes. This helps us generate an inequality
on the boundedness of this sieving technique.

X +
∑
p≤Y

⌊
X

p(p− 1)

⌋
≤ X +

∑
p≤Y

X

p(p− 1)
= O(X)

Theorem 4.6. Testing the condition 2N−1 ≡ 1 mod N for all N up to X would take
time O(X(logX)3).

Proof. To begin, we first would like to determine the time at which 2N−1 ≡ 1 mod N
is computed for a single number N .
To compute 2N−1, we use the square and multiply algorithm, which is efficient

for very large exponents. Therefore, this is performed at a rate of log2(N − 1) ≈
O(logN). Since each N has log2N bits, multiplication/squaring is performed at a
rate of O((logN)2). As a result, the total time to compute for a single number N
would be O((logN)3).
Now, the total time is simply the sum of the time for each test. In other words,

T (X) =
X∑

N=2

O((logN)3)
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Now, we can approximate this sum using an integral.

T (x) ≈
∫ X

2

(log t)3dt

This integral can be solved using integration by parts, for which we will can then
evaulate.∫ X

2

(log t)3dt = X((logX)3−3(logX)2+6(logX)−6)+2((log 2)3−3(log 2)2+6(log 2)−6)

≈ X(logX)3

This gives us time O(X(logX)3). ■

Remark 4.7. The reason for the proof of theorem 4.6 is to show the inefficiency of
bashing the numbers out and how we can improve the search of finding Carmichael
numbers through different techniques.

5. On the matter of Chernick’s construction

5.1. Three prime factors. First, we will review Chernick’s construction(Corollary
2.2, which states that for all integers k such that 6k + 1, 12k + 1, 18k + 1 are prime,
then the product (6k+1)(12k+1)(18k+1) is Carmichael. Now consider the numbers,
6, 12, 18. How do they come about? If we reduce these ratios, you will notice that
we get original ratios of (1 : 2 : 3). Indeed, you may also notice that (6, 12, 18) =
lcm(1, 2, 3)∗(1, 2, 3). From now on, we will treat a construction by it’s original ratios.
This will help us further develop a method for solving such constructions.

Example. The construction for a triple like (1, 3, 5) is (15k+13)(45k+37)(75k+61).
This can be proved using Korselt’s Criterion. You may notice that we can also rewrite
this similar to Chernick’s construction by rewriting the expression into ((15k+12)+
1)(3(15k + 12) + 1)(5(15k + 12) + 1). Rewriting in this form also makes validating
using Korselt’s Criterion much easier. This is the motivation for a definition.

Definition 5.1. Call the set A = {a1, a2, a3} a Chernick triple if the product∏3
i=1 ai(Lk + r) + 1 produces a Carmichael number for all prime (ai(Lk + r) + 1),

where L = gcd(a1L, a2L, a3L) and r is some number that creates a construction.

Remark 5.2. The reason for this strange arrangement is so that a1, a2, a3 together are
coprime.

Lemma 5.3. Given Definition 5.1, lcm(a1, a2, a3)|L.

Proof. Begin by using Korselt’s criterion for a certain prime (ai(Lk+r)+1). Without
loss of generality, let ai = a1. In other words, I can write:

(a1(Lk + r) + 1)(a2(Lk + r) + 1)(a3(Lk + r) + 1)− 1 ≡ 0 mod a1(Lk + r)
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Expanding this form, I get:

(Lk+r)3(a1a2a3)+(Lk+r)2(a1a2+a1a3+a2a3)+(Lk+r)(a1+a2+a3) ≡ 0 mod a1(Lk+r)

Now, I can divide out by Lk + r.

(Lk + r)2(a1a2a3) + (Lk + r)(a1a2 + a1a3 + a2a3) + a1 + a2 + a3 ≡ 0 mod a1

Now reduce modulo a1.

(Lk + r)a2a3 + a2 + a3 ≡ 0 mod a1

Since k is the only variable and the rest are constants, then (Lk + r)a2a3 + a2 + a3
mod a1 depends on k. Since k can take on different values modulo mod a1. As a
result, to make this expression not depend on k, L ≡ 0 mod a1. Since we did not
assume anything about a1, we can say that L ≡ 0 mod ai, when we iterate i between
1 and 3. As a result, the smallest number that can be created will be lcm(a1, a2, a3),
which means that lcm(a1, a2, a3)|L. ■

Lemma 5.4. Given Definition 5.1, a1, a2, a3 are relatively prime in pairs.

