Voting Impossibility Theorems

Aarush Aggarwal

Euler Circle IRPW

July 2025

How Should We Vote?

Key Questions:

- How do we aggregate individual preferences into a group decision?
- What makes a voting system "fair"?
- Can we design a system that avoids paradoxes and inconsistencies?

How Should We Vote?

Key Questions:

- How do we aggregate individual preferences into a group decision?
- What makes a voting system "fair"?
- Can we design a system that avoids paradoxes and inconsistencies?

Central Problem:

Can we design a voting rule that is both **fair** and **consistent** across all possible voter profiles?

The Need for Formal Voting Rules

What is a voting system?

- A voting rule maps a profile of individual preferences to a collective outcome.
- A **preference profile** consists of each voter's ranking of alternatives.

The Need for Formal Voting Rules

What is a voting system?

- A voting rule maps a profile of individual preferences to a collective outcome.
- A **preference profile** consists of each voter's ranking of alternatives.

Why is it hard?

- Voters may disagree or contradict each other.
- Simple majority comparisons can lead to paradoxes.

The Need for Formal Voting Rules

What is a voting system?

- A voting rule maps a profile of individual preferences to a collective outcome.
- A preference profile consists of each voter's ranking of alternatives.

Why is it hard?

- Voters may disagree or contradict each other.
- Simple majority comparisons can lead to paradoxes.

Goal: Define a system that transforms individual rationality into collective rationality.

Condorcet's Paradox: The Cycle Problem

Definition: An alternative x is a **Condorcet winner** if it beats every other alternative in pairwise majority votes.

Condorcet's Paradox: The Cycle Problem

Definition: An alternative x is a **Condorcet winner** if it beats every other alternative in pairwise majority votes.

Condorcet Paradox: There may be no Condorcet winner! Pairwise majority outcomes can form a cycle, violating transitivity.

Condorcet's Paradox: The Cycle Problem

Definition: An alternative x is a **Condorcet winner** if it beats every other alternative in pairwise majority votes.

Condorcet Paradox: There may be no Condorcet winner! Pairwise majority outcomes can form a cycle, violating transitivity.

Example: 3 Voters, 3 Candidates

Voter	1st	2nd	3rd
p_1	Α	В	С
p_2	В	C	Α
p_3	C	Α	В

Condorcet Majority Cycle

Condorcet Majority Cycle

Key Insight: Majority rule fails transitivity: A beats B, B beats C, but C beats A.

Condorcet Majority Cycle

Key Insight: Majority rule fails transitivity: A beats B, B beats C, but C beats A.

This **cycle** is the core of Condorcet's paradox.

Condorcet Paradox: Formal Definitions

Definition: Condorcet Winner

 $x \in A$ is a Condorcet winner if:

$$\forall y \neq x, \quad |\{i: x \succ_i y\}| > |\{i: y \succ_i x\}|$$

Condorcet Paradox: Formal Definitions

Definition: Condorcet Winner

 $x \in A$ is a Condorcet winner if:

$$\forall y \neq x$$
, $|\{i: x \succ_i y\}| > |\{i: y \succ_i x\}|$

Definition: Condorcet Cycle

There exists a sequence x_1, x_2, \ldots, x_k such that:

$$x_1 \succ_{\mathsf{majority}} x_2 \succ_{\mathsf{majority}} \cdots \succ x_k \succ x_1$$

Condorcet Paradox: Formal Definitions

Definition: Condorcet Winner

 $x \in A$ is a Condorcet winner if:

$$\forall y \neq x$$
, $|\{i: x \succ_i y\}| > |\{i: y \succ_i x\}|$

Definition: Condorcet Cycle

There exists a sequence x_1, x_2, \ldots, x_k such that:

$$X_1 \succ_{\mathsf{majority}} X_2 \succ_{\mathsf{majority}} \cdots \succ X_k \succ X_1$$

Theorem: A Condorcet cycle exists if and only if there is no Condorcet winner.

