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Abstract. This expository paper offers a comprehensive introduction to the fundamental
ideas of measure theory and Lebesgue integration, with an emphasis on mathematical rigor
and conceptual clarity. We begin by motivating the need for a generalized notion of ’size’ [11],
leading to the construction of σ-algebras and measures. We then develop the theory of
outer measures and use it to construct the Lebesgue measure on the real line. Building
on this foundation, we explore measurable sets, measurable functions, and the properties
that distinguish Lebesgue integration from the Riemann approach—particularly in handling
discontinuous and non-classical functions. The aim is to provide a solid foundation for
students encountering these ideas for the first time, while illustrating the elegance and
necessity of measure-theoretic tools in modern analysis.

1. Introduction

The evolution of integration theory marks a significant turning point in modern analysis.
While the Riemann integral served as a powerful foundational tool in 19th-century calculus,
its limitations soon became apparent—especially when dealing with highly discontinuous
functions, infinite domains, or limits under the integral sign. The classical framework strug-
gled with many naturally arising functions in analysis, probability, and physics, prompting
the need for a more general theory. This need was elegantly addressed by Henri Lebesgue,
who in the early 20th century developed what is now known as Lebesgue integration—a
formulation that underpins much of modern mathematics [6, 8].

To support this generalization, measure theory was developed as a way of extending the
notion of length and area to more abstract sets. Rather than restricting integration to nicely
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behaved intervals, measure theory allows us to define a rigorous concept of “size” for a wide
class of sets, even those with complicated or non-intuitive structure. Central to this theory
is the notion of a σ-algebra, a collection of subsets closed under countable unions, intersec-
tions, and complements. This abstraction is critical for defining measurable sets, measurable
functions, and ultimately, integrals that behave well under limits and transformations [4,11].

The historical lineage of measure theory stretches beyond the formal developments of
the 19th and 20th centuries. In fact, the intuitive idea of quantifying space and matter
appears in ancient texts. Notably, the Indian mathematician Aryabhata, in his seminal
work Āryabhat.̄ıyam (circa 499 CE), described formulas for computing areas and volumes of
geometric figures such as circles, triangles, pyramids, and spheres [2]. Though not formalized
in the modern sense, such work reflects early attempts to grasp the concept of magnitude—an
idea that modern measure theory rigorously refines.

In this paper, we begin by motivating the construction of measures, starting with algebras
and σ-algebras, then introducing outer measures to formally define Lebesgue measurable
sets. We show how these ideas culminate in the construction of the Lebesgue measure on
R, which assigns to each interval its classical length and extends to much more complex sets
via countable approximations [4, 6].

Following this, we define measurable functions—those functions for which the preimages
of intervals are measurable sets—and explore how they interact with set operations and limit
processes. This prepares us for the construction of the Lebesgue integral, which we introduce
via simple functions (finite linear combinations of characteristic functions of measurable
sets). We show how general functions can be approximated by increasing sequences of
simple functions, enabling us to integrate functions that are not Riemann integrable, such
as the characteristic function of the irrationals on [0,1] [5, 11].

To illustrate the contrast between Lebesgue and Riemann integration, we revisit classical
examples and highlight the greater flexibility of the Lebesgue approach in handling dis-
continuities, infinite domains, and convergence of sequences of functions [1]. The Dirichlet
function, for example, fails to be Riemann integrable but has a clear Lebesgue integral.

Throughout, the emphasis is on clarity and intuition. Each topic is introduced with mo-
tivation, supported by rigorous definitions and theorems, and supplemented with examples
to illustrate key ideas. Our treatment is formal but pedagogically oriented, written for read-
ers encountering these concepts for the first time in depth—especially students in advanced
undergraduate or early graduate programs.

In conclusion, measure theory and Lebesgue integration provide an elegant and powerful
framework that extends classical calculus to its modern form. These ideas are not just
abstract constructs but essential tools for areas ranging from probability theory to functional
analysis, ergodic theory, and quantum physics. Mastery of these foundational topics equips
one with the language and logic underlying much of contemporary mathematics.

2. Measures and σ-algebras

In this section, we shall focus on developing our tools and dive into the field of mathematics
named measure theory [11].

The intuition for measure is very simple; it is a generalization of geometrical measures
(length, area, volume) and other common notions such as magnitude, mass, and the proba-
bility of events.
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We wish to generalize the notion of a measure to be defined over abstract subsets ( measure
the ’ length’ of abstract subsets). Let us write a general measure µ as

µ : Σ → R ∪ {−∞,∞}

Where Σ is an abstract Set over which we wish to define the notion of a measure and
R ∪ {−∞,∞} is the extended Real number line, more will be said about it below. The
extended real number system is obtained from the real number system R by adding two
elements denoted as +∞ and −∞, which are respectively greater and lower than every real
number.
As shall see below, the only subset of R∪{∞,−∞} := [+∞,−∞] of interest to us is [0,∞].
In this subset, we write the following counting rules [1]:-

• x+∞ = ∞ ∀x ∈ [0,∞]
• x∞ = ∞ ∀x ∈ [0,∞]

2.1. σ-algebras. Now, we shall take a short digression and recall the notion of an algebra.
This will shortly be clear:-

Definition 2.1. Let X be an arbitrary set. A collection A of subsets of X is an algebra if

• ϕ,X ∈ A ,
• For each set A that belongs to A , Ac also belongs to A ,
• For each finite sequence A1, ...An of sets that belong to A , the set ∪Ni=1Ai
• For each finite sequence A1, ...An of sets that belong to A , the set ∩Ni=1Ai

Now, if X is a set, we wish to define a notion of measures for subsets of X and hence,
Σ ⊆ P (X). Now, we want to have a measure for the empty set ϕ and the whole set X. If
we have a notion of measure for A, then we would also want a notion of the measure for
the complement of A, Ac, a union and intersection of infinitely many sets which belong to
Σ should also have a notion of a measure defined there. Combining all of these properties,
we write the following important definition:-

Definition 2.2. Σ ⊆ P (X) is called a σ - algebra if:-

• ϕ,X ∈ Σ
• A ∈ Σ implies Ac ∈ Σ
• Ai ∈ Σ where i ∈ N implies ∪∞

i=1Ai ∈ Σ
• Ai ∈ Σ where i ∈ N implies ∩∞

i=1Ai ∈ Σ

Note that the infinite union in the third and fourth criterion, as opposed to a finite union,
is what distinguishes a σ-algebra from a general algebra. The reason why we define a σ-
algebra and not just work with ordinary algebras is because that distinguishment is crucial
for our purposes in particular, it is crucial for the countable additivity condition for a measure
A ∈ Σ is called a Σ Measurable Set.

Theorem 2.3. All finite algebras are σ algebras.

Proof. The infinite union of all subsets of a set is equivalent to a finite union of disjoint
subsets of that set which is equivalent to finite unions of subsets of that set. Hence, all finite
algebras are σ algebras since the finite union can be replaced by an infinite one. ■
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To gain clarity, we illustrate the following trivial examples of Σ algebras [4]:-

• Let X be an set, and let Σ be the collection of all subsets of X. Then Σ is a σ-algebra
on X.

