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Abstract

This paper explores the mathematical limitations of fair voting
through Arrow’s Impossibility Theorem and extends the analysis to
approximate social optimality using metric distortion. By bridging
combinatorial axioms with geometric models, we show how deter-
ministic mechanisms fail exact fairness but approach optimality un-
der distance-based frameworks. We synthesize structural impossibil-
ity with quantitative efficiency, offering a unified perspective on the
bounds of collective rationality. This work assumes familiarity with
basic concepts in graph theory, combinatorics, and introductory game
theory.



1 Introduction

“No voting rule can transform individual judgments into a consistent—and
fair—collective decision when choices exceed two.” This stark insight, first
articulated by Arrow (1951), shows the profound tension at the heart of
democratic systems: the aspiration for collective rationality clashes with the
variety of individual preferences as choice sets grow richer.

Social choice theory formalizes this tension. The goal is to design an ag-
gregation mechanism which satisfies normative criteria like Pareto efficiency,
neutrality, non-dictatorship, and independence of irrelevant alternatives. Ar-
row’s theorem proves these cannot all hold together for three or more alter-
natives with 2 or more voters: enforcing some inevitably requires relinquish-
ing others. The structure of preferences, and rules makes the occurence of
paradoxes mathematically inherent, rendering complete democratic coher-
ence mathematically impossible in generality.

However, impossibility does not preclude approximate optimality. A sec-
ond movement in social choice quantifies how “close” outcomes can come
to utilitarian ideals when richer information is revealed. Under the metric
distortion framework, both voters and alternatives are embedded in a met-
ric space (X,d), and each voter’s cost is modeled by the distance d(x;, a).
While aggregation mechanisms observe only the induced rankings, their per-
formance is evaluated in terms of worst-case distortion. Astonishingly, im-
posing only metric structure transforms an impossibility into an approximate
possibility teaching us how close simple deterministic rules can get to opti-
mal.

By combining structural impossibility results with quantitative approxi-
mation performance, we offer a unified framework: we explain not only why
democracy cannot perfectly reconcile fairness and rationality in general, but
also how close it can come under realistic assumptions.



2 Preliminaries and Formal Framework

We begin by establishing the mathematical foundations of social choice the-
ory required for analyzing axiomatic impossibility theorems and metric dis-
tortion.

2.1 Preference Profiles and Aggregation Rules

Definition 2.1 (Alternatives and Voters). Let A = {ay,as,...,a,} be a
finite set of m > 3 alternatives, and let N = {1,2,...,n} denote the set of
voters.

Definition 2.2 (Individual Preferences). Each voter i € N holds a strict
linear order »=; over A, i.e., a binary relation on A satisfying:

e Completeness: For all a,b € A, either a >=; b or b >=; a.
e Transitivity: For all a,b,c € A, if a =; b and b =; ¢, then a =; c.

e Antisymmetry: If a >; b, then not b >; a.

We denote by L£(A) the set of all strict linear orders over A. Each >;¢&
£(A). [1£(A)] = m!

Definition 2.3 (Preference Profile). A preference profile is a tuple = = (=
=2,y ) € L(A)™ that specifies the preferences of all n voters.

Definition 2.4 (Social Choice Function (SCF)). A social choice function is
a function f : L(A)" — A that selects a single winning alternative given a
preference profile.

Definition 2.5 (Social Welfare Function (SWF)). A social welfare function is
a function F': L(A)" — L(A) that returns a complete ranking of alternatives
based on the profile.

Let F, denote the set of all social choice functions for n voters. Let
Fonte C F,. denote the set of SCFs where every alternative a € A can be
elected under some profile.



2.2 Axioms of Fairness and Rationality

We now define the classical axioms that SCFs or SWFs may satisfy:

Definition 2.6 (Unanimity (Pareto Efficiency)). A rule satisfies unanimity
if whenever all voters prefer a to b, then a is socially preferred. That is, if
a>=;bforalli € N, then f(=)=aora>pb.

Definition 2.7 (Unrestricted Domain (U)). The function ' must be defined
for every = € L(A)".

