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Abstract

This paper provides a detailed and comprehensive exploration of the Lucas-Lehmer
primality test (LLT), a highly efficient and deterministic algorithm for determining
the primality of Mersenne numbers. Mersenne numbers, denoted as M, = 2P —
1 where p is a prime, have a rich history intertwined with the search for large
prime numbers and the study of perfect numbers. The Lucas-Lehmer test stands
as the most practical method for this purpose and has been instrumental in the
discovery of the largest known prime numbers. This exposition delves into the
mathematical foundations upon which the test is built, providing a self-contained
treatment of the necessary number theory, abstract algebra, and the theory of Lucas
sequences. The core of the paper presents the formal statement of the Lucas-Lehmer
theorem and offers a rigorous, detailed proof of its correctness, broken down into
clarifying lemmas. Furthermore, we examine the computational aspects of the test,
its historical development from Lucas to Lehmer, and its modern applications,
culminating in a discussion of its relevance to physical-world technologies through

cryptography and high-performance computing.



1 Introduction

1.1 The Enduring Quest for Large Primes

The study of prime numbers is as old as mathematics itself. The ancient Greek mathe-
maticians were the first to formalize their properties, with Euclid of Alexandria proving
their infinitude around 300 BCE. This fundamental result, proving that the sequence of
primes never ends, naturally led to the question of how to find them. The pursuit of
prime numbers, especially large ones, has since been a driving force in number theory,
pushing the boundaries of both theoretical understanding and computational capability.

In the 17th century, mathematicians like Pierre de Fermat and Marin Mersenne made
significant contributions. Fermat’s work on primality testing, though flawed, laid the
groundwork for modern methods, while Mersenne’s correspondence with his contempo-
raries helped popularize the study of numbers of the form 27 — 1. Leonhard Euler later
made monumental contributions, including the proof of the connection between Mersenne
primes and even perfect numbers.

Today, the quest for large primes is not merely a historical curiosity. It serves as a
benchmark for computational power and has profound implications for computer science.
The algorithms developed to find and verify large primes have applications in cryptog-
raphy, which secures modern digital communication, and in the development of robust
computational hardware. The Lucas-Lehmer test, the subject of this paper, stands at
the apex of this long historical journey, representing the most powerful tool ever devised

for finding primes of a specific, yet profoundly important, form.

1.2 An Overview of Primality Testing

A primality test is an algorithm that determines whether a given integer n > 1 is prime
or composite. The most naive approach is trial division, which, while effective for small
integers, has a time complexity that is exponential in the number of digits of n, making it
infeasible for large numbers. This computational barrier led to the development of more

sophisticated tests.

1.2.1 Probabilistic Primality Tests

These tests offer a trade-off between speed and certainty. A probabilistic test can quickly
identify a number as composite, but can only state that a number is "probably prime" if it
passes. The Fermat primality test is a classic example. Based on Fermat’s Little Theorem
(a"'=1 (mod n) for prime n and a not a multiple of n), it tests this congruence for a
chosen base a. However, some composite numbers, known as Carmichael numbers, pass

this test for all coprime bases a, rendering it unreliable.



The Miller-Rabin test is a more robust probabilistic test that addresses the weaknesses
of the Fermat test. It is based on the property that for a prime n, the only square roots
of 1 modulo n are £1. By checking for non-trivial square roots of unity, the Miller-Rabin
test can detect compositeness with high probability. A composite number that passes the
Miller-Rabin test for a base a is called a strong pseudoprime to base a. The probability
of a composite number passing the test is less than 1/4 for any single, randomly chosen

base.

1.2.2 Deterministic Primality Tests

A deterministic test provides a mathematically certain result. For centuries, no efficient
deterministic test was known for general integers. A major theoretical breakthrough
came in 2002 when Manindra Agrawal, Neeraj Kayal, and Nitin Saxena developed the
AKS primality test. It was the first algorithm proven to be general (works for all inte-
gers), polynomial-time, deterministic, and unconditional (not relying on any unproven
hypotheses). While a landmark achievement, its practical performance is much slower
than probabilistic tests.