Condorcet's Paradox: Even majority rule can lead to cycles \Rightarrow collective preferences become intransitive.

Condorcet's Paradox: Even majority rule can lead to cycles \Rightarrow collective preferences become intransitive.

Key Insight: Simple, intuitive voting systems fail to guarantee consistent group decisions.

Condorcet's Paradox: Even majority rule can lead to cycles \Rightarrow collective preferences become intransitive.

Key Insight: Simple, intuitive voting systems fail to guarantee consistent group decisions.

But is this just a fluke? Or something deeper?

Condorcet's Paradox: Even majority rule can lead to cycles \Rightarrow collective preferences become intransitive.

Key Insight: Simple, intuitive voting systems fail to guarantee consistent group decisions.

But is this just a fluke? Or something deeper?

Arrow's Contribution

Arrow showed that **no voting rule** can fully satisfy even a few basic fairness criteria — not just majority rule. *The problem is universal.*

Goal: Find a social welfare function that fairly aggregates individual rankings into a collective ranking.

Goal: Find a social welfare function that fairly aggregates individual rankings into a collective ranking.

Question: Can we find a rule that satisfies basic fairness conditions?

Goal: Find a social welfare function that fairly aggregates individual rankings into a collective ranking.

Question: Can we find a rule that satisfies basic fairness conditions? Arrow (1951) proved that this is **impossible** — under mild assumptions, any such rule must be dictatorial.

Goal: Find a social welfare function that fairly aggregates individual rankings into a collective ranking.

Question: Can we find a rule that satisfies basic fairness conditions? Arrow (1951) proved that this is **impossible** — under mild assumptions, any such rule must be dictatorial.

Let's first define the key axioms.

Axiom 1: Unrestricted Domain (U)

Definition: The social welfare function F must accept **every possible preference profile** as input.

Axiom 1: Unrestricted Domain (U)

Definition: The social welfare function F must accept **every possible preference profile** as input.

That is, for any tuple $(\succ_1, \ldots, \succ_n) \in L(A)^n$, the function F() must be defined.

Axiom 1: Unrestricted Domain (U)

Definition: The social welfare function F must accept **every possible preference profile** as input.

That is, for any tuple $(\succ_1, \ldots, \succ_n) \in L(A)^n$, the function F() must be defined.

Implication: The rule should work even when voters strongly disagree or form cycles.

Axiom 2: Pareto Efficiency (P)

Definition: If all voters prefer a to b, then society must also prefer a to b.

Axiom 2: Pareto Efficiency (P)

Definition: If all voters prefer a to b, then society must also prefer a to b.

$$\forall i \in \mathbb{N}, \quad a \succ_i b \quad \Rightarrow \quad a \succ_F b$$

Axiom 2: Pareto Efficiency (P)

Definition: If all voters prefer a to b, then society must also prefer a to b.

$$\forall i \in \mathbb{N}, \quad a \succ_i b \quad \Rightarrow \quad a \succ_F b$$

Motivation: If everyone agrees, the group must reflect that consensus.

Axiom 3: Independence of Irrelevant Alternatives (IIA)

Definition: The group's preference between *a* and *b* should depend **only** on how individuals rank *a* and *b*.

Axiom 3: Independence of Irrelevant Alternatives (IIA)

Definition: The group's preference between *a* and *b* should depend **only** on how individuals rank *a* and *b*.

If \succ_i and \succ_i' agree on a vs. $b, \Rightarrow F(), F(')$ agree on a vs. b

Axiom 3: Independence of Irrelevant Alternatives (IIA)

Definition: The group's preference between *a* and *b* should depend **only** on how individuals rank *a* and *b*.

If
$$\succ_i$$
 and \succ_i' agree on a vs. $b, \Rightarrow F(), F(')$ agree on a vs. b

Motivation: Irrelevant candidates shouldn't change the outcome between *a* and *b*.