Definition 2.8 (Independence of Irrelevant Alternatives (ITA)). A rule satis-
fies ITA if the social preference between any two alternatives a and b depends
only on the individual preferences between a and b. Changes in rankings
involving other alternatives should not affect the outcome.

Definition 2.9 (Non-Dictatorship). A rule is non-dictatorial if there is no
voter i € N such that for every profile =, the social outcome always agrees

Definition 2.10 (Strategy-Proofness). A social choice function f is strategy-
proof if no voter can gain by misrepresenting their preferences. That is, for
alli € N, all =_; € L(A)"! and all alternative preferences =€ L(A):

f(=i=20) =i f(5 =),

Thus truthfulness is the dominant strategy.



2.3 Metric Preference Domains

We introduce structure by embedding voters and alternatives in a metric
space:

Definition 2.11 (Metric Preference Model). Let (X, d) be a metric space.
Each voter i is located at x; € X, and each alternative a € A is embedded
in X. Voter 7 prefers alternatives that are closer:

a>; b <= d(z;,a) <d(z;b).

3 The Notion of Unfairness or Inconsistency
in Voting Systems

In social choice theory, a democratic voting system is formally conceived as
a mechanism that aggregates individual preference rankings, where each is
represented by a strict linear order »;€ L(A), into a single coherent social
ordering >=p= F(>1,...,>,). This aggregation serves the democratic ideals
of converting diverse opinions into the collective social choice of a leader,
where the collective decision is both internally consistent and responsive to
majority sentiment.

While multiple approaches exist, from simple plurality and runoff mech-
anisms to more intricate scoring and Condorcet methods, none guarantees
perfect coherence. In fact, even intuitively reasonable systems do not re-
spect unanimous preferences or produce transitive outcomes. For example,
plurality voting can disregard the intensity of preference.

Consider three alternatives A, B, C' and a population divided as follows:

Voters | 30% 30% 40%
Ranking|A-B>~C C»A=B B>A-C

Assume each voter also has the following cardinal utilitarian values for
the alternatives attached to the population divided into py,p2, p3 for each
distinct group preference:



Group 1 (30%): u(A) =3 2
Group 2 (30%): u(C) =3, u(A) =2, u(B) =1,
Group 3 (40%): u(B) =3 2

Plurality outcome: FEach group votes their top choice:

A:30%, C:30%, B:40% = Winner: B.

Utilitarian welfare: The sum of utilities for each alternative is:

U(x) = Zpg i ().

If voters can be grouped into G types, with each group g having proportion
py and common utility function u,(x) (where Zle pg=1)

In this case these Utilitarian Welfare Values are:

U(A)=03-3+03-24+04-2=09-+0.6+0.8=2.3,
U(B)=03-2403-1+04-3=06+03+1.2=2.1,
U(C)=03-14+03-3+04-1=03409+0.4=16.

Hence A maximizes total utility (2.3), but plurality improperly chooses
B. This highlights how plurality ignores preference intensity, leading to sub-
optimal social welfare.

A more formally compelling example of this phenomenon is the Con-
dorcet paradox, which we introduce next.



3.1 Condorcet’s Paradox

Let A = {x1,29,...,2,} with m > 3, and n voters each having strict rank-
ings ;. We define:

Definition 3.1 (Condorcet Winner). An alternative z € A is a Condorcet
winner if for every y # «x,

iz y}t > {i:y=iz}.

Definition 3.2 (Condorcet Cycle). A Condorcet cycle (or paradox) occurs
when there exists a sequence x1, s, ...,z in A (k > 3) such that:

X1 = Lo ==X »= T1

holds in the social preference derived by majority comparisons.

The classical 3-alternative example is:

Rank ‘
1
2
3

QWY
QY
W QY

Then majority pairwise comparisons yield:

A>B (2votes), B>C (2votes), C>=A (2votes),

producing a cycle A - B = C = A

Theorem 3.1. A Condorcet cycle exists <= there is no Condorcet
winner.

