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Abstract. Random graphs are graphs that are generated according to some specified prob-
ability distribution. They have a particularly fascinating feature: their phase transitions.
Interestingly, despite their canonical randomness, they have many critical points that re-
liably and asymptotically predict their properties as they evolve. Of recent interest have
been attempts to create higher-dimensional analogues of such random graphs while pre-
serving important properties and phase transitions. Most popular of these attempts is the
Linial-Meshulam model for random simplicial complexes. This paper reviews some of the
most important properties that emerge from random graphs of the Erdős–Rényi model and
draws parallels to analogous properties of algebraic topology within the Linial-Meshulam
model. Particularly, we explore topological analogues of the exciting phase transitions in the
Erdos Renyi model around two exciting thresholds that contain the vanishing of acyclicity,
vanishing of collapsibility, emergence of a giant component, and emergence of full connectiv-
ity. In higher dimensions, the nature of parallel properties—homology groups, cycles, and
collapses— and their corresponding thresholds have nuanced differences.

1. Introduction

Random graphs play a dual role for modeling both chaos and order. As a model of
randomness, they are frequently used as null models; to discern which network structures
are inherent to how networks are formed and which structures are truly non-random patterns.
An easy example is social networks—are the observed patterns due to intrinsic behavior of
graphs and noise in the dataset, or is there some meaningful idea at play? On the other
hand, these graphs can also be used to model order—when phenomena are too complex,
a random graph can sometimes be a great tool to generate networks of similar complexity
and structure. One can, again, imagine a highly dense and convoluted social network where
a randomly generated graph could yield a similar structure. Using random graphs as such
models allows us to easily compute certain properties.

These random graphs can evolve: given a number of nodes n, one can iteratively adding
edges, modeling the growth of the network. As they evolve, certain phase transitions oc-
cur. In physical systems, phase transitions are sudden changes in some physical properties
of a system. The same definition can be applied to objects of mathematics—a phase tran-
sition in a random graph is the sudden change in its properties. Examples of potential
properties can be: acyclicity, connectivity, and collapsibility. However, the story of phase
transitions doesn’t stop with random graphs—we can expand our horizons and translate
to higher dimensions with the notion of random simplicial complexes. Scaling from ran-
dom graphs to higher dimensions yields much greater power when using random objects for
practical purposes—they can model more complex phenomena; for example, patterns within
structural organization of the brain in response to stimulus [RNS+17]. The area of magic
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Figure 1. An example of a graph within G(n, p) model with n = 90 and
p = 1

89
.

and mystique comes when we attempt to try to make this translation to higher dimensions
as smooth as possible. In higher dimensions, things are different. Sometimes, there is no
obvious analog for a graph property—such as connected components—and sometimes the
translation is very natural—such as with the notion of cycles. It’s fascinating to see where
we can make an easy translation and where properties of random simplicial complexes—
and their transitions likewise—come with different characteristics than their graph theory
counterparts. The motivation of this paper is with this spirit: to compare phase transi-
tions of properties within random graphs and random simplicial complexes, finding where
their properties and the thresholds for property emergence diverge. This is an incredibly
important piece of information to hold as we try to use random objects to both model and
compare real world phenomena. Comparing random simplicial complexes—a very abstract
concept—to random graphs—more concretely defined and studied— allows us to give some
grounding to the meaning of all these abstract topological properties. Thus, phase transi-
tions are an incredibly important piece of the puzzle to characterizing these otherworldly,
chaotic, random, unpredictable objects; they predict properties of randomness. These pe-
culiar phase transitions happen at a specific threshold and accurately predict properties of
complexes. We usually express these transitions as occurring with a suffix ”w.h.p”—with
high probability—or a.a.s—asymptotically almost surely. When looking at transitions, we
are typically looking at the behavior of a complex or graph asymptotically—with respect
to the number of nodes n as n → ∞. Occasionally, a.s—almost surely—is also used. The
paper will continue as follows: first, some preliminary definitions are provided; then, we
go on an in-depth exploration of phase transitions within random graphs; finally, we finish
by exploring phase transitions within random simplicial complexes and drawing connections
between the two objects.

2. Preliminaries

2.1. Erdős–Rényi Model. Let G(n, p) represent the class of Erdős-Rényi random undi-
rected graphs where n is the number of nodes and p is the independent probability that two
vertexes will have an edge between them. An example of a random graph is pictured in
Figure 1.

2.2. N-dimensional equivalents. As the curious beings we are, we always want to expand
further—to push the limits of our objects. A similar thing happens with this study of random
graphs: is there an d-dimensional equivalent for a graph? The answer comes from algebraic
topology: simplicial complexes.

2.2.1. Simplicial Complexes. A n-simplex, σn, is an n-dimensional simple shape generated
by n+1 points, where one of the points is the origin. A 0-simplex is a point, a 1-simplex is a
line, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron; one can continue to list higher
dimensional simple shapes. A simplicial complex, K, is then simply a set of n-simplicies
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Figure 2. Simplicial complex with 8 0-faces, 11 1-faces, and 4 2-faces.

Figure 3. Image of a torus, a 2-dimensional topological object, and some of
its cycles labeled a, b. and c.

and their skeletons: K = {σ1, σ2, σ3, . . . , σn}. An example of a simplicial complex is pictured
in Figure 2. A p-skeleton of a simplicial complex K is K(p), the set of all p-simplicies σp ∈ K
in dimension n ≤ p.

2.2.2. Homology. A topological hole is a discontinuity in space, it prevents a topological
object from being deformed to a point. The most common example is a torus which has 1
0-dimensional hole, 2 1-dimensional holes, and 1 2-dimensional hole. These holes all prevent
the Torus from being compressed in different dimensions. Figure 3 shows an example of
holes in a torus: the two 1-dimensional holes are A and B, the one 2-dimensional hole is
labeled C.

Let Hk(X,G) denote the kth homology group of space X with coefficents in G. The kth
homology group stores information regarding nontrivial holes within dimension k. The k-th
Betti number, βk = dimHk(X,G) ”counts” the number of holes of such dimension. These
holes are identified by finding topological cycles of dimension k that are not part of a lower
dimensional simplex (”bounded”) in the simplicial complex.