• Let X be a set, and let Σ = {ϕ,X}. Then Σ is a σ- algebra of X.
• Let X be an infinite set, and let Σ be the collection of all finite subsets of X . Then
Σ does not contain X and is not closed under complementation; hence it is not a
algebra ( or a σ algebra) on X.

• Let X be an infinite set, and let Σ be the collection of all subsets A of X such that
either A or Ac is finite. Then Σ is an algebra but is not closed under the formation
of infinite unions and hence is not a σ-algebra.

• LetX be a set, and let Σ be the collection of all countable (i.e finite, or countably finite
) subsets of X. Then Σ does not contain X and is not closed under complementation;
hence it is not an algebra.

• Let Σ be the collection of all subsets of R that are unions of finitely many intervals
of the form (a, b], (a,+∞) or (−∞, b]. It is easy to check that each set that belongs
to Σ is the union of a finite disjoint collection of interval of the types listed above,
and then to check that Σ is an algebra on R but not a σ-algebra.

Now, given two sigma algebras, we wish to see if we can combine them to have a new sigma
algebra. This would help use construct σ − algebras. In particular, we have the following
result:-

Theorem 2.4. If Σi denote the σ- algebras on X where i ∈ I(index set). Then, ∩i∈IΣi is
also a σ- algebra on X.

Proof. Let C be a nonempty collection of σ- algebras on X, and let A be the intersection
of σ-algebras that belong to C . Let us check that all the axioms of a σ algebra are indeed
satisfied. X and ϕ both belong to A . IfA ∈ A then, A belongs to all sigma algebras in
C and thus, Ac also belongs to all sigma algebras and thus Ac belongs to C . If {Ai} is a
sequence of sets that belong to A and hence to each σ- algebra in C . Then ∪iAi and ∩iAi
both belong to each sigma algebra in (C) and so to A . ■

From the above theorem, we are motivated to define the following:-

Definition 2.5. For M ⊆ P (X), there is a smallest σ algebra that contains M: σ = ∩M⊆ΣΣ
this is known as the σ-algebra generated by M.

As an illustration of the σ-algebra generated by M; we consider the following example:-
For X = {a, b, c, d, e, f} and M = {a, f, {b, c, d, e}};
σ(M) = {ϕ,X, a, f, {b, c, d, e}, {a, f}, {a, b, c, d, e}, {b, c, d, e, f}}.
Now, we would want to have σ- algebras be generated topologically ( by open sets) and

thus, we have the following definition [3]:-

Definition 2.6. Let (X, T ) be a topological space. The σ algebra generated by open sets
is called the Borel σ-algebra B(X): B(X) = σ(T ).

Motivated to study the generation of Borel σ- algebras [3], we have the following theorem:-

Theorem 2.7. The σ-algebra B(R) of Borel subsets of Ris generated by each of the following
collection of sets.

• the collection of all closed subsets of R;
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• the collection of all sub-intervals of R of the form (−∞, b];
• the collection of all sub-intervals of R of the form (a, b].

Proof. Let B1,B2 and B3 be the σ- algebras generated by the collection of sets in the
above theorem. We will show that B3 ⊆ B2 ⊆ B1 ⊆ B(R) and B(R) ⊆ B3; this will
establish the theorem. Since B(R) includes the family of open subsets of R and is closed
under completmentation, it includes the family of closed subsets of R; thus it includes the
σ-algebra generated by the closed subsets of R, namely B1. The sets of the form (−∞, b] are
closed and so belong to B1; Consequently, B2 ⊆ B1. Since (a, b] = (−∞, b]∩ (−∞, a]c, each
set of the form (a, b] belongs to B2; thus B3 ⊆ B2. Finally, note that each open sub-interval
of Ris the union of the sequence of sets of the form (a, b] and that each open subset of R is
the union of the sequence of open intervals . Thus each open subset of R belongs to B3, and
so B(R) ⊆ B3. ■

Putting everything together, we have a notion of the pair (X,Σ).

Definition 2.8. The pair (X,Σ) is called a Measurable Space and the members of Σ are
called measurable sets.

2.2. Measures. Now, having studied some aspects of σ- algebras, we move on to our main
and original goal of this section, to define measures. We want our measure to be non-negative
( if this condition is dropped then, the measure is called a signed measure). We also want
the empty set to have a zero measure and we would want to relate the union of abstract sets
which belong to a σ- algebra with the addition operator (defined over R and the extended
real umber line) between measures of different subsets of the σ-algebra. In particular, we
have the following definition:-

Definition 2.9. Let (X, Σ) be a measurable space.
A map µ : Σ → R ∪ {+∞,−∞}. where µ satisfies the following properties:-

• For all E ∈ σ, µ(E) ≥ 0
• µ(ϕ) = 0
• For all countable collection {Ek}∞k=1 of pairwise disjoint sets in Σ, µ(∪∞

k=1Ek) =
Σ∞
k=1µ(Ek). This property is known as Countable additivity

is called a measure on a sigma algebra Σ

Note that if at least one set E has a finite measure, then the condition that µ(ϕ) = 0 is
satisfied automatically since µ(E ∪ ϕ) = µ(E) = µ(E) + µ(ϕ) and thus, µ(ϕ) = 0.
Once again, putting everything together, we have the following:-

Definition 2.10. A triple (X,Σ, µ) is called a Measure Space.

Furthermore, measure theory has many applications in probability theory which we won’t
go into in this paper. This motivates us to define the following:-

Definition 2.11. A probability measure is a measure with a total measure one, that is,
µ(X) = 1.
A Probability Space is a measure space with a probability measure.

Now consider the following examples of measures [1, 4]:-

• Let X be an arbitrary set, and let Σ be a σ-algebra on X. Define a function
µ : Σ → [0,+∞] be letting µ(A) be n if A is a finite set with n elements andµ(A) be
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+∞ if A is an infinite set. Then µ is a measure often called the counting measure
on (X,Σ).

• Let X be a nonempty set, and let Σ be a σ-algebra on X. Let x be a member of X.
Define a function δx : Σ → [0,+∞] by letting δx(A) be 1 if x ∈ A and letting δx(A)
be 0 if x ̸∈ A. Then δx is a measure; it is called a point mass concentrated at x.

• Let X be an arbitrary set, and let Σ be an arbitrary σ-algebra on X. Define a
function µ : Σ → [0,+∞] by letting µ(A) be +∞ if A ̸= ϕ, and letting µ(A) be 0 if
A = ϕ. Then µ is a measure.