However, for numbers of a special form, highly efficient deterministic tests have long
existed. The Lucas-Lehmer test is the prime example, offering a fast and deterministic

method exclusively for Mersenne numbers.

1.3 The Special Status of Mersenne Numbers

Mersenne numbers, named after Marin Mersenne, are integers of the form M, = 2" — 1.
For M, to be prime, it is necessary that the exponent n also be prime. This is because
if n = ab is composite, then M, = 2% — 1 = (2% — 1)(1 + 2% + 220 4 ... 4 2(=1) which
is also composite. The converse, however, is not true; for example, p = 11 is prime, but
My, = 2047 = 23 x 89 is composite. A Mersenne number M, with a prime exponent p
that is itself prime is called a Mersenne prime.

The enduring interest in Mersenne primes is deeply linked to the study of perfect
numbers. A positive integer is perfect if it is equal to the sum of its proper divisors.
The ancient Greeks knew the first four perfect numbers: 6, 28, 496, and 8128. Euclid
discovered that if 27 —1 is prime, then 2°~1(2P —1) is a perfect number. Over two millennia

later, Euler proved the converse: every even perfect number must be of this form.

Theorem 1.1 (Euclid-Euler Theorem). An even integer n is a perfect number if and

only if n = 2P=1(2P — 1) where p is a prime and M, = 2P — 1 is a Mersenne prime.

This theorem establishes a one-to-one correspondence between Mersenne primes and

even perfect numbers. The search for one is equivalent to the search for the other. The



question of whether any odd perfect numbers exist remains one of the oldest unsolved

problems in mathematics.

1.4 The Lucas-Lehmer Test: A Glimpse

The Lucas-Lehmer test provides an astonishingly simple and efficient criterion for the
primality of Mersenne numbers. It involves a sequence defined by the recurrence s, =
st — 2. The test asserts that for an odd prime p, the Mersenne number M, = 2 — 1
is prime if and only if it divides the (p — 1)-th term of this sequence (starting from
s; = 4). This paper is dedicated to a full exposition of this remarkable theorem, from its

theoretical underpinnings to its modern applications.

2 Mathematical Preliminaries

A deep understanding of the Lucas-Lehmer test requires familiarity with concepts from
elementary number theory and abstract algebra. This section provides a self-contained

review of the necessary background material.

2.1 Concepts from Elementary Number Theory
2.1.1 Modular Arithmetic and Congruence

Carl Friedrich Gauss revolutionized number theory with the introduction of modular

arithmetic in his 1801 work Disquisitiones Arithmeticae.

Definition 2.1. Let n be a positive integer. Two integers a and b are said to be congru-
ent modulo n, denoted a = b (mod n), if their difference a — b is an integer multiple of

n.

This equivalence relation partitions the integers Z into n distinct equivalence classes,
called residue classes modulo n, denoted [0],[1],...,[n — 1]. The set of these classes is
denoted Z/nZ or Z,. This set forms a commutative ring with addition and multiplication
defined as [a] + [b] = [a + b] and [a] - [b] = [ab].

Of particular importance is the multiplicative group of integers modulo n, denoted
(Z/nZ)*. Tt consists of the residue classes [a] such that ged(a,n) = 1. The order of this
group is given by Euler’s totient function, ¢(n). If n = p is a prime, then ¢(p) = p — 1
and (Z/pZ)* = {[1],12],....,Ip — 1]}

2.1.2 Quadratic Residues and the Legendre Symbol

The theory of quadratic residues, which deals with the solvability of congruences of the

form z? = a (mod p), is a key ingredient in the proof of the LLT.
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Definition 2.2. Let p be an odd prime. An integer a is a quadratic residue modulo p
if ged(a, p) = 1 and the congruence x*> = a (mod p) has a solution. If it has no solution,

a is a quadratic non-residue modulo p.

Example 2.3. Consider the residues modulo p = 7. We square the elements of (Z/7Z)*:
12=1,22=4,32=9=2,42=16=2,52 =25 =4, 62 = 36 = 1. The set of quadratic
residues modulo 7 is {1,2,4}. The quadratic non-residues are {3,5,6}.