2.2.3. Linial-Meshulam Model. With this background in mind, let us now introduce the
Linial-Meshulam model, one of the most well-studied models of random simplicial complexes.
The beauty of this model comes from the incredibly intuitive way that it expands random
graphs into higher dimensional analogues. Yd(n, p) is d-dimensional Linial-Meshulam random
simplicial complex n vertices (0-faces), a full (k-1) skeleton, and a probability p that each d-
dimensional simplex is drawn in. Evidently, Y1(n, p) is analogous to the Erdős–Rényi random
graph, where 1−1 = 0 dimensional simplicies (vertices) are connected by 1-simplices (edges).
An example of a random 2-complex is pictured in Figure 4

2.3. Asymptotic and approximate notation. Now let’s side-step to establish some pre-
liminaries important when analyzing the evolution of random objects. Because all of our
results consider the asymptotic nature of models: as n → ∞, its important to use the right
notation to accurately capture the energy of our results.

(1) We use big-O notation to describe that a function f is growing proportionally to
function g. Formally, f(x) = O(g(x)) : |f(x)| ≤ K|g(x)| for some constant k > 0 and
all x ∈ R.
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Figure 4. A planar embedding of a random 2-complex. The vertices are
labeled using hexadecimal notation for convenience. There is a full
(d− 1) = 1-skeleton of lines to encapsulate all the d = 2-faces. The shaded
triangles are the 2-faces with probability p of being drawn and are described
as {AE3, DCB, . . .}.

(2) We use small-o notation to indicate that one function f grows at a significantly
slower rate than another function g. This upper bound on the growth of f is not
tight. Formally, f(x) = o(g(x)) as x → a : limx→a f(x)/g(x) = 0.

(3) We use small-omega notation to indicate that one function f grows at a strictly faster
rate than another function g. Formally, f(x) = ω(g(x)) as x → a :
limx→a f(x)/g(x) = ∞ .

(4) We use ≪ to denote infinite asymptotic behavior with respect to n. Formally, A ≪
B : A/B → 0 as n → ∞.

(5) We use ≫ to denote infinite asymptotic behavior with respect to n. Formally, A ≫
B : A/B → ∞ as n → ∞.

(6) We use ≈ to denote limiting behavior with respect to some parameter. Formally,
A ≈ B : A/B → 1 as some parameter converges to 0 or ∞ or some other limit.

(7) We use big-Omega notation to indicate that function f asymptotically grows at least
as fast as function g, it is a lower bound on the growth of f . Formally, for constants
c > 0 and x0 ≥ 0, f(x) = Ω(g(x)) : f(x) ≥ g(x) for all x ≥ x0.

2.4. Phase transitions. The main subject of this paper—and the most fascinating—is the
notion of criticality within these random models. Both random graphs and random simplicial
complexes have phase transitions as they evolve. A phase transition is a rapid change in the
observable properties of an object. In our context, this would be computable properties of
a graph or complex—such as its homology or the number of edges. These phase transitions
occur at a specific threshold in their evolution, described as a certain probability p with
respect to the number of nodes n and the dimension d of the random simplicial complex
(when discussing random graphs, d = 1 always). More precisely, let P be a graph property.
We say that f is a threshold function for P if for any random simplicial complex Y ∈ Yd(n, p)
whenever p = o(f), Y does not have property P w.h.p, and whenever p = ω(f), Y does have
property P w.h.p.

However, some thresholds may be one-sided sharp. This means t a property may or may
not exist before a threshold with positive probability, however w.h.p the property P exists
after the threshold.
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Figure 5. Acyclic graph with
n = 90 and p = 5

801
< 1

90
.

Figure 6. Cyclic graph with
n = 90, p = 10

801
> 1

90
and the

cycle of length 4 highlighted.

Throughout this paper, we will discover many phase transitions. We will begin in the case
of d = 1, phase transitions within random graphs. Then, we will scale to higher dimensions
and explore phase transitions within random simplicial complexes of higher dimensions,
drawing analogues between d = 1 and beyond. The discovery of these transitions requires
multiple steps—generally, a loose bound or existence of a transition is first found, then upper
and lower bounds are found more precisely to make the threshold tighter. We will explore
examples of many of these steps.

2.5. Probabilistic Tools. Now let us also introduce some useful lemmas that will be uti-
lized in the proofs to follow.

Lemma 2.1. First Moment Method Let X be a non-negative integer valued random variable.
Then

P(X > 0) ≤ E[X].

Lemma 2.2. Chebyshev Inequality Let X be a random variable with a finite mean and
variance. For t > 0,

P(|Xk − EXk| ≥ t) ≤ V ar[X]

t2
.

3. Phase transitions in Erdős–Rényi

There are a multitude of fascinating transitions within this model. In this section, we
explore a couple of the best-studied properties of graphs and their critical emergence.

Definition 3.1. A graph is said to be acyclic if no cycles exist within it. A cycle is a path
with at least one step from a start vertex back to itself; no edge can be repeatedly visited.

Important to note, these cycles do not need to encapsulate the whole graph—cycles on
connected components make a graph cyclic. As an example, Figure 5 and 6 depict a random
graph immediately before and after the vanishing of this property. Let us begin our explo-
ration of phase transitions by looking at a lovely proof for step towards the lower bound
of the threshold for vanishing of acyclicity. This proof characterizes the deep sub-critical
phase—when there are many more nodes n than edges m. Again, this is when p = o(n−1)
and n/m → 0 as n → ∞. Let j = j(n) be some function growing slowly with n, for example
j = log log n.
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Theorem 3.2. [FK23, Theorem 4.1] Let m =
(
n
2

)
× p, the number of edges in Gn,p. If

m ≪ n, then Gn,p is a forest w.h.p.

Proof. Recall that a forest is a graph with no cycles. By calculating the expected value E
of the number of cycles X and bound X via the First Moment Method, we can determine
P(Gn,p is not a forest) with a given p.

Let X be the number of cycles in Gn,p, p ≤ 3
jn
. The expectation of X within this interval

can be expressed as

EX =
n∑

k=3

(
n

k

)
(k − 1)!

2
pk.