Proof. 1f x is a Condorcet winner, it must beat every other alternative =
no cycle can include x. Conversely, if no cycle exists, then the majority
tournament is a transitive tournament, implying the existence of a maximal

3
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element x that wins against all others—i.e., a Condorcet winner )
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The existence of a Condorcet cycle shows that majority rule can fail tran-
sitivity, even when all individual preferences are rational. Similarly, a larger

inconsistency occurs in more general social welfare functions when we at-
tempt to satisfy a set of seemingly reasonable fairness conditions.

4 Arrow’s Impossibility Theorem

Arrow’s Impossibility Theorem formalizes this contradiction: it asserts that
no aggregation rule can convert individual rational preferences into a col-
lective rational ordering while simultaneously satisfying Pareto efficiency,
independence of irrelevant alternatives (IIA), and non-dictatorship. This
theorem reveals a deep structural limitation in collective decision-making,
showing that any such rule must sacrifice at least one of these desirable ax-
ioms when the number of alternatives is three or more.

Constructive Proof of Arrow’s Impossibility Theorem

We now adopt a structural approach based on decisive coalitions—subsets
of voters whose unanimous preferences determine social outcomes between
pairs of alternatives. Under the axioms of Pareto efficiency and IIA, we es-
tablish two key results: the Field Expansion Lemma, which extends decisive-
ness across alternatives, and the Contraction Lemma, which reduces decisive
coalitions while preserving their influence. These lemmas together imply the
existence of a single globally decisive voter, violating non-dictatorship.



4.0.1 Decisive Coalitions

Definition 4.1 (Decisive Coalition). A coalition S C N is decisive for pair
(x,y) if whenever Vi € S : x >; y, then z =p y regardless of preferences of
voters in NV \ S. If S is decisive for every (z,y), we call S globally decisive.

By Pareto efficiency, the grand coalition N is globally decisive.

4.0.2 Field Expansion Lemma

Lemma 4.1 (Field Expansion). If a coalition S C N is decisive for a pair
(x,y), then for any third alternative z, S is also decisive for (z,z) and (z,y).

Proof. Assume S is decisive for (x,y); that is, whenever all members of S
rank x >; y, the social ordering F' satisfies x >=p y regardless of others’
preferences.

We show S remains decisive for (z,z). By Unrestricted Domain, consider
the profile where:

e Every i € S ranks: = >; z >; y.

o Every j ¢ S ranks: z >, y > x.

Here, S unanimously prefers x to y, so by decisiveness x > y. By Pareto,
since all j ¢ S prefer z >, y, we also have z >p y. Then by transitivity,
x =r z. Applying ITA to ignore y, we conclude x > z must follow whenever
all in S prefer = to z; hence S is decisive for (z, z).

A symmetric argument shows S is decisive for (z,y): construct a profile
with
1€S: zwiT -y,
JES: x>y 2,
use decisiveness for (z,y) and ITA /transitivity to deduce z =F y, and apply
ITA again to drop z.



F
Thus S is decisive for both (z, z) and (z,y), completing the proof.  gg

4.0.3 Contraction Lemma

Lemma 4.2 (Contraction). If S C N is globally decisive and |S| > 2, then
there exists a proper subset T' C S that is also globally decisive.

Proof. Let S be globally decisive with |S| > 2. Partition S arbitrarily into
two non-empty, disjoint coalitions 57, Ss such that S; U S, = S.

Select three distinct alternatives x,y, z € A. By global decisiveness of S,
S decides each pair.

Construct the following profile P, specifying only the preferences of voters
in S, and letting others vote arbitrarily (so as not to affect comparisons
involving S5):

‘ Voters in S; Voters in S, ‘ Others

1st T y
2nd Y P
3rd z T

Here Sy ranks = > y, and S5 ranks y > z, so by transitivity S enforces both
r =p yand y =p z. Since S decides each pair, we also know z =p z in
profile P.

There are two cases:

Case 1: z >p 2. Then S; alone caused x > 2, as voters in Sy preferred
z > x. Thus by ITA and the profile’s structure, S is decisive at least on (z, 2).
By the Field Expansion Lemma, S; isglobally™ decisive. Set T'= S, C S.

Case 2: z > x. Then S; must have enforced z > = (because S; ranked
x > z). By a symmetric argument to Case 1, S, is globally decisive. Set

T=5CS.