Axiom 4: Non-Dictatorship (ND)

Definition: No single voter *i* should have the power to determine the group ranking regardless of others.

Axiom 4: Non-Dictatorship (ND)

Definition: No single voter *i* should have the power to determine the group ranking regardless of others.

There is no $i \in N$ such that \forall , $F() = \succ_i$

Axiom 4: Non-Dictatorship (ND)

Definition: No single voter *i* should have the power to determine the group ranking regardless of others.

There is no
$$i \in N$$
 such that \forall , $F() = \succ_i$

Motivation: A fair rule must not give total power to one individual.

Summary of Arrow's Axioms

- U Unrestricted Domain: All profiles allowed.
- P Pareto Efficiency: Consensus is respected.
- IIA Independence of Irrelevant Alternatives: Only relevant preferences matter.
- ND Non-Dictatorship: No one person decides everything.

Summary of Arrow's Axioms

- U Unrestricted Domain: All profiles allowed.
- P Pareto Efficiency: Consensus is respected.
- IIA Independence of Irrelevant Alternatives: Only relevant preferences matter.
- ND Non-Dictatorship: No one person decides everything.

Can we satisfy all of them together?

Arrow's Impossibility Theorem (Formal Statement)

Theorem (Arrow, 1951):

Let $|A| \ge 3$, $|N| \ge 2$. Then, no social welfare function $F: L(A)^n \to L(A)$ satisfies:

- Unrestricted Domain (U)
- Pareto Efficiency (P)
- Independence of Irrelevant Alternatives (IIA)
- Non-Dictatorship (ND)

Arrow's Impossibility Theorem (Formal Statement)

Theorem (Arrow, 1951):

Let $|A| \ge 3$, $|N| \ge 2$. Then, no social welfare function $F: L(A)^n \to L(A)$ satisfies:

- Unrestricted Domain (U)
- Pareto Efficiency (P)
- Independence of Irrelevant Alternatives (IIA)
- Non-Dictatorship (ND)

Any rule satisfying the first three must be a dictatorship.

Goal: Show that any voting rule satisfying U, P, and IIA must be a dictatorship.

Goal: Show that any voting rule satisfying U, P, and IIA must be a dictatorship.

Idea: Use Decisive Coalitions.

Start with the full group — by Pareto, all voters together are decisive.

Goal: Show that any voting rule satisfying U, P, and IIA must be a dictatorship.

Idea: Use Decisive Coalitions.

- Start with the full group by Pareto, all voters together are decisive.
- Use IIA + transitivity to show this decisiveness "spreads" to new pairs (Field Expansion).

Goal: Show that any voting rule satisfying U, P, and IIA must be a dictatorship.

Idea: Use Decisive Coalitions.

- Start with the full group by Pareto, all voters together are decisive.
- Use IIA + transitivity to show this decisiveness "spreads" to new pairs (Field Expansion).
- **Then shrink the group** step-by-step using the Contraction Lemma.

Goal: Show that any voting rule satisfying U, P, and IIA must be a dictatorship.

Idea: Use Decisive Coalitions.

- Start with the full group by Pareto, all voters together are decisive.
- Use IIA + transitivity to show this decisiveness "spreads" to new pairs (Field Expansion).
- **1** Then shrink the group step-by-step using the Contraction Lemma.
- Eventually you reach a single decisive voter a dictator.

Definition: A coalition $S \subseteq N$ is *decisive* for (x, y) if for any profile where all $i \in S$ have $x \succ_i y$, we get $x \succ_F y$ regardless of preferences outside S.

Lemma 1 (Field Expansion): If S is decisive for (x, y), then S is decisive for (x, z) and (z, y) for any $z \in A$.

Definition: A coalition $S \subseteq N$ is *decisive* for (x, y) if for any profile where all $i \in S$ have $x \succ_i y$, we get $x \succ_F y$ regardless of preferences outside S.

Lemma 1 (Field Expansion): If S is decisive for (x, y), then S is decisive for (x, z) and (z, y) for any $z \in A$.