We know that
(
n
k

)
= nk

k!(n−k)!
. To give an upper bound to E, we can remove a term from this

expression in our equation for EX.

EX =
n∑

k=3

nk

k!(n− k)!

(k − 1)!

2
pk ≤

n∑
k=3

nk

k!

(k − 1)!

2
pk.

Now let us continue to reduce this expression, substituting pk and reducing the factorial
terms:

EX ≤
n∑

k=3

nk

2k

3k

jknk
.

Finally, asymptotically, we can write this as

EX = O(j−3) → 0.

Here, the big-O notation denotes that asymptotically, the expected number of cycles within
Gn,p will tightly approach zero. Intuitively, this is a sensible result considering that the
presence of a forest implies a lack of cycles.
Furthermore, having formalized the expected value, we can now use the First Moment
Method to complete the proof:

P(Gn,p is not a forest) = P(X ≥ 1) ≤ EX = o(1).

Asymptotically, this implies that

P(Gn,p is a forest) → 1 as n → ∞.

Thus, within the interval p ≤ 3
jn
, G(n, p) is asymptotically w.h.p a forest, indicating a

threshold at such point.

However, the threshold function for acyclicity can be more sharp than that. The classical
theorem, proved by Pittel in the 1980s provides the sharpest threshold.

Theorem 3.3. [Pit88]
Let G ∼ G(n, c/n) with constant c ∈ (0,∞).

(1) If c < 1 then w.h.p the probability that G contains cycles is

P(G contains cycles) = 1−
√
1− c exp(c/2 + c2/4).

(2) If c > 1, then w.h.p G ∼ G(n, c/n) has cycles.
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From this perspective, Theorem 3.2 only says that w.h.p G(n, p) is acyclic for very small
values of c. However, interestingly, this classical theorem highlights that as we approach the
threshold for cyclicity, there is an increasingly non-zero probability that there may be cycles
in the graph. Interesting to note, this highlights that the actual threshold is one-sided: there
is non-zero (but not incredibly great) probability that there are cycles before the threshold
p = 1/n; However, with incredible confidence, a.a.s, there are cycles after the threshold.

Now, there is a lot more than just the vanishing of acyclicity at p = 1/n. This moment
is vital in the evolution of a random graph. Synonymous to an adolescent’s rapid growth
around its toddler years, a lot of notable phenomena emerges at p = 1/n. Let us continue
to look at k-collapsibility, a property that also emerges at this threshold.

Definition 3.4. A graph G is said to be k-collapsible where the minimum degree δ(G) = k
and any proper induced sub graph has a smaller minimum degree. An elementary collapse
is a step where a vertex of degree 1 and the single edge that contains it are eliminated.

Collapsibility is a useful property to allow networks to be reduced and allow for more
time-efficient computations regarding other graph properties. For graphs, this has the same
threshold as acyclicity. Forests—-groups of trees—-and acyclic graphs are synonymous defi-
nitions. Trees are components of a graph where each two vertices are connected by exactly
one path. Thus, they are able to be fully destroyed via a set of elementary collapses. Since
acyclicity is a one-sided transition, for G(n, p) k-collapsibility is as well.

There is even more that occurs at p = 1/n. Let us next look at a mysterious concept: the
emergence of a giant component.

Definition 3.5. A ”giant” component is a connected component of significant size in a
graph.

In G(n, p) this property has a gathered a lot of thorough study, yielding quite precise
characterizations of the size of this component and its threshold. This giant component
is unique and distinctive, as we will explore momentarily. However, it may behoove the
reader to think of why this is the case intuitively: as p increases and a large component
grows in size, the chance that a new independently added edge is formed between a vertex
outside the component with any vertex in the component (subsequently making the giant
component larger) increases greatly. This explains the criticality surrounding the rise of a
giant component. As an example, Figure 7 and 8 depict a random graph immediately before
and after the vanishing of this property.

Interestingly, the threshold is tight and sharp for the emergence of such a giant component.
Let us make the characterization of the giant components and other components in the
Erdős–Rényi model as follows,

Theorem 3.6. [ Luc90, Bol84, Erd61]
Let error term ε = ε(n) > 0 satisfy ε → 0 and ε3n → ∞ , as n → ∞

(1) If p ≤ 1−ε
n
, then w.h.p all components of G(n,p) have size at most O(ε−2 log ε3n)

(2) If p ≥ 1+ε
n

then w.h.p the size of the largest component of G(n, p) is (1 + o(1))2εn
while all other components have size at most O(ε−2 log ε3n).

Here, we prove an integral part of this theorem:

Theorem 3.7. [FK23, Theorem 4.10]
W.h.p G(n, p), at c > 1, p > c

n
, consists of a unique giant component with (1 − x

c
+ o(1))n
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Figure 7. Graph without a
distinct giant component, with
n = 90 and p = 5

801
< 1

90

Figure 8. Graph with a
distinct giant component
(leftmost giant component),
with n = 90 and p > 1

90

vertices. Here 0 < x < 1 is the unique solution of the equation xe−x = ce−c . The remaining
components are of order at most O(log n).

First, some extra tools to add to our toolbelt for this proof.

Lemma 3.8. Chebyshev’s inequality Let k = O(log n), X be a random variable with finite
mean and variance with EXk > 0. The probability that the difference between the actual and
expected value X is greater than the expectation of X multiplied by a constant ϵ > 0 can be
bounded as

P(|Xk − EXk| ≥ ϵEXk) ≤
1

ϵ2EXk

+
2ck2

ϵ2n
= o(1).

Where this expression is derived from Chebyshev inequality (Lemma 2.2) with t = εEXk and
V arX ≤ EXk + 2ck2(EXk)

2/n.

Note that the c and k used above are the same as used throughout the rest of the proof.

Lemma 3.9. The Markov Inequality Let X be a non-negative random variable. Then, for
all t ¿0,

P(X ≥ t) ≤ EX
t

Lemma 3.10. If c > 0, c ̸= 1 is a constant, k is the order the component, and x = x(c) is
as defined above, then

1

x

∞∑
k=1

kk−1

k!
(ce−c)k = 1.