10



In either case, we have found a proper, globally decisive subset T'. This
&

oo

completes the contraction. )

Proving Arrow’s Theorem By Existence of Dictator

Theorem 4.3 (Arrow, 1951). No social welfare function F' : L(A)" —
L(A) satisfies Unrestricted Domain, Pareto Efficiency, Independence
of Irrelevant Alternatives (IIA), and Non-Dictatorship if |A| > 3.

Proof. Assume, for the sake of contradiction, that there exists a social welfare
function F satisfying all four axioms: Unrestricted Domain (U), Pareto Effi-
ciency (P), Independence of Irrelevant Alternatives (ITA), and Non-Dictatorship
(ND), with |A| > 3.

Step 1: The Grand Coalition is Globally Decisive. The Pareto condi-
tion implies that if all voters in the electorate N strictly prefer an alternative
x over another alternative y, then the social welfare function must rank z
above y. In other words,

Ve,y€e A, ifxz>;yforalli e N, then z = y.

This means that the entire electorate N is a globally decisive coalition: it can
collectively determine the social ranking between any pair of alternatives.
Thus, N possesses full decisive power under unanimous preference profiles.

Step 2: Recursive Application of the Contraction Lemma. Given
that N is globally decisive and |N| > 2, we now apply the Contraction
Lemma, which states that if a coalition is globally decisive and has at least
two members, then there exists a strict subset of that coalition that is also
globally decisive. That is, we can remove one voter and still retain the power
to determine all pairwise social comparisons.

11



We denote the sequence of shrinking coalitions as follows:

Sy = N,
S1 C So,
Sy C 54,

S, = {i"},

where each S; is globally decisive. Since N is finite, this recursive contraction
must terminate. Eventually, we reach a singleton coalition {:*} that remains
globally decisive.

Step 3: Singleton Decisiveness Implies Dictatorship. If a single voter
7* is globally decisive, then for any pair of alternatives x,y € A, whenever
x = y, it must follow that x > y, regardless of the preferences of the other
voters. Formally,

Ve,ye A, x=py = T >ry.

This means that the social ranking produced by the function F' always agrees
with the individual ranking of voter ¢*. Thus, ¢* is a dictator, which contra-
dicts the Non-Dictatorship axiom.

Step 4: Conclusion. We have shown that assuming the existence of a so-
cial welfare function that satisfies all four axioms leads to the conclusion that

a dictator must exist. This contradicts the Non-Dictatorship requirement.
=

So—

Therefore, no such function F' exists, completing the proof. )

12



Voter | Ranking 1 | Ranking 2
1 a>=bs=c b>=ax>c
2 b=c+a b>=c>a
3 ca>b c—a»b

Outcome a b

4.1 Gibbard—Satterthwaite Theorem

Building on Arrow’s investigation of aggregation consistency, the
Gibbard—Satterthwaite theorem examines voters’ strategic incentives. It
shows that any deterministic onto social choice function that selects a single
winner from three or more alternatives must be dictatorial if it is strategy-
proof, other words, if no voter can benefit by misrepresenting his preferences.
This result starkly illustrates how the goals of fairness and strategic resistance
collide in rich-choice settings.

Theorem 4.4 (Gibbard-Satterthwaite Theorem). Formally, let A be
a set of |A| > 3 alternatives and let f : L(A)" — A be a social choice
function (SCF), where L(A) is the set of strict total orders over A.
The function f is said to be:

e Onto: for everya € A, there exists some profile = € L(A)"™ such
that (=) = a,

e Strategy-proof: see Definition 2.10

Then the theorem asserts that f must be a dictatorship.

Proof. Intuitively this theorem can be proved by understanding the existence
of a pivotal voter. A core idea in the proof is the concept of monotonicity:
if f(~) = a and a voter raises another alternative b in his ranking while
keeping the rest of the profile unchanged, then f either remains at a or
switches to b; it cannot switch to a third option without violating strategy-
proofness. This idea helps identify a pivotal voter who determines the
outcome between two alternatives.