To streamline notation, Adrien-Marie Legendre introduced the following symbol.

Definition 2.4. Let p be an odd prime. The Legendre symbol is defined as:

1 if a is a quadratic residue modulo p
a
(p) =49 —1 ifa is a quadratic non-residue modulo p
0 ifpla

Proposition 2.5 (Euler’s Criterion). Let p be an odd prime. Then for any integer a,

<Z> =a® Y2 (mod p)

2.1.3 The Law of Quadratic Reciprocity

Calculating the Legendre symbol directly from its definition can be tedious. The Law
of Quadratic Reciprocity, which Gauss called the "golden theorem" (theorema aureum),

provides a stunningly efficient method for this calculation.

Theorem 2.6 (Law of Quadratic Reciprocity). Let p and q be distinct odd primes. Then

() )-cre

This law is complemented by two supplements for the cases of —1 and 2:
-1\ _ ~1)/2
1. (7> = (—1)-1/

2. (%) = (—1)*-D/8

The Multiplicative property of Legendre symbol is a key number theoretic identity used

in various primality tests, including the Lucas-Lehmer test. The property states:

(5)-6)-G)

Where:



. (%) is Legendre symbol
e a,b are integers

e pis an odd prime

Example 2.7. Let’s calculate (%), where 397 is prime. First, we factor 299 = 13 x 23.

Using the multiplicative property of the Legendre symbol: (%) Q) (%) Now

we apply quadratic reciprocity to each symbol: (%) = (31%7) (—1)%% = (g) Since
1 1

397 = 30x 1347, this is ( ) Applying reciprocity again: (1—73) = ( ) (
(g) (g) = (%) (;) From the supplements, (?> = 1 since 72 — 1 = 48 is divisible by 8.
)

For (%) reciprocity gives (%) = (%) (—1)32 = — (5) = —1. So, (@ =1x(-1)=-1.

Similarly, <397) = (32%7) (-1)%% (3—3) Since 397 = 17 x 23 + 6, this is (2—3> =
(%) (ﬁ) From the supplements, (%) = 1 since 23 = —1 (mod 8). For ( ) reciprocity
gives (5) = () (-1):% == (}) = —(-1) =180, (&) =1x1=1

Finally, (%2) = (—1) x (1) = —1.

2.2 Foundational Concepts from Abstract Algebra

The most elegant proof of the LLT is set in the language of abstract algebra, specifically
the theory of finite fields.

Definition 2.8. A group is a set G with a binary operation * satisfying closure, asso-
ciativity, existence of an identity element, and existence of an inverse for every element.
A ring (R,+,-) is a set with two operations where (R,+) is an abelian group, and mul-
tiplication is associative and distributive over addition. A field is a commutative ring

where every non-zero element has a multiplicative inverse.

2.2.1 Finite Fields

A field with a finite number of elements is called a finite field or Galois Field.

Proposition 2.9. The number of elements in a finite field must be a prime power, p",
for some prime p and integer n > 1. For every prime power p", there ezists a unique (up
to isomorphism) finite field, denoted Fyn or GF(p™).

The simplest finite field is F, = Z/pZ for a prime p. To construct fields of the form
F,» for n > 1, we use polynomial rings. A key theorem states that if f(x) is an irreducible
polynomial of degree n over the field F,, then the quotient ring F,[z]/(f(z)) is a field
with p” elements. The elements of this field are polynomial residue classes of the form

1

ap + a1x + - -+ + a,—12" ', where arithmetic is performed modulo f(z).