Proof. Proof of Theorem 3.7 Let Zk be the number of components of order k in Gn,p, and
let A > 0 be a constant. We can bound Zk by the number of trees with k vertices that span
the component, getting us

EZk ≤
(
n

k

)
kk−2pk−1(1− p)k(n−k)

We can then continue to simplify this as follows:

EZk ≤ A(
ne

k
)kkk−2(

c

n
)k−1e−ck+ck2/2
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EZk ≤
An

k2
(ce1−c+ck/n)k.

Now let’s define some constants! Let β1 = β1(c) be small enough to satisfy

ce1−c+cβ1 < 1,

and let β0 = β0(c) be large enough so that

(ce1−c+o(1))β0 logn <
1

n2
.

Finally, let k0 =
1
2α

log n, α = c− 1− log c
With such definitions of β0, β1, there is no component of order k ∈ [β0 log n, β1n]; ie. w.h.p

there are no components that have order k that fall within the range k ∈ [β0 log n, β1n].
Thus we transition to define ”small” and ”giant” components: small components have order
1 ≤ k < β0 log n, giant components have order k > β1n.
Now, we will estimate the total number of vertices on small components by splitting small

components into three categories: trees of order 1 ≤ k ≤ k0, trees of order k0 + 1 ≤ k ≤
β0 log n], and connected components of order 1 ≤ k ≤ β0 log n. Where k0 =

1
2α

log n.
Lets begin with the smallest!

Lemma 3.11. The expected number of vertices within small tree components of order 1 ≤
k ≤ k0 is nx

c

Proof. The expected value of the number of vertices of such trees of order k can be approx-
imated as

E(
k0∑
k=1

kXk) ≈
n

c

∑
k=1

k0
kk−1

k!
(ce−c)k.

This sum can be expanded from k0 to infinity for ease of computation by using kk−1

k!
< ek

and ce−c < e−1 for c ̸= 1:

E(
k0∑
k=1

kXk) ≈
n

c

∞∑
k=1

kk−1

k!
(ce−c)k.

Now, we can use this bound for our task to compare the expectation to the actual value
of XK . Using Lemma 3.8 and setting ϵ = 1/log n, we can approximate the probability Xk

deviates from its mean more than 1± ϵ on the interval 1 ≤ k ≤ k0 is at most
k0∑
k=1

[
(log n)2

n1/2−o(1)
+O(

(log n)4

n
] = o(1).

Xk does not deviate from its mean greatly!
If x = x(c), 0 < x < 1 is the unique solution within (0,1) of the equation x1e

−x1 = c1e
−c1 ,

then we can approximate the number of vertices in trees on the interval [1, k0] as

E(
k0∑
k=1

kXk) ≈
n

c

∞∑
k=1

kk−1

k!
(xe−x)k.

Now by applying Lemma 3.10 and some arithmetic, we can simplify this to get w.h.p

n

c

∞∑
k=1

kk−1

k!
(xe−x)k =

nx

c
.
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Thus, we find that the number of components within this interval to be approximately nx
c
.

Now, lets continue to consider the next interval of tree components: k0 < k ≤ β0 log n.

Lemma 3.12. The number of vertices kXk of small tree components with order: k0 < k ≤
β0 log n is approximately o(n).

Proof. Again, we will begin by bounding the expected value of the number of vertices.

E(
β0 logn∑
k=k0+1

kXk ≤
n

c

β0 logn∑
k=k0+1

(ce1−c+ck/n)k

=O(n(ce1−c)k0

=O(n1/2+o(1)).

Now, by Markov’s inequality (Theorem 3.9), w.h.p.

β0 logn∑
k=k0+1

kXk = o(n).

This is fascinating—-within this interval, the number of vertices in components grows very
slowly, at the very best proportionally less than the number of nodes.

Lemma 3.13. The number of vertices kYk of small connected components with order 1 <
k ≤ β0 log n is approximately o(n).

Proof. Now consider the number of non-tree components Yk with vertices k, 1 ≤ k ≤ β0 log n,
and the number of vertices within these components kYk.

E(
β0 logn∑
k=1

kXk) ≤
β0 logn∑
k=1

(
n

k

)
kk−1

(
k

2

)
(
c

n
)k(1− c

n
)k(n−k)

≤
β0 logn∑
k=1

k(ce1−c+ck/n)k

= O(1)

Similar to the last interval, we again use the Markov’s inequality (Theorem 3.9) to get w.h.p

β0 logn∑
k=1

kYk = o(n).

Fascinatingly, we have found a similar result in both small connected components and
small tree components of order in the interval [k0, β0 log n] regarding their rate of growth—
less than o(n) with respect to n, indicating that it is growing very slowly.
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Thus, in summary, so far we have proved the number of vertices within the interval
1 ≤ k ≤ β0 log n to be approximately nx

c
since the number of vertices in trees of order

1 ≤ k ≤ k0 is the only significantly contributing interval given that the other two grow
loosely slower than proportional to the growth of number of nodes. The upper bound for
our definition of ”small components” was β0 log n, we can generalize this to say that small
components have a maximum order of O(log n).

Another question: what if there’s multiple ”giant components”? Well, we can say with
high probability that you won’t encounter multiple—the ”giant component” is a separate,
distinct entity. Let

c1 = c− log n

n
and p1 =

c1
n
.

And let Gn,p1 be the Erdős–Rényi graph with probability p1.
Additionally, let us define p2 in terms of the general probability p and other probability

constant p1,

1− p = (1− p1)(1− p2).

Where p2 ≥ logn
n2 .

We can adapt our earlier definition of x(c) to this step as well. If x1e
−x1 = c1e

−c1 then
x1 ≈ x and thus our previous analysis can be applied; w.h.p Gn,p1 has no components with
size in the range [β0 log n, β1n]. Suppose there are components C1, C2, . . . , Cl where any
|Ci| > β1n and l ≤ 1/β1. Now for the fun! We proceed to add edges of Gn,p2 to Gn,p1 (note
the order); we take their union:

Gn,p = Gn,p1 ∪Gn,p2 .

