Measure Theory and Lebesgue Integration

Aarav Shah shahaarav103@gmail.com

Euler Circle

July 10, 2025

The notion of a measure

Want:- Assign a notion of "length" (Measure) for an abstract subset. Familiar example:- Area of a square

Sets of interest

Definition 1

Now consider an abstract set X, we want to assign a notion of measure of a subset of the power set of X. This set (which we shall denote by Σ and call a σ -algebra) should be such that:-

- (a) $\emptyset, X \in \Sigma$
- (b) $A \in \Sigma$ implies $A^c \in \Sigma$
- (c) $A_i \in \Sigma$ where $i \in \mathbb{N}$ implies $\bigcup_{i=1}^{\infty} A_i \in \Sigma$
- (d) $A_i \in \Sigma$ where $i \in \mathbb{N}$ implies $\bigcap_{i=1}^{\infty} A_i \in \Sigma$

Definition 2

For $M \subseteq P(X)$, there is a smallest σ algebra that contains M: $\sigma = \cap_{M \subseteq \Sigma} \Sigma$ this is known as the σ -algebra generated by M

Finally.. Measures

Let X be an abstract set and let Σ be a sigma-algebra corresponding to it. A map $\mu:\Sigma\to[+\infty,-\infty]$ is called a measure if μ satisfies the following properties:-

- Non-negativity:- For all $E \in \sigma$, $\mu(E) \ge 0$
- $\mu(\varnothing)=0$
- Countable additive(or σ -additive):- For all countable collection $\{E_k\}_{k=1}^{\infty}$ of pairwise disjoint sets in Σ , $\mu(\cup_{k=1}^{\infty} E_k) = \Sigma_{k=1}^{\infty} \mu(E_k)$.

Countable Sub additivity

Theorem 3

(Countable sub additivity:-) For any countable sequence E_1 , E_2 , E_3 of (not necessarily disjoint) measurable sets E_n in Σ :- $\mu(\cup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i).$

Proof.

Out of the infinite collection $\{E_i\}$, we choose disjoint sets $\{E_{a_i}\}$ out of them.

And thus, $\mu(\bigcup_{i=1}^{\infty} E_i) = \mu(\bigcup_{i=1}^{\infty} E_{a_i}) = \sum_{i=1}^{\infty} E_{a_i} \leq (\sum_{i=1}^{\infty} E_i)$. Hence, we proved the theorem we were seeking!

Outer Measures

Want:- Develop a procedure for constructing measures.

Definition 4

Let X be a set, an *outer measure* on X is a function $\mu*:P(X)\to [0,+\infty]$ such that

- $(\mathsf{a})\mu^*(\varnothing)=\mathsf{0}$
- (b) if $A \subseteq B \subseteq X$ the $\mu^*(A) \le \mu^*(B)$, and
- (c) if $\{A_n\}$ is an infinite sequence of subsets of X, then $\mu^*(\cup_n A_n) \leq \Sigma_n \mu^*(A_n)$.

Definition 5

Let X be a set, and let μ^* be an outer measure on X. A subset B of X is μ^* -measurable if $\mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^c)$ holds for every subset A of X.

Constructing Measures

How does this connect to constructing measures?

It does so by the following theorem:-

Theorem 6

Let X be a set, let μ^* be an outer measure on X, and let \mathcal{M}_{μ^*} be the collection of all μ^* -measurable subsets on X. Then

- (a) \mathcal{M}_{μ^*} is a σ algebra, and
- (b) the restriction of μ^* to \mathcal{M}_{μ^*} is a measure on \mathcal{M}_{μ^*} .

Lebesgue Measures

Let us illustrate the above procedure for and construct what is known as an Lebesgue Measure. We start with:-

Definition 7

For each A of \mathbb{R} , let \mathscr{C}_A be the set of all infinite sequences $\{(a_i,b_i)\}$ of bounded open intervals such that $A\subseteq \cup_i(a_i,b_i)$. Then $\lambda^*:P(\mathbb{R})\to [0,+\infty]$ is called the *Lebesgue outer measure* defined by $\lambda^*(A)=\inf\{\Sigma_i(b_i-a_i):\{(a_i,b_i)\}\in\mathscr{C}_A$

Now we proceed to the next step of our recipe, studying collections of μ^* -measurable subsets of X.

Lebesgue Measures

Definition 8

Let (X,\mathcal{T}) be a topological space. The σ algebra generated by open sets is called the *Borel* σ -algebra B(X): $B(X) = \sigma(T)$. You can also prove that the Borel σ -algebra for reals is also generated by the collection of all sub intervals of \mathbb{R} of the form $(-\infty,b]$.

Now, we have the following theorem:-

Theorem 9

Every Borel subset of \mathbb{R} is Lebesgue measurable.