Example 2.10 (Constructing Fos = Fg). We need an irreducible polynomial of degree 3
over Fy = {0,1}. The polynomial f(z) =z + x4 1 is irreducible over Fy because it has
no roots in Fy (f(0) =1, f(1) = 1). The field Fg can be constructed as Fy[z]/(z®+z+1).
Let a be a root of f(x),s0 a®+a+1=0, or a® = a+ 1. The 8 elements of the field are
{0,1,,a+ 1,0%,a® + 1,0® + a,a® + «a + 1}. Multiplication is done using the relation
o = a+1. For instance: (a+1)-(a?+1)=a*+a’+a+1=(a+1)+a’*+a+1=a’

For the LLT proof, we will need to work in IFyz, which is constructed as Fy, [z]/{2? —

3), since ? — 3 is irreducible over F .
2.2.2 The Order of an Element and Lagrange’s Theorem

Definition 2.11. Let g be an element of a group G. The order of g, denoted ord(g), is

the smallest positive integer k such that g* = e, where e is the identity element.

Theorem 2.12 (Lagrange’s Theorem). If H is a subgroup of a finite group G, then the
order of H divides the order of G. As a corollary, the order of any element g € G divides
the order of G.

This theorem is fundamental. In the context of the LLT proof, we find the order of
a specific element in a multiplicative group and use Lagrange’s theorem to constrain the

size of the group’s underlying field, leading to the desired result.

3 The Theory of Lucas Sequences

The Lucas-Lehmer test is not an ad-hoc creation but a highly specialized application of
a beautiful and general theory of integer sequences developed by Edouard Lucas in the
1870s.

3.1 General Definition and Properties

Definition 3.1. Let P and Q be integers. The Lucas sequences U, (P,Q) and their

companion sequences V, (P, Q) are defined by the second-order linear recurrence relation
Xn:P'X’n—1<P7Q)_Q'XH—Q(P7Q) fOTnZQ

with the following initial values:



Example 3.2. o For (P,Q) = (1,-1),U,(1,—1) yields the Fibonacci numbers: 0,1,1,2,3,5,...
and V,,(1,—1) yields the Lucas numbers (after which the general sequences are
named): 2,1,3,4,7,11,....

o For (P,Q)=(2,—1), V,(2,—1) gives the Pell-Lucas numbers: 2,2,6,14,34,....
« For (P,Q) = (3,2), U,(3,2) gives 0,1,3,7,15, ..., which is the sequence 2" — 1.

The behavior of these sequences is governed by their characteristic equation x? — Px +
@ = 0. Let the roots be a and 3. Assuming the roots are distinct, the sequences have a

closed-form expression known as Binet’s formula:

an_ﬁn

Un(P,Q) =

and V,(P,Q) =a"+ ("

These can be proven rigorously by induction.

3.2 Key Identities

The Lucas sequences satisfy a vast number of identities, analogous to those for Fibonacci

numbers. Here are some of the most important:
1. V,, = PU, —2QU, 4
2. Uy, =U,V,
3. Vo, =V2—20Q"
4. Upsmn = UpUpir — QU1 U,y
5 Vorm = VoV — Q™ Vom
6. P? —4Q = (o — (3)? is the discriminant D.
The identity V5, = V2 — 2Q" is the direct parent of the recurrence used in the Lucas-

Lehmer test.

3.3 The Specific Sequence for the Lucas-Lehmer Test

The sequence {s;} used in the LLT is defined by sy = 4 and sgpy1 = s — 2. Let’s show

n

how this relates to the Lucas sequences. Consider the identity V5, = V2 —2Q". If we
choose @ = 1, this simplifies to Vs, = V2 — 2. Now, let us define a new sequence s, by

taking the terms of a V,, sequence at exponential indices, s = Vor (P, 1). Then:

Skr1 = Varrt = Voor = (Var)? =2 = s — 2



This is precisely the recurrence relation of the LLT. All that remains is to determine the
parameter P by matching the initial term. The LLT uses sy = 4. This doesn’t correspond
to Voo = V4 = P, as one might expect. Instead, the sequence is typically defined as s
starting at k = 1, with s; = 4. Let’s redefine the LLT sequence as L;, where L; = 4 and
Liyi=1L?—2.

The standard formulation of the LLT is to define a sequence {S;};>o with Sy = 4 and
Siv1 = S? — 2. The test then checks the value of S, 5. This sequence {S;} does not
directly correspond to a single Lucas sequence V5i. Instead, it is more natural to see it
as a sequence of its own, S; = w? + @*, where w = 24+ /3 and @ = 2 — /3. This
formulation arises from Lucas’s original work on primality tests for numbers of the form
2" + 1 and was refined by Lehmer.