To prove the uniqueness of the ”giant component”, we must see if this union of graphs
continues to yield many ”large” (k > β1n) components or if eventually most components
merge into one; in other words, whether or notGn,p1 is the roots of a growing giant component
thatGn,p2 adds to. This can be expressed as the probability of the existence of values i, j ∈ N
such that performing the union operation, adding edges of Gn,p2 to Gn,p1 , will not connect
components Ci and Cj. Then

P(∃ i, j ∈ N : no Gn,p edge joins Ci with Cj) ≤
(
l

2

)
(1− p2)

(β1n)
2

≤ l2e−β2
1 logn = o(1).

Which highlights that the probability that the union of Gn,p1 and Gn,p2 will not form a
giant component is very asymptotically unlikely; the elements of such set will grow loosely
less than constant 1. Thus, this highlights the unique nature of the formation of a giant
component, as highlighted earlier. As the random graph evolves, this giant component Ci

will be uniquely destined to grow in size.
Given that we’ve proven the giant component exists and is singular, we can use our results

from above to formalize information regarding its size. The number of vertices in G(n, p), n,
is composed of the number of vertices of small components—components within the interval
1 ≤ k ≤ β0 log n—and large components—of order k > β0 log n. From our previous results,
n = nx

c
+ L, where L is the number of vertices within the giant component. L = (1 − x

c
)n

vertices.
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Figure 9. Graph with n = 90
and 1

90
< p < log 90

90
. Figure 10. Graph with n = 90

immediately after p < log 90
90

.

Remark 3.14. This proof is quite fascinating—it answers many questions regarding the nature
of the giant component. It highlights the uniqueness of the ”giant” component. Furthermore,
these results imply that this giant component is distinctive and that it will continue to merge
smaller components into itself as the probability p in G(n, p) grows past the threshold. This
characterizes random graphs with quite detail: around p = 1

n
, the graph transitions from a

scattered collection of trees and small connected components to a giant lump of components.
Within the context of phase transitions, the unique, predictable nature of this component is
fascinating given the random network it is embedded in.

We are now jumping away from the excitement at p = 1
n
to a new fascinating point in

the evolution of a random graph: p = logn
n

. This is where the transition to full connectivity
emerges!

Definition 3.15. A graph is connected if a path exists between every pair of vertices u
and v within the graph.

The notion of connectivity and the minimal number of edges needed to achieve connectivity
is a core studied area of graph theory. For concreteness, Figure 9 depicts a random graph
before being fully connected, and Figure 10 depicts a random graph immediately after p =
logn
n

. Let us now analyze this threshold in further specificity,

Theorem 3.16. [ER59]
W.h.p G(n, p) is connected if

p ≥ log n+ ω(1)

n
,

and w.h.p G(n, p) is disconnected if

p ≤ log n− ω(1)

n
.

Note that ω(1) is any function that grows asymptotically greater than 1, ω(1) → ∞ as
n → ∞.

A measure of connected components in a graph is the 0th-homology group. A graph
becoming fully connected is analogous with the vanishing of the 0-th homology group. Let
X1 be a 1-dimensional topological space, the graph X1 will be connected when H0(X,G) = 0
with any group of coefficients G. We will explore this analogy in further depth when analyzing
thresholds within the Linial-Meshulam model. Though the standard proof treats this as a
homology-vanishing problem, an alternate method can also be used as a close approximation
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and reveals additional qualities of the graph that emerge at p = logn
n

. Having isolated vertices
implies disconnectivity, so it can be used as a starting point for rough lower bound for the
connectivity threshold.

Theorem 3.17. [Roc24]
For G(n, p), not having any isolated vertices has threshold function p = logn

n
. Let 0 ≤ pn ≤ 1,

(1) If pn ≪ logn
n

, then a.a.s G(n, p) has isolated vertices

(2) If pn ≫ logn
n

, then a.a.s G(n, p) does not have isolated vertices.

We will use the following definition and lemma to prove this theorem.

Definition 3.18. Let a ∼ b denotes two events, a and b, where a ̸= b and a and b are not
independent of each other. For example, when analyzing events in graph theory, knowing
that vertex i is isolated increases the probability that vertex j is isolated since there surely
cannot have an edge between i and j.

Lemma 3.19. Precursor to second moment method for sums of indicators Let X be a non-
negative random variable (not identically zero). Let A1, . . . , Am be a collection of events
where Ai ∼ Aj denotes that the two events are not independent of each other. Then, letting

µm :=
∑
i

P[Ai], γm :=
∑
i∼j

P[Ai ∩ Aj],

can yield the following expression for a version of the second moment method:

P[X > 0] ≥ En,pn [X
2
n]

(En,pn [Xn])2
= 1− V ar[X]

EX2 + V ar[X]
=

µn + γn
µ2
n

.

Proof. Proof of Theorem 3.17 Let Xn be the number of isolated vertices in the Erdős–Rényi
graph Gn ∼ Gn,pn . The expectation of Xn can be written as

En,pn [Xn] = n(1− pn)
n−1.

The rest of the proof will proceed as follows: we begin by proving the absence of isolated
vertices when p ≫ logn

n
, then transition to prove the high probability of a non-zero number

of isolated vertices in the when p ≪ logn
n

.
Using 1−x ≤ e−x for x ∈ R and x ≥ 0 , we can bound En,pn [Xn] and observe its asymptotic

behavior :

En,pn [Xn] ≤ elogn−(n−1)pn → 0.

Using the first moment method (Lemma 2.1),

Pn,pn [Xn > 0] → 0.

Thus, the probability that there is a non-zero amount of isolated vertices following the
identified threshold is asymptotically zero.

Now that we’ve proven one direction of the threshold, lets transition to the other and
prepare to apply a version of the second moment method (Lemma 3.19). Let Aj be all the
subspace of events in which vertex j is isolated and µn be the union of probabilities of each
event occurring,

µn =
∑
i

Pn,pn [Ai] = n(1− pn)
n−1.
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Using the same principle from above, we can substitute pn for x ∈ [0, 1/2],

µn ≥ elogn−npn−np2n .

Notably, µn → +∞ when pn ≪ logn
n

since µn ≥ elogn−n logn
n

−n( logn
n

)2 = en(
logn
n

)2 .
The probability that both sets of events Ai and Aj for i ∼ j occur is expressed as

Pn,pn [Ai ∩ Aj] = (1− pn)
2(n−1)+1.

