

Criticality in random simplicial complexes

Zoya Brahimzadeh <zdzhnou@gmail.com>

Euler Circle

July 15, 2024

Zoya Brahimzadeh **[Criticality in random simplicial complexes](#page-15-0)** July 15, 2024 1/16

イロト イ押 トイヨ トイヨ トー

э

Random Graphs

- **1** Graphs generated from a random distribution
- **2** Most common model: $G(n, p)$
	- **1** n is the number of nodes
	- **2 p** is the independent probability that two nodes will have an edge between them
- ³ Why we care: can be used to model real world complex phenomena or as a null model

- **1** Phase transitions occur at a threshold
- 2 Definition: a rapid and predicted change in a certain property of an object
- **3** A property can be anything physically observed
- ⁴ Can be one-sided or sharp
- **5** Why we care: criticality is all around us!

4 **E** F

Journey through transitions: acyclic \rightarrow cyclic graph

- At $p=\frac{1}{n}$ $\frac{1}{n}$, the graph transitions away from acyclicity
	- **1** Acyclic graph is a graph without cycles
	- \bullet Cycles are paths of length > 0 from a vertex back to itself

Figure: Ac[ycl](#page-2-0)ic graph and number of cycl[es](#page-4-0) [w](#page-2-0)[it](#page-3-0)[h](#page-4-0) $n = 60$ $n = 60$ $n = 60$

Zoya Brahimzadeh [Criticality in random simplicial complexes](#page-0-0) July 15, 2024 4 / 16

Journey through transitions: emergence of giant component

At $p=\frac{1}{n}$ $\frac{1}{n}$, a giant connected component emerges **1** Coincides with the previous threshold...hmmm

Figure: Size of largest component and visual with $n = 60$

Journey through transitions: emergence of giant component

At $p=\frac{1}{n}$ $\frac{1}{n}$, a giant connected component emerges

1 Coincides with the previous threshold...hmmm

Theorem

W.h.p $G_{n,p}$ consists of a unique giant component with $(1-\frac{\varkappa}{c}+o(1))$ n vertices. Here $0 < x < 1$ is the unique solution of the equation $x_1e^{-x_1} = c_1e^{-c_1}$ The remaining components are of order at most $O(\log n)$.

◆ ロ ▶ → 何 ▶ → 三 ▶ → 三 ▶ → 三 ▶

Define constants β_0 and β_1 such that small components will have order $1 \leq k < \beta_0$ log *n* and giant components have order $k > \beta_1 n$. And $k_0 = \frac{1}{2\epsilon}$ $\frac{1}{2\alpha}$ log n, $\alpha = c - 1 - \log c$

Lemma

The expected number of vertices within small tree components of order $1 \leq k \leq k_0$ is $\frac{n \times}{c}$

Lemma

The number of vertices kX_k of small tree components with order: $k_0 < k < \beta_0$ log n is approximately $o(n)$.

←ロト イ母ト イヨト イヨトー

Lemma

The number of vertices kY_k of small connected components with order $1 < k < \beta_0$ log n is approximately o(n).

The leading term in this summation of small components is $\frac{n x}{c}$. The rest of the vertices are in the giant component, it is distinct.

Journey through transitions: fully connected

At $p = \frac{\log n}{n}$ $\frac{g n}{n}$, the graph becomes fully connected **1** There is a path from each vertex to every other vertex

Figure: Number of components and visual with $n = 60$ as a function of p

Simplicial Complexes

1 an n-simplex, σ , is an n-dimensional shape

- **1** they are simple shapes: points, lines, triangles, tetrahedron
- 2 a simplicial complex is a set of n-simplicies

Figure: Image of 3d simplicial complex

Mashing the two together!

- \bullet Linial-Meshulam Model: $Y_k(n, p)$
	- \bullet k is the dimension
	- k-1 simplicies (nodes) are connected by k-simplicies (edges)
- 2 $Y_1(k)$ is an Erdos Renyi graph
- **3** Interesting application as a null model: study patterns in brain structure in response to stimulus.

◆ ロ ▶ → 何 ▶ → 三 ▶ → 三 ▶ → 三 ▶

Crash course in homology

$H_d(X, G)$

- **1** Quantifies the d-dimensional holes
- 2 d is the dimension of the holes
- **3** X is the topological space
- ⁴ G is the group of integer coefficients for chains
- ⁵ A hole is a d-dimensional thing that resists compression in such dimension

Why homology in simplicial complexes?

- \bigcirc H_{d−1}(X, G) is the measure of connectivity
	- **1** think of a complete graph as a sphere that can be compressed

\bullet $H_d(X, G)$ is the measure of cyclicity (topology)

1 Nontrivial holes are formed from cycles that do not have boundaries

KID KA KID KID KID KOQO

Journey through transitions: acyclic \rightarrow cyclic space

At $p = \frac{c_d}{n}$ $\frac{c_d}{n}, c_d = d+1 - o(1)$ the simplicial complex is no longer acyclic.

- **1** Topologically, this means that $H_d(Y, G) = 0$
- **2** Interestingly, this coincides with another threshold...

KED KARD KED KED E VOOR

Journey through transitions: giant shadow

At $p = \frac{c_d}{n}$ $\frac{c_d}{n}, c_d = d+1-o(1)$, a "giant" shadow $SH(X)$ emerges.

- \bigcirc SH(X) is a set of d-simplicies that aren't in the set of X, but would create cycles if added
- **2** It is the dominant **higher-dimensional analogy** of the giant component, a measure of cyclicity and components

Figure: Some elements of the shadow visualized

Journey through transitions: fully connected simplicial complex

At $\rho = (1+o(1))\frac{d\log n}{n}$, the simplicial complex becomes fully connected

- **1** Topologically, this means that $H_{d-1}(X, G) = 0$
- 2 Notice how similar this threshold is to the Erdos Renyi model threshold $(p = \frac{\log n}{n})$ $\frac{\mathsf{g}\,n}{n}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q @