4 The Lucas-Lehmer Test: Theorem and Proof

This section presents the formal statement and a full, detailed proof of the Lucas-Lehmer

test, which is the mathematical core of this paper.

Theorem 4.1 (Lucas-Lehmer Test). Let p be an odd prime. The Mersenne number
M, = 2P — 1 is prime if and only if M, divides S,—2, where the sequence {Sy} is defined
by

So=4 and Sk+1:S,3—2 for k>0
In the language of modular arithmetic, M, is prime <= S,_o =0 (mod M,).

The proof is separated into two parts: sufficiency (the "if" part) and necessity (the

‘only if" part). The proof relies on arithmetic in a finite field extension of [y, .

4.1 Preliminaries for the Proof

Let N = M,. The sequence can be expressed in a closed form. Let w = 2 + V3
and @ = 2 — /3. Then, as shown in Section 3, S, = w? + @2". Note that wo =
(2++/3)(2—+/3) =4 — 3 = 1. The entire proof will involve arithmetic with elements of

this form, interpreted modulo some integer.
Lemma 4.2. Ifp is an odd prime, then 3 is a quadratic non-residue modulo M, = 2P —1.

Proof. We need to evaluate the Legendre symbol (M%) Since p is an odd prime, p > 3.
M, = 27 — 1. We first determine M, (mod 3) and M, (mod 4). 2 = —1 (mod 3), so
M,=2"—1=(-1)’» —1 (mod 3). Since p is odd, thisis —1 —1 = —2 =1 (mod 3).
Since p > 3, 27 is divisible by 8. So M, =2? —1=0—-1= —1 =3 (mod 4). Now, by



the Law of Quadratic Reciprocity:

(3) = (3) o = () o

Since (1) = 1, the sign depends on the exponent. As M, = 3 (mod 4), M, = 4k + 3
3 p

for some integer k. Then (M, — 1)/2 = (4k + 2)/2 = 2k + 1, which is odd. Therefore,
()= = :

This lemma guarantees that the polynomial 22 — 3 is irreducible over Fy whenever
N = M, is prime, allowing us to construct the extension field Fy2 = Fy[z]/(2? — 3). We

can represent elements of this field as a + byv/3 where a,b € Fy.

4.2 Proof of Sufficiency
For this part, we assume S,_5 =0 (mod M,) and prove that M, must be prime.

Proof. Let N = M,. Assume for contradiction that N is composite. Let ¢ be the smallest
prime factor of N. Since N = 2P — 1 is odd, ¢ must be odd. As the smallest prime factor,
g <VN.

The condition S,_5 = 0 (mod N) implies S,_» = 0 (mod ¢). We work in the ring
Z[v/3] modulo the prime ¢. By Lemma 4.2, 3 is a non-residue mod N. It may or may not
be a non-residue mod ¢q. However, the structure Z[v/3]/(q) is well-defined. Let w = 24++/3
and @ = 2 — /3 be elements in this structure. The condition S, » = W4T =0
(mod ¢). Since @ = w™!, this is WX =0 (mod ¢). Multiplying by w? (which

is invertible since its norm ww = 1 is not zero mod q) gives:

W¥ )2 +1=0 (mod q)

p—1
w2

—1 (mod q)

Squaring this congruence yields:
w” =1 (mod q)

Let £ = ord,(w) be the order of w in the multiplicative group of the ring of elements
modulo g. The relation w?” = 1 implies that k£ must divide 2?. Thus, & must be a power
of 2, i.e., k = 2™ for some m < p. The relation w¥ ' = —1 £ 1 (mod ¢) shows that
k does not divide 2P~!. The only power of 2 that divides 2P but not 2P~1 is 27 itself.
Therefore, the order of w is exactly 2P.