In this example, Voter 1’s change in ballot causes the social choice to

13



shift from a to b, indicating that she is pivotal between a and b. Strategy-
proofness ensures that Voter 1’s sincere top choice among a and b must be
selected whenever she is pivotal.

Repeating this argument for all alternative pairs implies that his top-
ranked candidate is always the outcome, regardless of others’ preferences,
hence establishing dictatorship. In other words, once a voter k is identified
as pivotal for a pair (a, b), the argument extends to show that k controls the
outcome between every pair of alternatives making it a dictator.

First, since f is onto, we start from a profile <% where f (;0) = a, and
systematically raise b across ballots one voter at a time. Monotonicity guar-
antees that for each intermediate profile =', the outcome stays within {a, b}.
Onto ensures that eventually some profile =" yields f(:=") = b. By choosing
the first index k& such that

Y =a and  f(ZF) =0,

we establish that voter k’s single-ballot change alone flips the result—making
k pivotal for (a,b).

Once k is pivotal, a similar construction for any other alternative ¢ # a, b
shows k is also pivotal between (a, ¢). Again, monotonicity and onto produce
a change in outcome exactly when k£ modifies his ballot. Therefore, for all
x,y € A, whenever k prefers x to y, the outcome is x. This satisfies the
definition of a dictator.

Thus, starting from a single pivotal act, one shows that the same voter
k dictates the winner for all alternative pairs. Under the assumptions of
strategy-proofness and onto, the only way to avoid manipulation by mis-
representing preferences is to concentrate decision power in a single agent’s

oo

truthful preference proving that f is a dictatorship. )

14



Interpretation of Voting Impossibility Theo-
rems

The combined force of Arrow’s Impossibility Theorem and the Gibbard—
Satterthwaite Theorem delineates the fundamental structural limits of
social choice under ordinal preference aggregation. Arrow’s theorem exposes
a logical inconsistency among axioms of collective rationality—unanimity,
independence of irrelevant alternatives (IIA), and non-dictatorship—within
any social welfare function F' : £L(A)" — L(A), where L£(A) denotes the set of
strict linear orders over a finite set of alternatives A. Gibbard—Satterthwaite
complements this by showing that any deterministic, surjective, and strategy-
proof social choice function f : £L(A)” — A must be dictatorial when |A| > 3.

Collectively, they posit that: within unrestricted domains of ordinal pref-
erences, no non-dictatorial mechanism can simultaneously satisfy minimal
fairness and strategic robustness.

These impossibility results are not, however, an indication of the complete
failure of the democratic system, but foundational basis for exploring the util-
ity that can be extracted from them. They motivate a transition from seeking
axiomatic perfection to quantitatively evaluating imperfections to make the
best of what is available. By imposing additional structure—such as latent
metric embeddings of preferences—one can define notions of suboptimality,
such as the distortion of a social choice rule, which measures its worst-case
efficiency loss relative to a metric social optimum.

To this end, impossibility theorems are reinterpreted not as terminal con-
clusions about the detrimentality of choice, but as rigorous thresholds for
evaluating trade-offs between fairness, strategy-proofness, and efficiency in
collective decision-making.

15



5 Metric Distortion in Voting Systems

In practice, most voting systems rely only on ordinal information—voters
rank candidates from best to worst—without accounting for the intensity of
preferences. To evaluate how this limitation affects the quality of outcomes,
we adopt the framework of metric distortion. This model assumes voters
and candidates are embedded in a latent metric space and seeks to quantify
the inefficiency of a voting rule compared to the optimal outcome under that
space.

5.1 Setting Up Metric Distortion
5.1.1 Spatial Preference Model

Let P = (p1,p2,-..,pn) denote a preference profile for n voters over a finite
candidate set A = {ay,as,...,a,}. We assume each voter p; € R? and each
candidate a; € R? is located in a Euclidean space (or more generally, a metric
space (X, d)). Voter disutility is modeled by the distance function D(p;, a;),
often taken to be Euclidean:

D(piyag) = \/ (i — 1) + (5 — y;)? (for d = 2).

5.1.2 Definition of Social Cost

Given a voting rule f that selects a winner f(P) € A based on the profile P,
the actual social cost of the outcome is defined as:

D(P, f(P)) = Z D(pi, f(P)).