We shall denote the Lebesgue outer measures restricted to \mathcal{M}_{λ^*} as λ and call it the Lebesgue measure (since, it is indeed a measure). Note that λ is translationally invariant.

Measurable Functions

Theorem 10

Let (X, Σ) be a measurable space, and let A be a subset of X that belongs to Σ . For a function $f: A \to [-\infty, +\infty]$ the conditions (a) for each real number t the set $\{x \in A: f(x) \leq t\}$ belongs to Σ (b) for each real number t the set $\{x \in A: f(x) < t\}$ belongs to Σ (c) for each real number t the set $\{x \in A: f(x) \geq t\}$ belongs to Σ (d) for each real number t the set $\{x \in A: f(x) \geq t\}$ belongs to Σ are equivalent.

A function $f: A \to [-\infty, +\infty]$ is *measurable with respect to* Σ if it satisfies one and hence all conditions of the above theorem.

Integration- Riemann is not the full story

$$f(x) = \begin{cases} 1 & \text{if x rational} \\ 0, & \text{if x irrational} \end{cases}$$
Not Riemann Integrable!
The function ξ_E defined by:-

$$\xi_{E} = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathbf{E} \\ \mathbf{0}, & \text{if } \mathbf{x} \not\in \mathbf{E} \end{cases}$$

is called a **characteristic function** on E. Let ϕ function which vanishes outside of a measurable set(simple function):- **Canonical representation** of ϕ :- $\phi = \sum_{i=1}^{n} a_i \xi_{A_i}$ where $A_i = \{x | \phi(x) = a_i\}$. We define the integral ϕ by $\int \phi dx = \sum_{i=1}^{n} a_i \mu(A_i)$.

Lebesgue Integration

Definition 11

If f is a bounded measurable function defined on a measurable set E with $\mu(E)$ finite , we define the Lebesgue integral of f over E by $\int_E f(x) dx = \inf \int_E \psi(x)$ for all simple functions $\psi \geq f$. and $\int_E f(x) dx = \sup \int_E \phi(x)$ for all simple functions $\phi \leq f$

Figure 1: Riemann and Lebesgue integration. The blue one represents Riemann integration and the the red one Lebesgue.

Basic Properties of Lebesgue integration

Theorem 12

If f and g are bounded measurable functions defined on the set E of finite measure then,

(a)
$$\int_{E} af = a \int_{E} f$$

(b) $\int_{E} (f + g) = \int_{E} f + \int_{E} g$
(c) If $f \leq g$ then, $\int_{E} f \leq \int_{E} g$
(d) If $f = g$ then, $\int_{E} f = \int_{E} g$
(e) If $f = g$ then, $\int_{E} f = \int_{E} g$
(f) If $A \leq f(x) \leq B$, the $A\mu(E) \leq \int_{E} f \leq B\mu(E)$
(g) If A and B are disjoint measurable set of finite measure, then $\int_{A \cup B} f = \int_{A} f + \int_{B} f$

3 Beasts- 1. Monotone Convergence Theorem

In real analysis:-

Theorem 13

Let $\langle x_n \rangle$ be an increasing real sequence which is bounded above. Then $\langle x_n \rangle$ converges to its supremum.

In measure theory and integration theory:-

Theorem 14

Let (X, Σ, μ) be a measurable space. Let $u: X \to \mathbb{R}$ be a positive Σ -measurable function. Let $< u_n >_{n \in \mathbb{N}}$ be a sequence of positive Σ measurable functions $u_n: X \to \mathbb{R}$ such that $u_i(x) \le u_j(x)$ for all $i \le j$ and: $u(x) = \lim_{n \to \infty} u_n(x)$ holds for all $x \in X$. Then, $\int u(x) d\mu = \lim_{n \to \infty} \int u_n(x) d\mu.$

3 Beasts- 2. Fatou's lemma

Theorem 15

Let (X, Σ, μ) be a measure space and $\{f_n : X \to [0, +\infty]\}$ a sequence of nonnegative measurable functions. Then the function $\lim_{n\to\infty}\inf f_n$ is measurable and $\int_X \lim_{n\to\infty}\inf f_n \leq \lim_{n\to\infty}\inf \int_X f_n$.

3 Beasts-3. Dominated Convergence Theorem

Theorem 16

Suppose $f_n: \mathbb{R} \to [-\infty, +\infty]$ are Lebesgue measurable functions such that the point wise limit $f(x) = \lim_{n \to \infty} f_n(x)$ exists. Assume there is an integrable $g: \mathbb{R} \to [0, \infty]$ with $|f_n(x)| \le |g_n(x)|$ for each $x \in \mathbb{R}$. Then f is integrable as is f_n for each n, and $\lim_{n \to \infty} \int_{\mathbb{R}} f_n d\mu = \int_{\mathbb{R}} \lim_{n \to \infty} f_n d\mu = \int_{\mathbb{R}} f d\mu$