Having had basic notions of σ-algebras and measures, we move on to investigating certain
properties of measures. The first property that we can read off the definition is monotones:-

Theorem 2.12. If E1 and E2 are measurable sets with E1 ⊆ E2 then,
µ1(E1) ≤ µ(E2)

Proof. Since E1 ⊆ E2, there exists a set F such that E2 = F ∪ E1 and thus,
µ(E2) = µ(F ) + µ(E1). Since measures are non-negative, we see that the following relation
must hold true:- µ1(E1) ≤ µ(E2) ■

Now, recall the third criterion for a measure in its definition. Let us see what happens we
don’t choose the set Ek to be disjoint. In particular, we have the following theorem:-

Theorem 2.13. For any countable sequence E1, E2, E3 of (not necessarily disjoint)
measurable sets En in Σ:- µ(∪∞

i=1Ei) ≤ Σ∞
i=1Ei. The property is known as countable

sub-additivity

Proof. Of the infinite collection {Ei}, we choose disjoint sets {Eai} from them.
And thus, µ(∪∞

i=1Ei) = µ(∪∞
i=1Eai) = Σ∞

i=1Eai ≤ (Σ∞
i=1Ei). Hence, we proved the theorem

we were seeking! ■

3. Outer Measures

Having defined the measures and investigating some of its properties, we now want to
develop a procedure for constructing the measures. We saw earlier the conditions for
countable additivity and countable subadditivity. Let us define a new quantity by relaxing
the condition for countable additivity but instead having countable subadditivity [4]:-

Definition 3.1. Let X be a set, an outer measure on X is a function µ∗ : P (X) → [0,+∞]
such that

• µ∗(ϕ) = 0
• if A ⊆ B ⊆ X the µ(A) ≤ µ(B), and
• if {An} is an infinite sequence of subsets of X, then µ∗(∪nAn) ≤ Σnµ

∗(An)

and the notion of µ∗-measurable sets:-

Definition 3.2. Let X be a set, and let µ∗be an outer measure on X. A subset B of X is µ∗

-measurable if µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc) holds for every subset A of X.

We illustrate some examples below:-

• Let X be an arbitrary set, and define µ∗ on P (X) by µ∗(A) = 0 if A = ϕ and
µ∗(A) = 1otherwise. Then µ∗ is an outer measure.
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• Let X be an arbitrary set, and define µ∗ on P (X) by µ∗(A) = 0 if A is countable
and µ∗(A) = 1 if A is uncountable . Then µ∗ is an outer measure.

• Let X be an infinite set, and define µ∗ on P (X) by µ∗(A) = 0 if A is finite, and
µ∗(A) = 1 if A is infinite. Then µ∗ fails to be countably sub additive and so not an
outer measure.

How does this connect to constructing measures? Well, if µ∗ is an outer measure on X, let
Mµ∗ be the collection of all µ∗-measurable subsets on X. Then, one can show that not only
is Mµ∗ a σ algebra, but the restriction of µ∗ to Mµ∗ is a measure on Mµ∗ . In particular,

Theorem 3.3. Let X be a set, let µ∗ be an outer measure on X, and let Mµ∗ be the
collection of all µ∗-measurable subsets on X. Then

• Mµ∗ is a σ algebra, and
• the restriction of µ∗ to Mµ∗ is a measure on Mµ∗.

Proof. We shall first show that M is an sigma algebra. Note that both X and the empty
set are all µ∗-measurable subsets on X. The µ∗ measurability of a set B implies the
µ∗-measurability of any set Bc since µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc) and so, if B ∈ Mµ∗

then Bc ∈ Mµ∗ . Now suppose that B1 and B2 are µ
∗-measurable subsets of X; we will show

that B1 ∪B2 is µ∗- measurable. For this, let A be an arbitrary subset of X. The
µ∗-measurability of B1 implies
µ∗(A∩(B1∩B2)) = µ∗(A∩(B1∩B2)∩B1)+µ

∗(A∩(B1∩B2)∩Bc
1) = µ∗(A∩B1)+µ

∗(A∩Bc
1∩B2).

Using this identity and the fact that (B1 ∪B2)
c = Bc

1 ∩Bc
2 and appealing to the

measurability of B1 and B2, we get
µ∗(A ∩ (B1 ∩B2)) + µ∗(A ∩ (B1 ∩B2)

c) =
µ∗(A ∩B1) + µ∗(A ∩Bc

1 ∩B2) + µ∗(A ∩Bc
1 ∩Bc

2) = µ∗(A ∩B1) + µ∗(A ∩Bc
1) = µ∗(A).

Since A was an arbitrary subset of X, the set B1 ∪B2 must be measurable. Thus Mµ∗ is
an algebra.
Suppose that{Bi} is an infinite sequence of disjoint µ∗-measurable sets, by induction,
µ∗(A) = Σn

i=1µ
∗(A∩Bi) + µ∗(A∩ (∩ni=1B

c
i )) since this is true for i = 1 by definition and the

rest follows from induction since if this is true then, µ∗(A ∩ (∩ni=1B
c
i )) =

µ∗(A∩ (∩ni=1B
c
i )∩Bn+1)+µ∗(A∩ (∩ni=1B

c
i )∩Bc

n+1) = µ∗(A∩ (∩n+1
i=1 B

c
i ))+µ∗(A∩ (∩n+1

i=1 B
c
i ))

Which means,
µ∗(A) = Σ∞

i=1µ
∗(A ∩Bi) + µ∗(A ∩ (∩∞

i=1B
c
i )) = µ∗(A ∩ (∪∞

i=1Bi) + µ∗(A ∩ (∩∞
i=1B

c
i ))

µ∗(A) ≥ µ∗(A ∩ (∪∞
i=1Bi) + µ∗(A ∩ (∩∞

i=1B
c
i )).

and thus, it follows that ∪∞
i=1Biis µ

∗-measurable. Similarly, we can do the same for
intersections and prove that ∩∞

i=1Biis µ
∗-measurable. We have thus proved that Mµ∗ is a

σ-algebra. Replacing A with ∪∞
i=1Bi, µ

∗(∪∞
i=1Bi) = Σ∞

i=1µ
∗(Bi) + 0. Hence, we proved that

the restriction of µ to Mµ∗ is a measure on Mµ∗

■

Now, we turn into a very important example of an outer measure which we call a Lebesgue
outer measure in R

Definition 3.4. For each A of R, let CA be the set of all infinite sequences {(ai, bi)} of
bounded open intervals such that A ⊆ ∪i(ai, bi). Then λ∗ : P (R) → [0,+∞] is called the
Lebesgue outer measure defined by λ∗(A) = inf{Σi(bi − ai) : {(ai, bi)} ∈ CA

Now let us prove that this is indeed an outer measure:-
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Theorem 3.5. Lebesgue outer measure on R is an outer measure and assigns to each
sub-interval of R its length.