Now we consider the group of units in the ring Z[v/3]/{(¢). This ring is isomorphic
to the finite field F. if 3 is a non-residue mod ¢, or to the direct product F, x F, if
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3 is a residue. In either case, the order of the group of units is at most ¢> — 1. By
Lagrange’s theorem, the order of the element w must divide the order of this group. So,
2P = ord,(w) < ¢* — 1. This gives us the inequality 2F + 1 < ¢°.
However, we started with the assumption that ¢ is the smallest prime factor of N =
27 — 1, which implies ¢ < v/N. Squaring gives ¢> < N = 2” — 1. We now have a stark
contradiction:
P+1<F <2 -1

This implies 2 +1 < 2P — 1, or 1 < —1, which is impossible. Our initial assumption that

N is composite must be false. Therefore, M, is prime. O

4.3 Proof of Necessity

For this part, we assume M), is prime and prove that S, o =0 (mod M,).

Proof. Let N = M,. We assume N is prime. We will work in the finite field Fy2. By
Lemma 4.2, 3 is a quadratic non-residue modulo N, so we can construct Fy2 = Fy(v/3) =
{a+b/3]abeFy}.

Our goal is to show that S, o = w¥ ~ +&@* =0 (mod N). This is equivalent to
showing that w? " = —1 (mod N).

Consider the element o = 1 + /3. We want to raise this to the power N + 1. To
do this, we use the property of the Frobenius Automorphism in 2, which states that

N = 7 (conjugate), provided the field is constructed from Fy. Let’s

2

first compute the (N + 1)/2-th power of the element 7 = % = (H;/g)Z = 1+2\2/§+3 =
2+1v3=w. Sow=(14++3)?/2. Let’s compute w™+V/2. N 41 = (20 —1)+1 =2
So (N +1)/2 = 2"~'. We need to compute w? .

Let’s use a different element which simplifies the proof. Let p = (14++/3)% . We wish
to evaluate p (mod N). This seems difficult. Let’s follow a more standard approach. Let
o = (14 +/3)/v/2. This element is in Fy> because 2 is a quadratic residue modulo N.
Since p > 3, M, =2 — 1 =7 (mod 8), so by the supplement to quadratic reciprocity,

N
(l) = 1. Let’s compute oVl oV = (M) — WY 1 By oV = a0 We have

for any x € Fp2, x

My V2 (V)N
(V3)N = 3\N-1/2/3 = (%) V3 = —V/3. Similarly (v2)Y = v/2. So oV = 1?}2/5. Now,
We have established o¥*! = —1. Note that o2 = (H;/g)z = 1+2\2/§+3 =243 =uw.
Now we can relate this back to w: wNTV/2 = (g2)NH+D/2 = GN+1 — 1 Since N+1 = 2P,
we have (N +1)/2 = 271 So, w? ' = —1 in the field Fy2.. This is equivalent to
2p—1

= —1 (mod N). Dividing the congruence w?* ' + 1= 0 by w¥ ’, we get:

w T +w =0 (mod N)
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This is precisely S,—2 =0 (mod N). The proof is complete. O

5 Computational Aspects and Implementation

The theoretical elegance of the LLT is matched by its practical efficiency, which is why

it has remained the premier method for finding the largest known primes.

5.1 The Algorithm and a Worked Example
The algorithm iteratively computes the sequence Sy (mod M,).

Algorithm: Lucas-Lehmer Test
Input: An odd prime p.

Output: "M_p is prime" or "M_p is composite".

If p is not prime, M_p is composite. (pre-check)
M=27p -1
s =4

For i from 1 to p-2:

s = (s *s - 2) mod M
If s ==

Return "M_p is prime"
Else:

Return "M_p is composite"

© 0 N O O b W N =

Example 5.1 (Testing M; = 127). Here p = 7. We need to compute S;_o = S
(mod 127).

e So=4
o 51 =(42—-2) (mod 127) = 14
. Sy = (14> —2) (mod 127) = 194 (mod 127) = 67

e S5 = (672 —2) (mod 127) = (4489 — 2) (mod 127) = 4487 (mod 127). 4487 =
35 x 127 + 42. So S5 = 42.

e S5 = (422 — 2) (mod 127) = (1764 — 2) (mod 127) = 1762 (mod 127). 1762 =
13 x 127+ 111. So Sy = 111 = —16 (mod 127).

e S5 = ((=16)% — 2) (mod 127) = (256 — 2) (mod 127) = 254 (mod 127). 254 =
2 x 1274 0. So S5 = 0.