We can generalize this to all events Ai, Aj with a two-varied summation that runs through
all permutations of events i, j:

γn =
∑
i ̸=j

Pn, pn[Ai ∩ Aj] = n(n− 1)(1− pn)
2(n−1)+1.

Now, we shall use Lemma 3.19, a version of the second moment method, to complete the
proof. Let us do

P[X > 0] ≥ En,pn [X
2
n]

(En,pn [Xn])
=

µn + γn
µ2
n

.

Substituting for µn and γn,

≤ n(1− pn)
n−1 + n2(1− p)n)2n−3

n2(1− pn)2n−2

≤ 1

n(1− pn)n−1
+

1

1− pn
→ 1 + o(1).

In summary, for the case of pn ≪ logn
n

, the probability that there is a non-zero amount of
isolated vertices is asymptotically highly probable.

Theorem 3.20. [Roc24]
For G(n, p), connectivity has threshold function p = logn

n
. Let 0 ≤ pn ≤ 1,

(1) If pn ≪ logn
n

, then a.a.s G(n, p) is disconnected

(2) If pn ≫ logn
n

, then a.a.s G(n, p) is fully connected.

Proof. Let us begin with proving Part 1 of Theorem 3.2. If pn ≪ logn
n

, Theorem 3.17implies
that G(n, p) is disconnected since there are isolated vertices. Now lets look at the other di-
rection, Part 2. Assume pn ≫ logn

n
and let Dn be the event in which G(n, pn) is disconnected.

The goal of this proof is to show that Pn,pn [Dn] is a.a.s unlikely. We will accomplish this by
bounding Pn,pn [Dn] by the number of subsets of vertices that are disconnected from all other
vertices in the graph, that have degree 0. Formally, let Yk, k ∈ {1, . . . , n/2} be the number
of subsets of k vertices with degree 0. We can bound the probability that Yk ̸= 0, implying
G(n, p) is disconnected, using the first moment method:

Pn,pn [

n/2∑
k=1

Yk > 0] ≤
n/2∑
k=1

En,pn [Yk].

Now, we can use this information to bound Pn,pn [Dn],

Pn,pn [Dn] ≤ Pn,pn [

n/2∑
k=1

Yk > 0] ≤
n/2∑
k=1

En,pn [Yk].
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Let’s step away from the full expression and solely consider the expectation of Yk; En,pn [Yk]
is easy to estimate. Using earlier provided information that k ≤ n/2 and k! ≥ (k/e)k,

En,pn [Yk] =

(
n

k

)
(1− pn)

k(n−k).

Simplifying for
(
n
k

)
and reducing terms, we get that

≤ nk

k!
(1− pn)

kn/2 ≤ (en(1− pn)
n/2)k.

Let us now return to summing over k.

(3.1) Pn,pn [Dn] ≤
+∞∑
k=1

(en(1− pn)
n/2)k.

This geometric series is dominated asymptotically by its first term. Thus, we get the first
term, set k = 1, and summarize this expressions’ growth (ignoring constants) using big-O
notation,

= O(n(1− pn)
n/2).

Considering that en(1− pn)
n/2 = o(1) when pn ≫ logn

n
, we get that

= o(1).

Also note that we set the upper bound in (3.1) to +∞ instead of n/2 since it is dominated

by the first term in either case and we’re trying to analyze asymptotic behavior.

Remark 3.21. Interestingly, connectivity and not having isolated vertices have the same
threshold of transition. The two have a slight distinction—previously isolated vertices could
consolidate be in multiple smaller components, not just one giant connected component.
Yet, the vanishing of isolated vertices and emergence of connectivity still share the same
threshold. This raises praise to the power of the giant component within the evolution of
random graphs—it is incredibly distinct if it continues to grow to encompass the connectivity
of the whole network instead of permitting the other components to grow.

4. Phase transitions in Linial-Meshulam

Despite the similarity in definition, these random simplicial complexes have many different—
and still deliberated—properties; we must refine our definitions of such properties discussed
above to adapt to higher dimensional behavior.

Definition 4.1. The classification acyclic space is a space X without homological cycles,
where Hi(X) = 0 for each and every i, 0 ≤ i ≤ d. This means that there are no nontrivial
holes. An element of Hi(X) is a d-cycle.

These acyclic spaces, though simple, can be used to build more fascinating spaces/objects.

At p =
c∗d
n
, c∗d = d+ 1− o(1) there is w.h.p a transition to cyclicity. Interesting to note, this

transition is one-sided, before the threshold the simplicial complex may or may not contain
cycles. Intuitively, this makes sense: in the sub critical phase, there is a full d-1 skeleton
with sparse d-faces being added according to probability p. Some d faces will cover a (d-1)
face. After a certain threshold, there will be more d faces than needed to cover all the (d-1)
faces and thus some will have no boundary. Comparing back to Erdős–Rényi, interestingly,
the one-sided nature of this transition remains even as we scale to higher dimensions.
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Theorem 4.2. [LP16, AL15]
Let t∗d be the unique root in (0,1) of

(d+ 1)(1− t∗d) + (1 + dt∗d) log t
∗
d = 0,

and let cd be defined as

c∗d :=
− log t∗d
(1− t∗d)

d
.

Let Y = Yd(n, p).

(1) If p < c∗d/n, then w.h.p Hd(Y,G) is generated by simplex boundaries. So

P[Hd(Y,R) = 0] → exp(−cd+2/(d+ 2)!).

(2) If p > c∗d/n, then w.h.p Hd(Y,G) ̸= 0.

Note that this highlights the one-sided nature of the threshold for cyclicty by providing
the exact probability that Hd(Y,R) = 0 instead of claiming it as a.a.s acyclic before the
threshold. Mirroring our analysis for the Erdős–Rényi model, let us examine a proof for the
lower bound of this threshold in further depth.

Theorem 4.3. [LP16]
For every c < c∗d, asymptotically almost surely, Hd(Yd(n,

c
n
);R) is either trivial or generated

by at most a bounded number of copies of the boundary of a (d+1) simplex.

This theorem establishes a tight threshold for acyclicity within random simplicial com-
plexes. Before we begin, it is important to include a couple of tibbits of extra information.