Proof. We begin by verifying λ∗ is an outer measure. The relation λ∗(ϕ) = 0 holds, since
for every positive number ϵ there is a sequence {(ai, bi)} of open intervals (whose union
necessarily includes ϕ) such that

∑
i(bi − ai) < ϵ. For the monotonicity of λ∗, note that if

A ⊆ B, then each sequence {(ai, bi)} of open intervals that cover B also covers A, and so
λ∗(A) ≤ λ∗(B). Now consider the countable sub-additivity of λ∗. Let {An}∞n=1. If
Σnλ

∗(An) = +∞, then λ∗(∪nAn) ≤ Σnλ
∗(An) certainly holds. So, suppose that

Σnλ
∗(An) < +∞ and let ϵ be an arbitrary positive number. For each n choose a sequence

{(ai, bi)}∞i=1 that covers An and satisfies
∑∞

i=1(bn,i− an,i) < λ∗(An) +
ϵ
2n

If we combine these
sequences to one sequence{ai, bj} then the combined sequence satisfies ∪nAn ⊆ ∪j(aj, bj)
and

∑
j(bj − aj) <

∑
n(λ

∗(An) +
ϵ
2n
) =

∑
n λ

∗(An) + ϵ. Now we compute the Lebesgue

outer measure of the sub-intervals of R. First consider a closed bounded interval [a, b].
Now, λ∗[a, b] ≤ b− a since the RHS is the minimum of what the Lebesgue outer measure
can produce since that interval will always be covered. We turn to the reverse inequality.
Let {(ai, bi)} be a sequence of bounded open intervals whose union includes [a, b]. Since
[a, b] is compact, there is a positive integer n such that[a, b] ⊆ ∪ni=1(ai, bi). Now,
b− a =

∑n
i=1(bi − ai) and thus, b− a =

∑∞
i=1(bi − ai). Since {(ai, bi)} was an arbitrary

sequence whose union includes[a, b], it follows that b− a ≤ λ∗([a, b]). Thus, λ∗([a, b]) = b− a
The outer measure of an arbitrary bounded interval is its length, since such an interval I
includes and is included in closed bounded intervals of length arbitrarily close to the length
of I. Finally an unbounded interval has an infinite Lesbegue open measure. ■

We denote the collection of Lebesgue measurable subsets of R by Mλ∗

Theorem 3.6. Every Borel subset of R is Lebesgue measurable

Proof. B(R) is the smallest σ-algebra that contains each interval of the form (−∞, b].
Now, if every interval of the form (−∞, b] is Lebesgue measurable the, the statement of the
theorem follows. Now, let B be such an interval and A be any subset of R. So, we need
only check that λ∗(A) ≥ λ∗(A ∩B) + λ∗(A ∩Bc) since the reverse inequality follows
automatically by the countable sub-additivity condition. Let ϵ be an arbitrary positive
number and let {(an, bn)} be a sequence of open intervals that cover A and satisfy∑∞

i=1(bn − an) < λ∗(A) + ϵ. Then for each n the sets(an, bn) ∩B and (an, bn) ∩Bc are
disjoint intervals whose union is (an, bn), and so
bn − an = λ∗((an, bn)) = λ∗((an, bn) ∩B) + λ∗((an, bn),∩Bc). Since the sequence
{(an, bn) ∩B} covers A ∩B and the sequence (an, bn) ∩Bc} covers A ∩Bc, from the
countable sub-additivity of λ∗, we have:-
λ∗(A∩B)+λ∗(A∩Bc) ≤

∑
nλ

∗((an, bn)∩B)+
∑

nλ
∗((an, bn)∩Bc) =

∑
n(bn−an) < λ∗(A)+ϵ

However, ϵ was arbitrary and so the Lebesgue measurability of B follow.Thus, the
collection Mλ∗ of Lesbegue measurable sets is a σ-algebra on R all intervals of the
form(− inf, b]. However, B(R) is the smallest σ-algebra that contains all these intervals
and so B(R) ⊆ Mλ∗

■

We shall denote the Lebesgue outer measures restricted to Mλ∗ as λ and call it the
Lebesgue measure (since, it is indeed a measure). Now, we shall study the various
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properties of Lebesgue measures. Now let us investigate Lebesgue measures of sets in terms
of Lebesgue measures of its subsets and vica-versa:-

Theorem 3.7. Let A be a Lebesgue measurable subset of R. Then
• λ(A) = inf{λ(U) : U is open and A ⊆ U}
• λ(A) = sup{λ(K) : Kis compact and K ⊆ A}

Proof. Note that the monotonicity of λ implies that
λ(A) ≤ inf{λ(U) : U is open and A ⊆ U}
and
λ(A) ≥ inf{λ(K) : K is compact and K ⊆ A}
. Hence, we need only prove reverse inequalities.Let ϵ be an arbitrary positive
number.Then, there is a sequence{Ri} of open intervals such that A ⊆ ∪iRi and∑

i length(Ri) < λ(A)+ ϵ. Let U be a union of these intervals. Then U is open, A ⊆ U , and
λ(U) =

∑
i λ(Ri) =

∑
i length(Ri) < λ(A) + ϵ. Since ϵ is arbitrary the first part is proved.

We turn to part (b) and deal first with the case where A is bounded. Let C be a closed and
bounded set that includes A, and let ϵ be an arbitrary positive number. Use part (a) to
choose an open set U that includes C − A and satisfiesλ(U) < λ(C − A) + ϵ.
Let K = C − U . Then K is a closed and bounded subset of A;furthermore, C ⊆ K ∪ U and
so λ(C) ≤ λ(K) + λ(U). Now λ(C −A) = λ(C)− λ(A) and thus, λ(A)− ϵ < λ(K). Since ϵ
was arbitrary, part (b) is proved in the case where A is bounded.
Finally, consider the case where A is not bounded. Suppose b is any real number lass than
λ(A); we will produce a compact subset K of A such that b < λ(K). Let {AJ} be an
increasing sequence of bounded measurable subsets of A such that A = ∪jAj.Now,
λ(A) = limjλ(Aj) and so we can choose jo such that λ(Aj0) > b. Now
applyλ(Aj0)− ϵ < λ(K). Since ϵ; this gives a compact subset K of Aj0 such that λ(K) > b.
Since b was an arbitrary number less than λ(A), the proof is complete. ■

Furthermore, we have the following translational symmetry property:-

Theorem 3.8. Lebesgue outer measure on R is translational invariant, in the sense that if
x ∈ R and A ⊆ R, then λ∗(A) = λ∗(A+ x). Furthermore, a subset B of Ris Lebesgue
measurable if and only if B + x is Lebesgue measurable.

Proof. For all{a, b} ∈ R, λ∗({a, b}) = b− a = (b+ x)− (a+ x) = λ∗({a+ x, b+ x}). The
second assertion follows from the first and the condition for Lebesgue measurable sets. ■

Theorem 3.9. There is a subset of R, and in fact of the interval (0, 1), that is not
Lebesgue measurable

Proof. Define a relation ∼= on R by letting x ∼= y hold if and only if x− y is rational. Note
that; ∼= is reflexive (x ∼= x since 0 is rational ), symmetric (x ∼= y implies y ∼= x since if p is
rational then, −p is also rational) and transitive ( if x ∼= y and y ∼= z then, x ∼= z, this is
true because,if x− y = p and y − z = q where p and q are rational then, p+ q = x− z‘and
since the sum of two rationals is always a rational, x ∼= z).And hence, ∼= is an equivalence
class. Note that each equivalence class under ∼= has the form Q+ x for some x and so is
dense in R. Since these equivalence classes are disjoint , and since each intersects the
interval (0, 1), we can use the axiom of choice to form a subset E of (0, 1) that contains
exactly one element from each equivalence class. We will prove that E is not Lebesgue
measurable. ■
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Let {rn} be an enumeration of rational numbers in the interval (−1, 1), and for each n and
let En = E + rn. We will check that
(a) the sets Em are disjoint,
(b)∪nEn is included in the interval (-1,2), and,
the interval (0, 1)is included in ∪nEn.
To check (a), note that if Em ∩ En ̸= ϕ, then there are elements e and e’ of E such
thate+ rm = e′ + rn; it follows that e ∼ e′ and hencee = e′ and m = n . Thus, (a) is
proved. Assertion (b) follows from the inclusion E ⊆ (0, 1) and the fact that each term of
the sequence {rn} belongs to (−1, 1). Now consider the assertion (c). Let x be an arbitrary
member of (0, 1) and let e be the member of E that satisfies x ∼ e. Then x− e is a rational
and belongs to (−1, 1) and so has the form rn for some n. Hence x ∈ En and assertion (c)
is proved.
Suppose that the set En is Lebesgue measurable. Then, for each n, the set En is
measurable , and so the property (a) above implies that λ(∪nEn) =