Idea: Construct profiles leveraging Pareto, IIA, and transitivity to expand the decisiveness.

Definition: A coalition $S \subseteq N$ is *decisive* for (x, y) if for any profile where all $i \in S$ have $x \succ_i y$, we get $x \succ_F y$ regardless of preferences outside S.

Lemma 1 (Field Expansion): If S is decisive for (x, y), then S is decisive for (x, z) and (z, y) for any $z \in A$.

Idea: Construct profiles leveraging Pareto, IIA, and transitivity to expand the decisiveness.

Lemma 2 (Contraction): If S is globally decisive and $|S| \ge 2$, then $\exists T \subsetneq S$ such that T is also globally decisive.

Definition: A coalition $S \subseteq N$ is *decisive* for (x, y) if for any profile where all $i \in S$ have $x \succ_i y$, we get $x \succ_F y$ regardless of preferences outside S.

Lemma 1 (Field Expansion): If S is decisive for (x, y), then S is decisive for (x, z) and (z, y) for any $z \in A$.

Idea: Construct profiles leveraging Pareto, IIA, and transitivity to expand the decisiveness.

Lemma 2 (Contraction): If S is globally decisive and $|S| \ge 2$, then $\exists T \subsetneq S$ such that T is also globally decisive.

Consequence: By recursively contracting N, we reach a singleton voter i^* who is decisive for all pairs — a dictator.

Arrow's Theorem: Final Formal Statement

Theorem (Arrow, 1951):

Let $|A| \ge 3$ and $|N| \ge 2$. Then, no social welfare function $F: L(A)^n \to L(A)$ satisfies:

- Unrestricted Domain (U)
- Pareto Efficiency (P)
- Independence of Irrelevant Alternatives (IIA)
- Non-Dictatorship (ND)

Arrow's Theorem: Final Formal Statement

Theorem (Arrow, 1951):

Let $|A| \ge 3$ and $|N| \ge 2$. Then, no social welfare function $F: L(A)^n \to L(A)$ satisfies:

- Unrestricted Domain (U)
- Pareto Efficiency (P)
- Independence of Irrelevant Alternatives (IIA)
- Non-Dictatorship (ND)

Proof Sketch:

- **1** Use Pareto to show *N* is globally decisive.
- Apply contraction to reduce to a singleton decisive voter.
- Singleton decisiveness ⇒ dictatorship.
- Contradicts ND.

The Gibbard-Satterthwaite Theorem

Theorem (Gibbard, Satterthwaite):

Let $|A| \ge 3$, and let $f: L(A)^n \to A$ be a deterministic, onto, and strategy-proof social choice function.

Then f must be a **dictatorship**.

The Gibbard-Satterthwaite Theorem

Theorem (Gibbard, Satterthwaite):

Let $|A| \ge 3$, and let $f: L(A)^n \to A$ be a deterministic, onto, and strategy-proof social choice function.

Then f must be a **dictatorship**.

Implication: Even if we drop IIA and ask only for truthful voting (strategy-proofness), the outcome must still be dictated by a single voter.

Idea Behind the Proof

Key Concepts:

- Strategy-proofness: No voter can benefit by misreporting.
- **Pivotal voter:** A single voter can change the outcome between *a* and *b* by modifying their ranking.
- Monotonicity: Raising a winning candidate in a ballot shouldn't cause them to lose.

Outline:

- **1** Start with a profile where f() = a.
- ② Gradually raise b in one voter's ranking until f(') = b.
- First voter to cause the switch is pivotal.
- Repeat for all pairs (a, b), (a, c), etc.
- **5** That voter determines all pairwise outcomes \Rightarrow dictator.

Interpretation of Gibbard-Satterthwaite

What does this mean for democracy?

- Any attempt to ensure voters report truthfully under deterministic and complete systems — ends up violating fairness.
- The theorem complements Arrow's: it proves strategy-proofness is incompatible with fairness too.
- Dictatorship is the only solution immune to manipulation in this setting.