Lemma 4.4. Let Y0 ∈ Yd(n,
c′

n
) for some c < c′ < c∗d. E[dim(Hd(Y0;R)] = o(nd)

The proof for this lemma involves a much denser mathematical background than the scope
of this paper. Nonetheless, this is a powerful lemma to characterize the number of holes in a
random simplicial complex before the threshold. Note the asymptotic notation—this is still
a one sided transition.

Lemma 4.5. For every c > 0 a.a.s every minimal core in Yd(n,
c
n
) is either the boundary of

a (d+1)-simplex, or it has a cardinality of at least δnd, where δ > 0 depends only on c.

This lemma is quite powerful when we consider that every d -cycle is a core. We can
substitute these phrases, bringing us to

Lemma 4.6. For every c > 0, a.a.s every d-cycle of Yd(n,
c
n
) is either the boundary of a

(d+1) simplex or it is a big cycle; the cycle is either trivial or it has at least δnd d-faces.
Here δ > 0 depends only on c.

This lemma will be the main basis of the proof to come. Using this information, we can
prove that big cycles do not exist within a tight range before the threshold in order to prove
that all cycles within this interval are bounded by a (d+1)-simplexes.

The following is a high probability proof regarding the threshold of acyclicity.

Proof. Proof of Theorem 4.2 Using the Lemma 4.4, we can apply Markov inequality (Theo-
rem 3.9): since E[dimHd(Y0;R)] = o(nd), a.a.s dimHd(Y0;R) = o(nd). Let k be the number
of samples from a uniformly random sample of |Fd(Y0)| values from the range [0, 1] that
are < 1 − c/c′. Furthermore, allow d-complexes from Y0 to be defined as the following:
Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yk where Yi+1 results by removing a random d-face σi from Yi for



CRITICALITY: FROM RANDOM GRAPHS TO SIMPLICIAL COMPLEXES 17

i = 0, 1, . . . , k − 1. Looking at the bigger picture, we are iteratively removing the d-faces of
a certain random simplicial complex, where the reduced simplicial complex after i deletions
is Yi. Clearly, Yi ∈ Yd(n,

c
b
).

If Yi does contain a big d -cycle, then with a constant probability bounded away from zero,
the random d -face σi+1 is in it. This would be the next d-face to be removed. In such a case,

dimHd(Yi+1;R) = dimHd(Yi,R)− 1.

Interpolating this equation across a range of values of i, if Yk has a big cycle, then
dimHd(Yi;R)ki=1 is a random sequence of Ω(nd) non negative integers. The sequence would
begin with a value of o(nd) and have a constant probability of dropping by 1 after each step.
However, this is a clear contradiction: beginning with a number that is o(nd), then subtract
1 Ω(nd) times will eventually return a negative number; this is a nonsensical result for Betti
numbers. Thus, there are no big cycles within this interval and only cycles that are part of

a boundary of a (d+1)-simplex.

Remark 4.7. This proof is particularly fascinating—it precomputes the results of an algo-
rithm that would be applied to a big cycle in order to prove that the results are not valid.
A scenario with big cycles is imagined, then proved to be solely a fantasy, not a mathemat-
ical reality. Though both the proof for the threshold in Erdős–Rényi and Linial-Meshulam
utilize the expected value of the number of cycles to support their arguments, they use it
in vastly different—and fascinating—ways. More broadly, the transitions for both G(n, p)
and Yd(n, p) are very similar in their one-sided nature. This is a fascinating parallel across
dimensions. One of the biggest struggles, as we will see shortly, with phase transitions in
random simplicial complexes is finding suitable higher dimensional equivalents of properties
within graphs given that these two objects—graphs and topological spaces—are usually re-
garded as different. The fact that the one-sided nature of the transition is preserved through
this higher dimensional equivalent is a quite satisfactory result.

The next graph property where topological equivalents must be analyzed for is giant
component emergence. A question posed by Linial Meshulam was the implications of the
rise of a giant component for random simplicial complex. Though there was diverging ideas
earlier on, a ”giant” shadow is now the dominant higher dimensional equivalent within the
field.

Definition 4.8. [LNPR14]
A shadow SH(X) is a set of d-simplicies that aren’t in the set of X, but are in the span of
X. It is the set of all d-simplicies that, if added, would create cycles in the random simplicial
complex. Formally,

SHR(X) = {σ /∈ Y : Hd(X,R) is a proper subspace of Hd(X ∪ {σ};R) }.

For the relentless reader curious for a why : since an d-simplex in a shadow must form
a cycle, its implied that it must be added to a ”connected component”, a component of a
complex in which there exists a collection of d-1 faces with the potential to form cycles; it
is a measure of connectivity and cyclicity. Two vertices must be in the same component to
have the potential to form cycles. In the case of G(n, p), the shadow with d = 1 reaches
positive density at the same time the giant component emerges, making this ”giant” shadow
(so to speak) a scalable and natural equivalent of the giant component in higher dimensions.
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Figure 11. Density of the
shadow of G(n, c

n
) as c

increases.

Figure 12. Density of the
shadow of Y2(n,

c
n
) as c

increases.

The tightest bound for the threshold of this ”giant shadow” is—interestingly—at the same
threshold for acyclicity in Yd(n, p), as explored in Theorem 4.2. Referring back to analogies
in G(n, p), this makes sense: a giant component emerges at the same time that cycles do.
There is a correlation between the idea of cycles and connectivity, no matter the dimension.
A fascinating theorem characterizing the phase transition regarding the density and size of
this shadow is as follows,

Theorem 4.9. [LP16] Let Y ∈ Yd(n,
c
n
) for some d ≥ 2 ∈ Z and c > 0 ∈ R. Furthermore,

let c∗d be defined same as above.

(1) If c < c∗d, then a.a.s.,

|SHR(Y )| = Θ(n).

(2) If c > c∗d, let tc be the smallest root in (0,1) of t = e−c(1−t)d then a.a.s.,

|SHR(Y )| =
(

n

d+ 1

)
((1− tc)

d+1 + o(1)).