∑
n λ(En);

furthermore the translational invariance of λ implies that λ(En) = λ(E) holds for each n.
Hence, if λ(E) = 0, then λ(∪nEn) = 0, contracting the assertion (c) above, while if
λ(E) ̸= 0, then λ(∪nEn) = +∞ contracting the assertion (b) above. Thus, by proof by
contradiction, E is not Lebesgue measurable.

4. Measurable Functions

In this section we shall extend the notion of measurability to functions rather than just
sets and define the notion of a measurable functions. In particular, we shall begin with the
following observation [4]:-

Theorem 4.1. Let (X,Σ) be a measurable space, and let A be a subset of X that belongs to
Σ. For a function f : A→ [−∞,+∞] the conditions

• for each real number t the set {x ∈ A : f(x) ≤ t} belongs to Σ
• for each real number t the set {x ∈ A : f(x) < t} belongs to Σ
• for each real number t the set {x ∈ A : f(x) ≥ t} belongs to Σ
• for each real number t the set {x ∈ A : f(x) > t} belongs to Σ are equivalent.

Proof. The identity {x ∈ A : f(x) < t} = ∪n{x ∈ A : f(x) ≤ t− 1/n} implies that each of
the sets appearing in the second condition is a union of sequence of sets appearing in the
first condition; hence the first condition implies the second condition . The sets appearing
in the third condition can be expressed by those appearing in the second condition by the
means of the identity {x ∈ A : f(x) ≥ t} = A− {x ∈ A : f(x) < t};
thus the second condition implies the third condition . Similarly by
{x ∈ A : f(x) > t} = ∪n{x ∈ A : f(x) ≥ t− 1/n}, we see that the third condition implies
the fourth condition. ■

A function f : A→ [−∞,+∞] is measurable with respect to Σ if it satisfies one and hence
all conditions of the above theorem. To illustrate this, we shall consider the following
examples:-

• Let f : R → R be continuous . Then for each real number t the set
{x : Rd : f(x) < t} is open and so is a Borel set . Thus f is Borel measurable.

• Let I be a sub-interval of R, and let f : I → R be decreasing . Then for each real
number t the set {x ∈ I : f(x) < t} is a Borel set(it is either an interval, a set
consisting of only one point, or the empty set).Thus f is Borel measurable.
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Now, we further explore the properties of measurable functions and how a measurable
space ( a σ algebra) can be ”made” out of two measurable functions:-

Theorem 4.2. Let (X,Σ) be a measurable space, let A be a subset of X that belongs to Σ,
and let f and g be [−∞,+∞]-valued functions on A. Then the sets{x ∈ A : f(x) ≤ g(x)},
and {x ∈ A : f(x) = g(x)} belong to Σ.

Proof. Note that the inequality f(x) < g(x) holds if and only if there is a rational number r
such that f(x) < r < g(x). Thus,
{x ∈ A : f(x) < g(x)} = ∪r∈Q({x ∈ A : f(x) < r} ∩ {x ∈ A : r > g(x)}
and so {x ∈ A : f(x) < g(x)}, as the union of a countable collection of sets that belong to
Σ, itself belongs to Σ. The set {x ∈ A : g(x) < f(x)} likewise belongs to Σ. This and the
identity {x ∈ A : f(x) ≤ g(x)} = A− {x ∈ A : g(x) < f(x)}
imply that {x ∈ A : f(x) ≤ g(x)} belong to Σ. Finally {x ∈ A : f(x) = g(x)} is the
difference of {x ∈ A : f(x) ≤ g(x)} and {x ∈ A : f(x) < g(x)} and so belongs to Σ. ■

Let f and g be [−∞,+∞]- valued functions having a common domain. The maximum and
minimum of f and g, written f ∨ g and f ∧ g, are functions from A to [−∞,+∞] defined by
(f ∨ g)(x) = max(f(x), g(x)) and
(f ∧ g)(x) = min(f(x), g(x))
If {fn} is a sequence of [−∞,+∞]- valued functions on A, then supnfn : A→ [−∞,+∞] is
defined by (supfn)n(x) = sup{fn(x) : n = 1, 2, ...}.
infnfn, lim supnfn, lim infnfn and limnfn are defined in analogous ways.
Now that we have defined these ∧ and ∨ operations , we move on to the next reasonable
thing to do- check whether the measurability of a function is preserved by these operations.
In particular, we have the following theorems:-

Theorem 4.3. Let (X,Σ) be a measurable space, let A be a subset of X that belongs to Σ,
and let f and g be[−∞,+∞]- valued measurable functions on A. Then f ∨ g and f ∧ g are
measurable.

Proof. The measurability of f ∨ g follows form the identity
{x ∈ A : (f ∨ g)(x) ≤ t} = {x ∈ A : f(x) ≤ t} ∩ {x ∈ A : g(x) ≤ t},
and the measurability of f ∧ g follows from the identity
{x ∈ A : (f ∧ g)(x) ≤ t} = {x ∈ A : f(x) ≤ t} ∪ {x ∈ A : g(x) ≤ t} ■

Theorem 4.4. Let (X,Σ) be a measurable space, let A be a subset of X that belongs to Σ,
and let fn be a sequence of [−∞,+∞]-valued measurable functions on A. Then

• the functions supnfn and infnfn are measurable
• the functions limsupnfn and liminfnfn are measurable,
• the functions limnfn (whose domain is {x ∈ A :limsupnfn =lim infnfn

Proof. The measurability of supnfn and infnfn follows from the identities:-
{x ∈ A : supnfn(x) ≤ t} =

⋂
n{x ∈ A : fn(x) ≤ t} and

{x ∈ A :infnfn(x) < t} =
⋃
n{x ∈ A : fn(x) < t}

For each positive integer k define the functions gk and hk by gk = supn≥kfn and
hk = infn≥kfn. Part (a) of the proposition implies the first that each gk is measurable and
that each hk is measurable and then that infkgk and supkhk are measurable. Since
limsupnfn and liminfnfn are equal to infkgk and supkgk, they too are measurable . Let A0

be the domain of limnfn. Then A0 is equal to {x ∈ A :limsupnfn(x) =liminfnfn(x)} which
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belong to Σ. Since
{x ∈ A : limnfn(x) ≤ t} = A0 ∩ {x ∈ A : limnsupfn(x) ≤ t},
the measurability of limnfn follows. ■

Similarly, now we check whether scalar multiplication and addition preserves
measurability:-

Theorem 4.5. Let (X,Σ) be a measurable space , let A be a subset of X that belongs to Σ,
let f and g be [0,+∞]-valued measurable-functions on A, and let α be a nonnegative real
number . Then αf and f + g are measurable.