Proof. We will prove this statement by contradiction. Assume that a2 ≡ 0 mod a1
and a3 ̸= 0 mod a1 without loss of generality. If we expand the construction form
and consider Korselt’s Criterion modulo a1:

(a1(Lk + r) + 1)(a2(Lk + r) + 1)(a3(Lk + r) + 1)− 1 ≡ 0 mod a1(Lk + r)

(Lk + r)2(a1a2a3) + (Lk + r)(a1a2 + a1a3 + a2a3) + a1 + a2 + a3 ≡ 0 mod a1

(Lk + r)a2a3 + a2 + a3 ≡ 0 mod a1

Since a1|L or in other words, L ≡ 0 mod a1:

ra2a3 + a2 + a3 ≡ 0 mod a1

As you can see, if a2 and a1 share a factor, then so must a3, because if a number has a
certain prime factor, adding a number with that factor to a number that doesn’t have
that factor will result in a number that doesn’t have that prime factor, in which this
contradicts our assumption. Since a2, a3 cannot both share prime factors with a1 or
else it will contradict Definition 5.1, a1, a2, a3 must be relatively prime in pairs. ■

Remark 5.5. You may notice that by Lemma 5.4, a1a2a3 = lcm(a1, a2, a3). We can
assume for the purposes of this paper L = lcm(a1, a2, a3) = a1a2a3, and this will
consider cases where L ̸= a1a2a3. The reason this is useful is because the smaller L,
the more solutions to a construction there is. To prove that L doesn’t matter, first
let L = c ∗M , where M = a1a2a3. Consider Korselt’s criterion for ai. You will notice
that c is canceled out and is trivial since M ≡ 0 mod ai.

Lemma 5.6. r(a1a2 + a2a3 + a3a1) ≡ −(a1 + a2 + a3) mod a1a2a3.
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Proof. If we use Korselt’s criterion on ai without loss of generality, then we can say
that:

(a1(Lk + r) + 1)(a2(Lk + r) + 1)(a3(Lk + r) + 1)− 1 ≡ 0 mod a1(Lk + r).

a1a2a3(Lk + r)2 + (a1a2 + a2a3 + a3a1)(Lk + r) + a1 + a2 + a3 ≡ 0 mod a1

By Lemma 5.3:

r(a1a2 + a2a3 + a3a1) + a1 + a2 + a3 ≡ 0 mod ai.

By Chinese Remainder Theorem, there is a unique solution r mod a1a2a3 such that:

r(a1a2 + a2a3 + a3a1) + a1 + a2 + a3 ≡ 0 mod a1a2a3.

■

Corollary 5.7. There are infinitely many different Chernick triples for constructions
for three prime factors taken modulo a1a2a3.

Since there are infinitely many primes, then there are infinitely many triples of
prime numbers, for which there is always a unique solution. Now, we will give an
example solve for a random construction.

Example. Consider the triple (1, 3, 5). We first let L = 1∗3∗5 and now use the fact that
r(3 + 5+ 15) ≡ −1− 3− 5 mod 15 to solve for r. In other words, 8r ≡ −9 mod 15.
The multiplicative inverse of 8 modulo 15 is 2, so by multiplying by 2, we get that
r ≡ −18 ≡ 12 mod 15. As a result, our construction is (15k+13)(45k+37)(75k+61).

A table of constructions for (1, 2, x), where x can be any odd number by Lemma
5.4.

(1, 2, x) Modular equation for r r mod a1a2a3 Construction
(1, 2, 3) 5r ≡ −6 mod 6 r ≡ 0 mod 6 (6k + 1)(12k + 1)(18k + 1)
(1, 2, 5) 7r ≡ −8 mod 10 r ≡ 6 mod 10 (10k + 7)(20k + 13)(50k + 31)
(1, 2, 7) 9r ≡ −10 mod 14 r ≡ 12 mod 14 (14k + 13)(28k + 25)(98k + 85)
(1, 2, 9) 11r ≡ −12 mod 18 r ≡ 12 mod 18 (18k + 13)(36k + 25)(162 + 109)
(1, 2, 11) 13r ≡ −14 mod 22 r ≡ 4 mod 22 (22k + 5)(44k + 9)(242k + 45)
(1, 2, 13) 15r ≡ −16 mod 26 r ≡ 18 mod 26 (26k + 19)(52k + 37)(338k + 235)
(1, 2, 15) 17r ≡ −18 mod 30 r ≡ 6 mod 30 (30k + 7)(60k + 13)(450k + 91)

5.2. Generalization to more prime factors. This section will carry on the same
techniques but generalizing towards more prime factors.