These values may seem very arbitrary—it is fascinating to see an example of this theorem
in action. An example of the evolution of the shadow is highlighted in Figure 12. Evidently,
before the threshold, the shadow does not have positive density since in this interval, the
size of the shadow grows with dependence only on the number nodes n . After the threshold,
the density of the shadow suddenly spikes.

Remark 4.10. A lot is still unknown about the implications of this ”shadow”, however, it is
the dominant concept for a higher-dimensional equivalent of the birth of a giant, connected
component in the Erdős–Rényi model. This definition of the shadow may also imply that
the giant shadow could be dominated by a bunch of tiny components, instead of being a
metric for the giant component. However, Dotterrer-Guth-Kahle are currently working to
prove that after a certain threshold the sub-complexes within the shadow are not small.

We began our drawing of parallels between d=1 and d > 1 with our discussion regarding
cyclicity. Given that the concept of a shadow was specifically conceived to be an analogy
of the giant component in higher dimensions, it has a lot of well crafted properties, such
as quantifying the size and presence of ”connected components” within a random simplicial
complex. However, there are some differences: referring to Figure 11, we can see that though
the transition to positive density of the shadow in G(n, p) has a continuous derivative, while

in Y2(n, p), Figure 12, it has a discontinuous derivative around the point p =
c∗d
n
.
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Next, we will look at the vanishing of d-collapsibility within Yd(n, p). Interestingly, d-
collapsibility is no longer analogous to acyclicity.

Definition 4.11. A topological space is d-collapsible if it is possible to eliminate all d-
simplices from the simplicial complex series of elementary collapses. Let σ be a (d − 1)-
dimensional face that is contained in only one d-dimensional face, τ ; we can also describe σ
as an exposed or ”free” d-face. An elementary collapse is then a single deletion that removes
both σ and τ . On the other hand, a d-core is a d-complex with no exposed (d− 1)-faces, the
terminating result of a series of elementary collapses on a simplicial complex not d-collapsible.
These d-cores are also d-cycles.

Hand in hand, it has a different threshold for vanishing compared to acyclicity.

Theorem 4.12. [AL16, AL LM13]
Let η > 0 be some fixed value for the following equation of x:

0 = e(1− x)d(−η).

And nd be any value of η for which the equation above has some root x < 1. There is a tight
threshold for the vanishing of d-collapsibility at p = ηd

n
. Namely,

(1) Fix c < ηd. A d-dimensional complex Y ∈ Yd(n,
c
n
) is a.s. d-collapsible or it contains

a copy of ∂∆d+1.
(2) For every c > nd a d-dimensional complex Y ∈ Yd(n,

c
n
) is a.s. not d-collapsible.

The proof of this theorem will be collapsed (pun not intended) for the sake of technical
detail. However, the techniques used are quite fascinating. In particular, the Part 1 of
Theorem 4.12, similar to the proof of Theorem3.2, involves something more algorithmic in
nature. The proof splits its techniques into two epochs or iterations—the two are the same,
the second epoch can just be thought of as a slowed down version of the first to yield more
rich analysis. Let r > 0 ∈ Z. In the first epoch, r phases of collapses are carried out
simultaneously. In the second epoch, each (d-1) face removal is carried out one-by-one in
a random order. Let Xi be the number of free (d − 1) faces at the i-th collapse step in
the second epoch). A simplicial complex is not d-collapsible if Xi = 0 but the number of
(d−1)-faces not eliminated is not zero. The authors analyze activity during the second epoch
thoroughly, showing that the expected drop in free faces in one step, E(Xi − Xi+1), is a.s.
sufficiently large such that at some moment Xi = 0 but some (d-1) faces still exist. In other
words, the number of free faces available declines faster than the number of (d-1) simplicies
present in the simplicial complex. This is because τ will contain other (d-1) simplicies that
are removed as a result of the elementary collapse, complicating the relationship between
the two.

Remark 4.13. Just as in the Erdős–Rényi model, any d-collapsible simplicial complex is
also acyclic: if Y is d-collapsible then Y is homotopy equivalent to a (d-1) dimensional
complex and it is acyclic: Hd(Y ) = 0, no d-dimensional holes are preventing it from being
deformed to a (d-1) dimensional shape. However, the other direction does not hold up for
higher dimensions: an acyclic simplicial complex is not necessarily d-collapsible. The phase
transition to acyclicity and the vanishing of collapsability do not share the same threshold
for d > 1. However, interestingly, they both maintain their one-sided threshold.

We will now transition to explore higher dimensional parallels of full connectivity in
G(n, p). Let us expand on the usage of homology groups to quantify the number of connected
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components in a graph. The dimHd−1(X,G) counts the number of connected components
in a d-dimensional random simplicial complex. Intuitively, this also makes sense: holes are
a measure of discontinuity. If a space is continuous it can be continuously deformed because
all of its points are connected. Since graph connectivity is synonymous to the vanishing of
the 0th-homology, it is very natural to suggest the vanishing of the (d−1)th-homology as an
easy, abstract generalization of graph connectivity for higher dimensions. And the threshold
for higher dimensions has a similarly intuitive threshold to its d =1 counterpart.

Theorem 4.14. [MW09] Fix d ≥ 1, and let Y = Yd(n, p). Let G be any finite abelian group.
W.h.p Hd−1(Y,G) = 0 if

p ≥ d log n+ ω(1)

n
,

and w.h.p Hd−1(Y,G) ̸= 0 if

p ≤ d log n+ ω(1)

n
.

Remark 4.15. A couple of words regarding the connectivity threshold:

(1) Important to note is the distinction in the scope of G: this theorem has not yet been
proven beyond coefficients in a finite abelian group.

(2) Connectivity is fascinating because it has a very natural higher-dimensional coun-
terpart, while as explored with giant component emergence, there has been much
greater of a struggle to find a suitable d-dimensional counterpart. Homology groups
prove to be a very natural bridge between properties in d = 1 and d > 1.

(3) Broadly, these properties in higher dimensions need to continue to provide valuable
information regarding the structure of the simplicial complex just as their d=1 coun-
terparts provide rich information regarding the graph—homology groups are a great
example of such a meaningful property for topological objects.

(4) In higher dimensions, there is no longer great mystique around one specific point p,
instead thresholds for phase transitions are more spread out across the range of p.
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