Since S5 = 0 (mod 127), we conclude that M; = 127 is prime.

12



5.2 Complexity and Performance Optimization

The algorithm performs p — 2 iterations. The dominant operation within each loop is
the modular squaring of a number that can be as large as M,. The number M, has

approximately p bits.

o Naive Multiplication: Using standard "schoolbook" multiplication, squaring a

p-bit number takes O(p?) operations. The total complexity of the LLT is therefore
O(p®).

o Fast Fourier Transform (FFT) Multiplication: For the colossal numbers in-
volved in modern prime searches, much faster multiplication algorithms are essen-
tial. The Schonhage-Strassen algorithm, based on FFTs, can multiply two p-bit
numbers in O(plog ploglog p) time. This reduces the overall complexity of the LLT
to roughly O(p*logploglogp), a massive improvement that makes testing expo-

nents with tens of millions of digits feasible.

« Optimized Modular Reduction: The modular reduction mod(2? — 1) step can
be carried out without a costly division operation. Let x be the number to reduce.
It can be written as x = k- 2P 4, where r is the part of x represented by the lowest
p bits. Since 2 =1 (mod 2P — 1), we have x = k+r (mod 2? — 1). This reduction
is accomplished with a bitwise shift and an addition, which is orders of magnitude
faster than division. For example, the result of squaring s (a p-bit number) is a 2p-
bit number. This can be reduced with a single shift and add. This trick is critical

to the high performance of LLT implementations.

6 Applications in Cryptography and High-Performance
Computing

While the Lucas-Lehmer test is a highly specialized tool, its influence and the technology
developed for it have significant applications in the physical world, primarily through

cryptography and as a benchmark for high-performance computing.

6.1 Securing the Digital World via Cryptography

The security of modern digital life—from e-commerce and online banking to secure email
and private messaging—is built upon public-key cryptography. The most famous public-
key system is RSA, named after its inventors Rivest, Shamir, and Adleman.

The RSA algorithm’s security relies on the practical difficulty of factoring the product

of two very large prime numbers. The key generation process is as follows:
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1. Select two distinct, large random prime numbers, p and gq.

2. Compute the modulus n = pq.

3. Compute ¢(n) = (p—1)(¢ — 1).

4. Choose an encryption exponent e such that 1 < e < ¢(n) and ged(e, p(n)) = 1.
5. The public key is (n, e).

6. The private key is d, the modular multiplicative inverse of e modulo ¢(n).

Finding the large primes p and ¢ requires efficient primality testing. While the LLT is
not used to find these primes (as they must be random, not of the special Mersenne
form), the intensive research into primality testing spurred by the search for large primes
has been invaluable. More importantly, the computational techniques perfected for the
LLT are directly applicable. The very fast arithmetic libraries for handling huge numbers,
often using FFT-based multiplication, developed for projects like GIMPS are essential for
performing the modular exponentiation required in RSA key generation, encryption, and
decryption. Thus, the LLT has served as a crucial catalyst for developing the high-speed

computational tools that secure our physical and digital assets.

6.2 Benchmarking and Hardware Verification

The search for new Mersenne primes is one of the most computationally intensive tasks
available to the public. Implementations of the Lucas-Lehmer test, most notably the
software Prime95 developed by George Woltman for the GIMPS project, are renowned
for their ability to stress-test computer hardware. The algorithm is an ideal hardware

torture test because:

o It performs a continuous, heavy workload on the CPU’s floating-point and integer

units.

o It requires large amounts of data to be moved between the CPU cache and main

memory, testing the memory subsystem.

o It is perfectly deterministic. A single bit-flip error due to a hardware fault will

cascade, producing an incorrect final result that is easily detected.