Definition 5.8. (Generalization of Definition 5.1)Call a set B = {a1, . . . , an} a Cher-
nick tuple if

∏n
i=1 ai(Lk + r) + 1 always produces a Carmichael number for prime

ai(Lk + r) + 1, where L = gcd(a1L, . . . , anL).

Lemma 5.9. (Generalization of Lemma 5.3) Given Definition 5.8, lcm(a1, . . . , an)|L.
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Proof. Look at Korselt’s criterion for ai. Since k can take on different values modulo
ai, L must equal 0 mod ai or else the product

∏n
i=1 ai(Lk + r) + 1 will take on

different values modulo ai. This, of course, cannot happen since it must be 1 mod ai
by Korselt’s criterion. ■

Lemma 5.10. (Generalization of Lemma 5.4) By Definition 5.8, set B = {a1, . . . , an}
are relatively prime in all subsets of length n− 1.

Proof. We will assume that without loss of generality that only the set {a1, . . . , an−1}
shares a certain prime factor and apply Korselt’s criterion for a1, for which the ex-
pression will look something like this:

(Lk+r)n−1(a1 · · · an−1+· · ·+a2 · · · an)+· · ·+(Lk+r)(a1+· · ·+an) ≡ 0 mod a1(Lk+r)

(Lk + r)n−2(a1 · · · an−1 + · · ·+ a2 · · · an) + · · ·+ (a1 + · · ·+ an) ≡ 0 mod a1
Since a1 + · · · + an is relatively prime to a1, and all other products share this prime
factor(since an is always multiplied with a number with this prime factor), then the
sum will always produce a relatively prime number. This is the inherit contradiction,
and since we assumed nothing about the set {a1, . . . , an−1}, then all subsets of length
n− 1 are relatively prime. ■

Lemma 5.11. (Generalization of Lemma 5.6) Let Sk be the kth elementary symmet-
ric sum for the set {a1 . . . an}. Then the following congruence can be made:

n−1∑
i=1

ri−1 ∗ Si ≡ 0 mod a1 · · · an

Proof. By Korselt’s Criterion, we can rewrite our product using Sk. Choose a1 without
loss of Generality.

n∑
i=1

(Lk + r)i ∗ Si ≡ 0 mod a1(Lk + r)

Divide out Lk + r and use the fact that L ≡ 0 mod a1
n∑

i=1

ri−1Si ≡ 0 mod a1

Since Sn ≡ 0 mod a1:
n−1∑
i=1

ri−1Si ≡ mod a1

Since this is true for all ai, then we can say that
n−1∑
i=1

ri−1 ∗ Si ≡ 0 mod a1 · · · an.

■
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Remark 5.12. Using this generalized formula found in Lemma 5.11 makes the solve
pretty tedious. Looking at n = 4, we already have the following ridiculously long
equation:

r2(a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4) + r(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4)

≡ −(a1 + a2 + a3 + a4) mod a1a2a3a4

As of my knowledge, the best method for generally solving these equations is to simply
brute force them by trying all the possibilities.

6. Further Questions

(1) Further bounds on unknown primes: You have seen in section 3 has
bounds for the number of unknown primes and the largest possible value.
However, many of these bounds can be further restricted since proving only
finitely many unknowns gives lots of leeway for proofs that are very simple
and simply inefficient. Hopefully, there will be more research done into this
and you will be able to find better and more advanced ways to restrict these
unknowns.

(2) Properties for more unknown primes: We’ve already proven that there
are finitely many Carmichael numbers given one and two unknown primes;
however, it’s possible that once there are three unknown primes, there are
infinitely many, even given a fixed number of primes. There are infinitely
Carmichael numbers with three prime factors, which has been proved by
Thomas Wright [Wri24]; therefore, if there are no fixed primes, then there
are infinitely many Carmichael numbers. I conjecture that with three un-
known prime factors there are infinite many Carmichael numbers. We used
quite elementary algebra for our cases for one and two unknown primes and
I predict that if we are to make any progress for three and more unknown
primes, different tools will be necessary.

(3) Generalized Constructions There are still many questions we can make
about constructions with more than 3 prime factors. Is there always a solution
to a construction given a1 . . . an that satisfy Lemma 5.10? Are there more than
one? Are there still infinitely many constructions? Or finitely many?
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