Interpretation of Gibbard-Satterthwaite

What does this mean for democracy?

- Any attempt to ensure voters report truthfully under deterministic and complete systems — ends up violating fairness.
- The theorem complements Arrow's: it proves strategy-proofness is incompatible with fairness too.
- Dictatorship is the only solution immune to manipulation in this setting.

Conclusion: Strategic resistance \land full domain \land determinism \Rightarrow Dictatorship

What is Metric Distortion?

Definition

Metric Distortion is a concept used to evaluate how much a voting outcome deviates from the optimal outcome, based on a set of voter preferences. It is the ratio of the distance between the selected outcome and the voters' preferences to the distance between the ideal outcome and the voters' preferences.

- It quantifies the difference between the ideal candidate (according to the voters' preferences) and the winner selected by the voting rule.
- The idea is to measure fairness in voting systems: how close the chosen outcome is to the best possible one.

Key Terms: Preference Profile and Voting Rule

• **Preference Profile**: A collection of individual rankings from all voters. Each voter ranks the candidates in order of preference.

$$\mathcal{P} = \begin{cases} \text{Voter 1: } A > B > C \\ \text{Voter 2: } B > C > A \\ \text{Voter 3: } C > A > B \end{cases}$$

- **Voting Rule**: A *voting rule* is a function f that maps a preference profile \mathcal{P} to a collective outcome, i.e., $f:\mathcal{P}\to\mathcal{O}$. Examples include Plurality Rule, Borda Count, and Condorcet Method.
- Metric Space: A set of candidates $A = \{a_1, a_2, \dots, a_m\}$, where a distance function d(v, c) measures how far a candidate c is from a voter v.

The Formula for Metric Distortion

Mathematical Definition: Given a preference profile \mathcal{P} , a set of

candidates A, and a voting rule f, the **distortion** of the voting rule is defined as:

$$\mathsf{Distortion}(f) = \frac{d(\mathcal{P}, f(\mathcal{P}))}{d(\mathcal{P}, \mathcal{P}^*)}$$

Explanation

- The **ideal social cost** $D(\mathcal{P}, \mathcal{P}^*)$ is the distance between the voters' preferences and the best possible outcome (ideal outcome).
- The actual social cost $D(\mathcal{P}, f(\mathcal{P}))$ is the distance between the voters' preferences and the outcome that the voting rule selects.

Calculating Actual and Ideal Social Cost

Formula: Ideal Social Cost

The **ideal social cost** $D(\mathcal{P}, \mathcal{P}^*)$ is the total distance between the voters' preferences \mathcal{P} and the ideal outcome \mathcal{P}^* . For each voter p_i , the ideal candidate C_i^* is the one closest to them.

$$D(\mathcal{P}, \mathcal{P}^*) = \sum_{i=1}^n D(p_i, C_i^*)$$

Formula: Actual Social Cost

The **actual social cost** $D(\mathcal{P}, f(\mathcal{P}))$ is the total distance between the voters' preferences \mathcal{P} and the outcome selected by the voting rule $f(\mathcal{P})$.

$$D(\mathcal{P}, f(\mathcal{P})) = \sum_{i=1}^{n} D(p_i, f(\mathcal{P}))$$

Geometric Space and Voter/Candidate Positions

Consider a **geometric space** in \mathbb{R}^2 .

 \mathcal{P} contains all voter preferences where each $p_i = (x_i, y_i)$ is the position of voter i in the space. Similarly, each candidate C_j is positioned at (x_j, y_j) in \mathbb{R}^2 .

Formula: Distance Function

The distance function between a voter $p_i = (x_i, y_i)$ and a candidate $C_j = (x_j, y_j)$ is given by the **Euclidean distance**:

$$D(p_i, C_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Geometric Plane with Voters and Candidates

Here's a visual of the Gemoteric Space