PC enthusiasts, overclockers, and even hardware manufacturers use Prime95 as a standard
tool to test the stability of a physical computer system. If a system can run the LLT for 24
hours without error, it is considered extremely stable. This provides a direct application

in verifying the physical integrity and reliability of computer hardware.
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7 Historical Context and the GIMPS Project

7.1 From Lucas to Lehmer

The test’s origins lie with the French mathematician Francois Edouard Anatole Lucas
(1842-1891). In the 1870s, Lucas developed his theory of the sequences U, and V,, and
used them to derive primality tests for various forms of numbers. His most famous pre-

= 2'2" _ 1 is prime. This

computer achievement was the verification in 1876 that Mo,
39-digit number remained the largest known prime for 75 years, a testament to Lucas’s
computational prowess. However, his methods were often complex and tailored to specific
exponents.

It was Derrick Henry Lehmer (1905-1991), an American mathematician and a
pioneer of computational number theory, who refined and simplified Lucas’s work. In his
1930 PhD thesis, Lehmer presented the test in the clean, necessary-and-sufficient form we
use today. Lehmer’s work clarified the choice of the starting value and provided a rigorous

proof, transforming Lucas’s collection of methods into a single, powerful theorem.

7.2 The Great Internet Mersenne Prime Search (GIMPS)

For decades after Lehmer, the search for new Mersenne primes was the domain of those
with access to the latest supercomputers. This changed in 1996 when computer pro-
grammer George Woltman founded the Great Internet Mersenne Prime Search
(GIMPS). GIMPS is a distributed computing project that allows anyone to volunteer
their computer’s idle processing time to the search. Volunteers download Woltman’s
highly optimized software, Prime95, which receives a candidate exponent from a central
server and performs the Lucas-Lehmer test.

GIMPS has been a phenomenal success. It has discovered every new record-breaking
prime since its inception. The project not only finds primes but also serves as a massive

collaborative effort, connecting thousands of individuals in a shared scientific goal.

Table 1: Recent Mersenne Primes Discovered by GIMPS

Prime Number Digits Discoverer Date

M3 589 657 9,808,358  C. Cooper, S. Boone et al. Sep 2006
My3 112,609 12,978,189 Odd M. Strindmo Aug 2008
M7 885 161 17,425,170 Curtis Cooper Jan 2013
M74.207 281 22,338,618 Curtis Cooper Jan 2016
M77.932 917 23,249,425 Jonathan Pace Dec 2017
Mz 589,933 24,862,048 Patrick Laroche Dec 2018

Continued on next page
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Table 1 continued from previous page

Prime Number Digits Discoverer Date
M136,279,841 41,024,320 GIMPS (unofﬁcial) Oct 2024

8 Conclusion

The Lucas-Lehmer test is a crown jewel of number theory, representing a rare intersec-
tion of deep structural theory, algorithmic simplicity, and unparalleled computational
efficiency. This paper has journeyed through its mathematical foundations, from the
basics of modular arithmetic to the elegant theory of Lucas sequences and the algebraic
structure of finite fields. We have presented a complete and rigorous proof of the theorem,
demonstrating how the test’s simple recurrence relation is tied to the profound properties
of group theory.

The analysis of the test’s computational aspects reveals why it has become the gold
standard for a specific, yet important, class of primality testing. The clever optimiza-
tions, born from a deep understanding of computer arithmetic, have allowed it to remain
relevant in an era of exponential growth in computing power. Its applications, both as a
catalyst for cryptographic technologies and as a practical tool for hardware verification,
underscore its impact beyond the realm of pure mathematics.

The story of the LLT, from Lucas’s initial insights to Lehmer’s definitive refinement
and its modern implementation in the GIMPS project, is a compelling narrative of math-
ematical progress. It highlights how theoretical ideas can evolve into powerful compu-
tational tools that unite thousands of individuals in the pursuit of knowledge. While
questions like the infinitude of Mersenne primes remain open, the Lucas-Lehmer test will

undoubtedly continue to be the essential instrument used to explore that frontier.
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