Proof. For the measurability of αf , note that if α = 0, then αf is identically 0 and hence
measurable, while if α > 0, then for each t the set {x ∈ A : αf(x) < t} is equal to
{x ∈ A : αf(x) < t/α} and so belongs to Σ.
We turn to (f + g)(x). Now (f + g)(x) < t holds if an only if there is a rational number r
such that f(x) < r and g(x) < t− r. Thus
{x ∈ A : (f + g)(x) < t} =

⋃
r∈Q({x ∈ A : f(x) < r}

⋂
{x ∈ A : (f + g)(x) < t− r}

and so {x ∈ A : (f + g)(x) < t}, as the union of countable collection of sets that belong to
Σ, belong to Σ. The measurability of f + g follows. ■

And now, we consider a wider range of operators and a wider class of measurable functions:-

Theorem 4.6. Let (X, Σ) be a measurable space, let A be a subset of X that belongs to Σ,
let f and g be a measurable- real valued functions on A, and let α be a real number. Then
α, f + g,f − g, f/g ( where the domain of {x ∈ A : g(x) ̸= 0}) are measurable

Proof. The measurability αf and f + g can be verified by modifying the proof of the
theorem above ( note that if α < 0, then {x ∈ A : αf(x) < t} = {x ∈ A : f(x) > t/α}. The
measurability of f + g follows from that of f + (−1)g. We turn to the proof of measurable
functions and begin by showing if h : A→ R is measurable, then h2 is measurable. For this
note that if t ≤ 0, then
{x ∈ A : h2(x) < t} = ϕ while if t > 0, then
{x ∈ A : h2(x) < t} = {x ∈ A :

√
−t < h2(x) <

√
t}; the measurability of h2 follows. Hence

if f and g are measurable, then f 2 and g2 and (f + g)2 are measurable, and the

measurability of fg follows from the identity fg = (f+g)2−f2−g2
2

.
Let A0 = {x ∈ A : g(x) ̸= 0}, so that A0 is the domain of f/g. A0 belongs ot Σ. Since for
each t the set {x ∈ A0 : (f/g)(x) < t} is the union of
{x ∈ A : g(x) > 0} ∩ {x ∈ A : f(x) < tg(x)}
and
{x ∈ A : g(x) < 0} ∩ {x ∈ A : f(x) > tg(x)}
the measurability of f/g follows. ■

Motivated by the definition of ∧ and ∨ operators, we write the following definition down:-

Definition 4.7. Let A be a set, and let f bean extended real-valued function on A. The
positive part f+ and the negative part f− of f are extended real valued functions defined by
f+ = max(f(x), 0) = f ∨ 0 and
f− = −min(f(x), 0) = (−f) ∧ 0

Investigating measurability more, we have the following theorem:-
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Theorem 4.8. Let (X,Σ) be a measurable space, let A be a subset of X that belongs to Σ,
and let f be a [0,+∞]-valued measurable function on A. Then there is a sequence {fn} of
simple [0,+∞)-valued measurable functions on A that satisfy
f1(x) ≤ f2(x) ≤ ...
and
f(x) = limnfn(x)
at each x in A

Proof. For each positive integer n and for k = 1, 2, ...n2n let
An,k = {x ∈ A : k−1

2n
< f(x) < k

2n
}. The measurability of f implies that each An,k belongs

to Σ. Define the sequence {fn} of functions from A to R by requiring fn to have the value
(k−1)
2n

at each point in An,k (for k = 1, 2, ...n2n) and to have value n at each point in
A− ∪kAn,k. The functions defined above are simple and measurable, and they do satisfy
the above conditions at each x in A. ■

5. Integration

5.1. Riemann Integration. Now, we proceed to the second part of the paper namely-
Integration [5, 8, 11]. We shall first have a quick overview of Riemann integration after
which we shall dice into Lebesgue integration

Definition 5.1. The lower Riemann sum of f(x) corresponding to the dissection
∆ = xj+1 − xj for all j ∈ N is defined as the following sum:-

s(f,∆) =
∑j

n=1∆infx∈∆f(x)
and the upper Riemann sum is given by:-
S(f,∆) =

∑j
n=1∆supx∈∆f(x)

The upper Riemann integral is always at least as large as the lower one, if the two are
equal, we say that f is Riemann integrable and call this common value the Riemann
integral of f . Now, we shall relate the Riemann integral with step functions:-

Definition 5.2. A step function is a function ψ that has the form
ψ(x) = ci, xi−1 < x < xi for some subdivision of [a, b] and some set of constants ci

The integral of ψ(x) is defined by
s(ψ,∆) =

∑n
i=1 ci∆

With this in mind, we see that s(f,∆) = infs(ψ,∆)
for all step functions ψ(x) ≥ f(x).
Similarly, s(f,∆) = sups(ϕ,∆)
for all step functions ϕ(x) ≤ f(x).
Now, to sketch the shortcomings of the Riemann integral, we consider the following
example:-
If

f(x) =

{
1 if x rational

0, if x irrational

then, S(f,∆) = b− a and s(f,∆) = 0
Thus, we see that f(x) is not integrable in the Riemann sense.
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5.2. Lebesgue Integral. Now, we would like a function which is 1 in a measurable set
and zero elsewhere to be integrable and have its integral the measure of the set.
The function ξE defined by:-

ξE =

{
1 if x ∈ E

0, if x ̸∈ E

is called a characteristic function on E. A linear combination ϕ(x) =
∑n

i=1 aiξE(x) is
called a simple function if the sets Ei are called measurable. This representation of ϕ is
not unique. If ϕ is a simple function and [a1, a2, ..., an] the set of non-zero values of ϕ, then
ϕ =

∑n
i=1 aiξAi

where Ai = {x|ϕ(x) = ai}. This representation for ϕ is called the
canonical representation and is characterized by the fact that the A′

is are disjoint and
the ai are distinct and nonzero.
If ϕ vanishes outside a set of finite measure , we define the integral ϕ by∫
ϕdx =

∑n
i=1 aiµ(Ai). In particular, we have the following theorem:-

Theorem 5.3. If E1, E2, ...En are disjoint measurable subset of E then every linear
combination ϕ =

∑n
i=1 ciξEi

With real coefficients c1, c2, ..., cn is a simple function and
∫
ϕ =

∑n
i=1 ciµ(Ei)

Proof. It is clear that ϕ is a simple function. Let a1, a2, ..., an denote the non-zero real
number in ϕ(E). For each j = 1, 2, ...n.
Let Aj = ∪ci=ajEi.
Then we have Aj = ϕ−1(aj) = {x|ϕ(x) = aj} and the canonical representation
ϕ =

∑n
j=1 ajξAj

. Consequently, we obtain∫
ϕ =

∑n
j=1 ajµ(Aj) =

∑n
j=1 ajµ(∪ci=ajEi) =

∑n
j=1 aj

∑n
ci=aj

µ(Ei) =
∑n

j=1 cjµ(Ej)