The ideal social cost is achieved by the candidate a* € A that minimizes
total distance to all voters:

a* = argrargfrll;D(pi,a), and D(P,a*) = ZID(]%G ).

16



5.1.3 Definition of Metric Distortion

Metric distortion is defined as the worst-case ratio between the actual social
cost incurred by the winner chosen by the voting rule and the optimal cost
achievable:

L D(P, f(P))
Distortion( f) = sup ——————=,
(f> P,g D(P7 CL*)
where the supremum is taken over all profiles P and all metric embeddings
D consistent with the given preference orderings.

5.1.4 Interpretation

Intuitively, a distortion of § means that in the worst case, the outcome se-
lected by the voting rule incurs total cost up to § times higher than the best
possible candidate. A lower distortion reflects a rule that more faithfully
approximates the utilitarian optimum, despite only having access to ordinal
input.

5.2 A Visual Illustration of Metric Distortion

To build intuition for the concept of metric distortion, consider a simplified
example where both voters and candidates are embedded in the Euclidean
plane R%. In this spatial model, each voter prefers candidates who are geo-
metrically closer, and disutility is measured using Euclidean distance. The
social cost of a candidate is thus the sum of their distances to all voters.

Figure 1 illustrates a small instance with three voters x;, z9, v3 € R? and
three candidates a1, as, a3 € R?. Dashed lines represent the disutilities (i.e.,
distances) from each voter to all candidates.

17



Figure 1: Voters z1, x5, x5 and candidates a;, as, a3 embedded in R%. Dashed
lines represent Euclidean disutilities.

Interpretation

Suppose a voting rule selects candidate a, based on first-place votes, despite
candidate a; being, on average, geometrically closer to all voters. Then:

e The actual social cost is D(P,as) = 3o, d(x, az),

e The optimal social cost is D(P,ay) = Y20, d(z;, a1),

e The distortion is given by the ratio %.

This simple geometric setup captures the essence of metric distortion: even
though the underlying spatial structure favors candidate a;, a rule that only
uses ordinal rankings may ignore this and select a worse candidate in terms
of social cost. This inefficiency—arising from ignoring metric intensity—is
what distortion seeks to quantify.

18



6 Ordinal vs. Cardinal Preferences

Let A = {ay,as,...,a,} be a finite set of candidates and N = {1,2,...,n}
the set of voters. Each voter ¢ € N has either:

e a cardinal utility function u; : A — R, or

e an ordinal preference >;, a total order on A.

Definition 6.1 (Cardinal Preferences). A cardinal utility u;(a) quantifies
exactly how much voter ¢ prefers candidate a. Under utilitarian aggregation,
the socially optimal alternative is

n
* . )
a* = arg Ic?elfxlz;uz(a)'
1=

Definition 6.2 (Ordinal Preferences). An ordinal preference >; records
only the ranking:
a>; b <= u;(a) > u;(b),

but not the magnitude |u;(a) — u;(b)|. Classical voting rules—Plurality,
Borda, Instant-Runoff—use only these rankings.

6.1 Strategic and Practical Constraints

1. FElicitation Cost: Reporting full u;(a) is cognitively burdensome.

2. Manipulation Risk: Voters can distort cardinal reports to influence
outcomes.

3. Institutional Norms: Ballots typically collect only rank-orders.
Thus, in practice, only the profile of orderings = = (>=1,...,>,) is avail-

able to the voting mechanism.
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6.2 How Metric Distortion Uses Ordinal Values

We posit that there exists some (unknown) metric d and embeddings z; for
voters and y; for candidates so that

a =; b e d(l’i,ya) < d(l’l,yb>

However, the mechanism observes only >, not the distances.

A voting rule f maps = to a chosen candidate f(=). We then compare
total disutilities:

D(P, f( ; Zd x;, yf(> mmZd TiyYa)-

The metric distortion of f is

(f) = sup > d(mi’ yf(;))

d,xi,y; minaEA Zz d(xza ya) ’

consistent with =

where the supremum ranges over all metrics and embeddings that induce the
same ordinal profile =. In this way, metric distortion quantifies how much
worse f can perform in terms of true (cardinal) social cost, given only ordinal
inputs.

7 Worst-Case Distortion Bounds

In the metric distortion framework, we analyze how well a voting rule approx-
imates the socially optimal candidate when only ordinal preferences (rank-
ings) are observed. Since these rankings derive from an unknown metric
space, we are interested in the worst-case distortion: the maximal ineffi-
ciency a rule may incur across all consistent metrics.

7.1 Formal Setup

Let A = {ay,...,a,} be a set of candidates, and let = = (>=1,...,>,) be
the profile of voter rankings, where each »; is a total order over A.
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Assume a hidden metric space (X, d) such that:
a = b = d(xhya) < d(%‘a?/b),

where x; € X is the location of voter i, and y, € X is the location of
candidate a. These locations are unobservable.

The social cost of candidate a is:

n

(a) = Z d(xu ya)v

i=1

and the optimal candidate is:

* .
a* = arg Enel}‘l(a).

A voting rule f chooses a candidate based only on =, and its worst-case
distortion is defined as:

f(=
(=  sup ( (* )
(X7d)733i7ya (a
consistent with =

~—

This measures how far the selected winner can be from the true optimum
in terms of aggregate voter disutility.

7.2 Universal Lower Bound (Deterministic)

Theorem 7.1 (Gkatzelis-Halpern—Shah, 2020). For any deterministic
voting rule f, we have:

(f) = 3.

Proof Sketch. Consider a profile with three voters and three candidates.
Construct rankings such that each voter ranks a different candidate first.
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Then, place the voters at vertices of an equilateral triangle, and place the

candidates so that the winner chosen by the rule (e.g., a fixed tie-breaking)
lies close to one voter and far from the other two. In contrast, the optimal
candidate lies at the centroid, equidistant from all voters. This setup achieves

a distortion arbitrarily close to 3.
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Figure 2: Worst-case distortion with 3 voters and 3 candidates.

In this example:
2R
I — 3 as R/r — oo.

(a)=~3-r, (f(5)=r+2R=

7.3 Specialized Rules

Theorem 7.2 (Anshelevich et al., 2015). There ezists a deterministic
rule with distortion exactly 3.

One such rule is Plurality Veto (Kizilkaya—Kempe, 2022). It selects the
candidate who minimizes the number of times they are ranked last, breaking

ties by fewest second-to-last rankings.
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7.4 Randomized Rules

Allowing randomization can lower distortion. Let f be a probabilistic voting
rule, outputting a distribution over candidates.

Theorem 7.3 (Charikar-Ramakrishnan, 2023). There exists a ran-
domized rule with:
(f) < 2.73.

The best known lower bound for any randomized rule remains:

(f) >2,

8 Real-World Implications and Broader Per-
spectives

While the theoretical bounds on fairness and distortion may appear abstract,
they carry deep consequences for how societies design democratic institutions,
allocate resources, and ensure equity in collective decisions.

The core impossibility results show that no voting system can be fully
fair, non-dictatorial, and immune to manipulation. This motivates institu-
tional humility: policymakers must accept trade-offs and clearly prioritize
which values (e.g., fairness, resistance to strategic voting, or representational
accuracy) matter most in their contexts.

The concept of metric distortion introduces a powerful lens for comparing
electoral systems even when only ordinal ballots are available. By modeling
voters and candidates in a latent metric space (e.g., political ideology, geo-
graphic proximity, or utility space), we can ask: How far from optimal was
the result? This enables empirical audits of existing rules—such as plurality
or ranked-choice voting—using simulations or survey-embedded spatial data.
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Conclusion

This paper has shown that the dream of a perfectly fair voting system must
yield to mathematical impossibility—but that this does not render all hope
lost. By quantifying inefficiencies through the framework of metric distortion,
we recover a new kind of possibility: an efficient, if imperfect, approximation
to the ideal. This shift from the absolute to the approximate, from struc-
ture to geometry, and from proof to practice, reflects the ongoing power of
mathematics to inform not only what is, but what could be.
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