This completes the proof! ■

Now, we turn over to investigate certain properties of this integral, in particular, we have
the following property of linearity and monotoneness of integrals of simple functions that
we would expect:-

Theorem 5.4. Let ϕ and ψ be simple functions that vanish outside of a set of finite
measure . Then

∫
(aϕ+ bψ) = a

∫
ϕ+ b

∫
ψ and if, ϕ ≥ ψ then,

∫
ϕ ≥

∫
ψ

Proof. Let {Ai} and {Bi} be the sets which occur in the canonical representation of ϕ and
ψ. Let A0 and B0 be the sets where ϕ and ψ are zero. Then the set Ek is obtained by
taking all the intersections Ai ∩Bk form a finite disjoint collection of measurable sets, and
we write
ϕ =

∑N
k=1 akξEk

and ψ =
∑N

k=1 bkξEk

and so, aϕ+ bψ = a
∑N

k=1 akξEk
+ b

∑N
k=1 bkξEk

=
∑N

k=1(aak + bbk)ξEk

Therefore,
∫
aϕ+ bψ =

∑N
k=1(aak + bbk)µ(Ek) = a

∑N
k=1(ak)µ(Ek) + b

∑N
k=1(bk)µ(Ek) =

a
∫
ϕ+ b

∫
ψ.

And hence, the first statement of the theorem is proved! To prove the second statement,
we note that

∫
ϕ−

∫
ψ =

∫
ϕ− ψ ≥ 0 since the integral of a simple function which is

greater than or equal to 0 is non negative.
■

In what follows, we shall also use the notion of almost everywhere, a property is said to
hold almost everywhere if it holds everywhere except where the measure of the set under
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consideration is 0.
Now we want to have a notion for Integrability like when we had for Riemann Integrability,
if the upper and lower Riemann integral are equal. This motivates us to have the following
theorem:-

Theorem 5.5. Let f be defined and bounded on a measurable set E with µ(E) finite. In
order that inff≤ψ

∫
E
ψ(x)dx = supf≥ϕ

∫
E
ϕ(x)dx. For all simple functionsϕ and ψ, it is

necessary and sufficient thatf be measurable.

Proof. Let f be bounded by M and suppose that f is measurable . Then the sets

Ek = {x|KM
n

≥ f(x) > (K−1)M
N

},
are measurable, disjoint and have union E. This

∑k=+n
k=−n µEk = µE.

The simple functions defined by ψn(x) =
M
n

∑n
k=−n kξEk

(x) and

ψn(x) =
M
n

∑n
k=−n(k − 1)ξEk

(x)
satisfy ϕn(x) ≤ f(x) ≤ ψn(x).
Now, inf

∫
E
ψ(x)dx ≤

∫
E
ψn(x)dx = M

n

∑n
k=−n kµ(Ek) and

sup
∫
E
ϕ(x)dx ≥

∫
E
ϕn(x)dx = M

n

∑n
k=−n(k − 1)µ(Ek).

Hence,0 ≤ inf
∫
E
ψ(x)dx− sup

∫
E
ϕ(x)dx ≤ M

n

∑n
k=−n µ(Ek) =

M
n
µ(E). Since n is

arbitrary,inf
∫
E
ψ(x)dx− sup

∫
E
ϕ(x)dx = 0

and the condition is sufficient.
Suppose now that infψ≥f

∫
E
ψ(x)dx = supf≥ϕ(x)

∫
E
ϕ(x)dx. Then given n simple

functionsϕn and ψnsuch that ϕn ≤ f(x) ≤ ψn. And
∫
ψndx−

∫
ϕndx <

1
n
.

Then the functions ψ∗ = infψn and ϕ∗ = supϕn are measurable and ϕ∗(x) ≤ f(x) ≤ ψ∗(x).
Now the set ∆ = {x|ϕ∗(x) < ψ(x) is the union of the sets ∆v = {x|ϕ∗(x) < ψ∗(x)− 1

v
}.

But each ∆v is contained in the set{x|ϕn(x) < ψn(x)− 1
v
} and this latter set has a measure

less than v
n
. Since n is arbitrary, µ(∆v) = 0 and hence µ(∆) = 0. Thus ϕ∗ = ψ∗ , and

ϕ∗ = f . Thus f is measurable and the condition is also necessary. ■

Definition 5.6. If f is a bounded measurable function defined on a measurable set E with
µ(E) finite , we define the Lebesgue integral of f over E by∫
E
f(x)dx = inf

∫
E
ψ(x)

for all simple functionsψ ≥ f . By the previous theorem, this may also be defined as∫
E
f(x)dx = sup

∫
E
ϕ(x)

Now, having this notion of Lebesgue integration, in order to get most out of it, we compare
it with that of Riemann Integration. Notable, we have the following main differences:-

• The most obvious difference is that in Lebesgue’s definition, we divide up the
interval into subsets while in the case of Riemann we divide it into sub-intervals.

• In both Riemann and Lebesgue’s definitions, we have upper and lower sums which
tend to limits. In the Riemann case, the two integrals are not necessarily the same
and the function is integrable only if they are same.In the Lebesgue case, the two
integrals are not necessarily the same, their equality being the consequence of the
assumption that the function is measurable .

• Lebesgue’s definitions more general than Riemann. We know if the function is
R-integrable then it is Lebesgue integrable also, but the converse need not be true.
For example, the characteristic function of the set of irrational points has Lebesgue
integral but not R-integrable .



16 AARAV SHAH EULER CIRCLE

Figure 1. Riemann and Lebesgue integration. The blue one represents
Riemann integration and the the red one Lebesgue.

Now let us establish some basic properties of Lebesgue integrals:-

Theorem 5.7. If f and g are bounded measurable functions defined on the set E of finite
measure then,

•
∫
E
af = a

∫
E
f

•
∫
E
(f + g) =

∫
E
f +

∫
E
g

• If f ≤ g then,
∫
E
f ≤

∫
E
g

• If f = g then,
∫
E
f =

∫
E
g

• If f = g then,
∫
E
f =

∫
E
g

• If A ≤ f(x) ≤ B, the Aµ(E) ≤
∫
E
f ≤ Bµ(E)

• If A and B are disjoint measurable set of finite measure, then
∫
A∪B f =

∫
A
f +

∫
B
f .

Proof. We know that if ψ is a simple function then so is ψ. Hence∫
E
af = infψ≥f

∫
E
aψ = ainfψ≥f

∫
E
ψ = a

∫
E
f which proves the first statement. To prove

the second statement, let ϵ denote any positive real number. These are simple functions
ϕ ≤ f, ψ ≥ f, ξ ≤ g and η ≥ g satisfying∫
E
ϕ(x)dx <

∫
E
f − ϵ and

∫
E
ψ(x)dx >

∫
E
f + ϵ,∫

E
ξ(x)dx >

∫
E
g − ϵ and

∫
E
η(x)dx <

∫
E
g + ϵ,

Since these hold for every ϵ > 0, we have
∫
E
(f + g) =

∫
E
f +

∫
E
g. To prove the third

statement,from the second statement, we see that it suffices to establish that if f ≤ g then,∫
E
g − f ≥ 0. Now from the condition of the problem, g − f ≥ 0 and thus, for all simple

functions ψ ≥ g − f ≥ 0,
∫
E
ψ ≥ 0 therefore,

∫
E
g − f = infψ≥g−f

∫
E
ψ(x) ≥ 0 which

establishes the third statement. Similarly, we can show that∫
E
(f − g) = infψ≥(f−g)

∫
E
ψ(x) ≤ 0 and thus, the fourth statement follows. To prove the

fifth statement, we are given that A ≤ f(x) ≤ B. Applying the third statement, we see
that

∫
E
fdx ≤

∫
E
Bdx = B

∫
E
dx = Bµ(E). That is,

∫
E
f ≤ Bµ(E) ; similarly we can also

prove that Aµ(E) ≤
∫
E
f . We know that ξA∪B = ξA + ξB which proves the fourth

statement. ■

5.3. Fatou’s lemma, Monotone Convergence Theorem and the Dominated
Convergence Theorem. Now, we turn our attention into 3 profound theorems in
measure theory which highlight the advantage of Lebesgue integration over Riemann
integration. We start with the Monotone Convergence Theorem.
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Recall the Monotone Convergence theorem in real analysis [9]:-

Theorem 5.8. Let < xn > be an increasing real sequence which is bounded above. Then
< xn > converges to its supremum.

Proof. Let B = supxn. We need to show that xn → B as n→ ∞. For all ϵ > 0, B − ϵ is
not an upper bound. Thus, ∃N ∈ N : xN > B − ϵ.; but < xn > is increasing. Hence,
∀n > N : xn ≥ xN > B − ϵ. Now, B is till an upper bound for < xn >, then:
∀n > N : B − ϵ < xn ≤ B which means, ∀n > N : B − ϵ < xn < B + ϵ finally,
∀n > N : |xn −B| < ϵ. Hence, < xn > indeed converges to its supremum. ■

We now proceed to the monotone convergence theorem in the framework of measure theory
and Lebesgue integration [10]:-

Theorem 5.9. Let (X,Σ, µ) be a measurable space. Let u : X → R be a positive
Σ-measurable function. Let < un >n∈N be a sequence of positiveΣ measurable functions
un : X → R such that ui(x) ≤ uj(x) for all i ≤ j and: u(x) = limn→∞un(x) holds for all
x ∈ X except when µ(x) = 0. Then,

∫
u(x)dµ = limn→∞

∫
un(x)dµ.

Proof. Now since ui(x) ≤ uj(x) for all i ≤ j, it follows that
∫
uidµ ≤

∫
ujdµ. and hence,

the the integral of the sequence< un > of positive Σ measurable functions is an increasing
sequence. Applying the monotone convergence theorem for real analysis, limn→∞

∫
un(x)dµ

exists and
∫
u(x)dµ ≥ limn→∞

∫
un(x)dµ. To prove the equality, we know prove the reverse

inequality. Let ϕ be a simple function ϕ ≤ u and, En = {x : fn(x) ≥ ϕ(x)} since un is an
increasing sequence, En ⊆ En+1 and En ⊆ X. Now, limn→∞

∫
En
ϕdµ =

∫
X
ϕdµ =

∫
ϕdµ.

Now,
∫
En
ϕdµ ≤

∫
En
udµ taking limit, n→ ∞,

∫
X
ϕdµ ≤ limn→∞

∫
undµ taking the

supremum of ϕ, we get
∫
u(x)dµ ≤ limn→∞

∫
un(x)dµ. We have thus obtained the result we

desired. ■

We know proceed to the second main result of this subsection, namely, Fatou’s lemma [7].

Theorem 5.10. Let (X,Σ, µ) be a measure space and {fn : X → [0,+∞]} a sequence of
nonnegative measurable functions. Then the function limn→∞inffn is measurable and∫
X
limn→∞inffn ≤ limn→∞ inf

∫
X
fn.

Proof. For each k ∈ N, let gk =infn≥kfn and define
h = limk→∞ gk = limk→∞infn≥kfn = limn→∞ inf fn. Note that

∫
gk ≤

∫
fn for all n ≥ k, and

thus;
∫
gk ≤infn≥k

∫
fn. By the monotone convergence theorem

,
∫
X
limn→∞ inf fn =

∫
h = limk→∞

∫
gk ≤ limk→∞infn≥k

∫
fn = limn→∞ inf

∫
fn. And thus,

we have arrived at the desired result. ■

And now, we finally turn our attention into the dominated convergence theorem [12]:-

Theorem 5.11. Suppose fn : R → [−∞,+∞] are Lebesgue measurable functions such that
the point wise limit f(x) = limn→∞ fn(x) exists.Assume there is an integrable
g : R → [0,∞] with |fn(x)| ≤ |gn(x)| for each x ∈ R. Then f is integrable as is fn for each
n, and limn→∞

∫
R fndµ =

∫
R limn→∞ fndµ =

∫
R fdµ.

Proof. Since |fn(x)| ≤ |gn(x)| and g is integrable,
∫
R |fn|dµ ≤

∫
R gdµ <∞. So fn is

integrable. Let hn = g − fn, so that hn ≥ 0. By Fatou’s lemma,
limn→∞inf

∫
R(g − fn)dµ >

∫
Rlimn→∞inf(g − fn)dµ, and that gives,

limn→∞inf(
∫
R gdµ−

∫
R fndµ) =

∫
R gdµ−limn→∞sup

∫
R gdµ ≥

∫
R fdµ−

∫
R fndµ or,
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limn→∞sup
∫
R fndµ ≤

∫
R fdµ. Repeat this Fatou’s lemma argument with g + fn instead of

g − fn, we get limn→∞inf
∫
R(g + fn)dµ >

∫
Rlimn→∞inf(g + fn)dµ, and that gives

limn→∞inf(
∫
R gdµ+

∫
R fndµ) =

∫
R gdµ+limn→∞inf

∫
R fndµ ≥

∫
R gdµ+

∫
R fndµ or,

limn→∞inf
∫
R fndµ ≥

∫
R fdµ. Finally, we have∫

R fdµ ≤limn→∞inf
∫
fndµ ≤limn→∞sup

∫
R fndµ ≤

∫
fndµ and that gives the result because

if limsupn→∞an =liminfn→∞, it implies that limn→∞an exists and limn→∞an =
limn→∞an =liminfn→∞an. ■

In summary, the monotone convergence theorem, Fatou’s lemma and the dominated
convergence theorem are fundamental results in integration theory and measure theory.
The Monotone convergence theorem in measure theory, motivated by that in real
analysis,is used when dealing with increasing sequence of functions particularity when you
can establish monotonicity and point wise convergence.This theorem indicates the power of
Lebesgue integration. Fatou’s lemma is particularly used when dealing with sequence of
non-negative functions and results in an inequality which has its application in
mathematics like measure theory,probability theory . The dominated convergence theorem
provides the conditions under which the limit of the integral of a sequence is equal to the
integral of the limit of the sequence, this theorem is useful across areas of mathematics like
probability theory, functional analysis and the study of partial differential equations.
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