Sieve Methods in Combinatorics

Wynn Huang

Euler Circle

July 15, 2024

W	/yn	н	ua	ng

Sieve Methods in Combinatorics

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ July 15, 2024 2

Sieve methods in enumerative combinatorics are techniques for determining the cardinality of a set S by starting with a larger set and subtracting off or canceling unwanted elements. These methods can be broadly categorized into:

- Methods approximating the answer with an overcount, then correcting the error iteratively.
- Methods where elements of a larger set are weighted to cancel out unwanted elements, leaving the original set S.

Theorem 1

Let S be an n-set. Let V be the 2^n -dimensional vector space (over some field K) of all functions $f : 2^S \to K$. Define a linear transformation $\phi : V \to V$ by:

$$\phi f(T) = \sum_{Y \supseteq T} f(Y) \text{ for all } T \subseteq S.$$
(0.1)

Then ϕ^{-1} exists and is given by:

$$\phi^{-1}f(T) = \sum_{Y \supseteq T} (-1)^{|Y-T|} f(Y) \text{ for all } T \subseteq S.$$

$$(0.2)$$

W	/yr	ın	H	uai	ng

Combinatorial Interpretation of PIE

In a combinatorial context, S represents properties that elements of set A may have. For any subset T of S, let $f_{=}(T)$ be the number of objects in A having exactly the properties in T, and let $f_{\geq}(T)$ be the number of objects in A that have at least the properties in T.

$$f_{\geq}(T) = \sum_{Y \supseteq T} f_{=}(Y)$$
(0.3)
$$f_{=}(T) = \sum_{Y \supseteq T} (-1)^{\#(Y-T)} f_{\geq}(Y)$$
(0.4)

The number of objects having none of the properties in S:

$$f_{=}(\emptyset) = \sum_{Y \supseteq T} (-1)^{\# Y} f_{\geq}(Y)$$
 (0.5)

Dual Formulation of PIE

The dual formulation of PIE interchanges intersection (\cap) and union (\cup) operations. If:

$$\tilde{\phi}f(T) = \sum_{Y \subseteq T} f(Y) \text{ for all } T \subseteq S,$$

then $\tilde{\phi}^{-1}$ is given by:

$$ilde{\phi}^{-1}f(T) = \sum_{Y \subseteq T} (-1)^{\#(T-Y)}f(Y) ext{ for all } T \subseteq S.$$

Similarly, if $f_{\leq}(T)$ is the number of objects of A having at most the properties in T, then:

$$f_{\leq}(T) = \sum_{Y \subseteq T} f = (Y) \tag{0.6}$$

$$f = (T) = \sum_{Y \subseteq T} (-1)^{\#(T-Y)} f_{\leq}(Y)$$
(0.7)

Derangements

Problem: How many permutations $w \in S_n$ have no fixed points, i.e., $w(i) \neq i$ for all $i \in [n]$? Such a permutation is called a derangement. **Solution:** Denote this number by D(n). We start with initial values:

$$D(0) = 1$$
, $D(1) = 0$, $D(2) = 1$, $D(3) = 2$.

Using the Principle of Inclusion-Exclusion:

$$D(n) = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} i!.$$

This can be rewritten as:

$$D(n) = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!}\right).$$

Rook Polynomials

- The derangement problem involves permutations $w \in S_n$ where $w(i) \neq i$.

- This concept extends to permutations with restricted positions using rook polynomials.

Definition 2 $B \subseteq [n] \times [n]$ is a board.

Definition 3 $G(w) = \{(i, w(i)) : i \in [n]\}$ is the graph of w.

Definition 4

 N_j is the number of permutations $w \in S_n$ such that $j = \#(B \cap G(w))$.

Rook Polynomial:

$$r_B(x) = \sum_k r_k x^k.$$

(日)

Rook Polynomials (cont.)

The following result establishes a relationship between N_j and r_k .

Theorem 5

$$N_n(x) = \sum_j N_j x^j = \sum_{k=0}^n r_k (n-k)! (x-1)^k.$$

			-	2.40
Wynn Huang	Sieve Methods in Combinatorics	July 15, 2024		8 / 15

A D N A D N A D N A D N

Rook Polynomials (cont.)

Example 6 (Derangements Revisited)

Take $B = \{(1, 1), (2, 2), \dots, (n, n)\}$. We want to compute $N_0 = D(n)$, the number of derangements. Clearly, $r_k = \binom{n}{k}$, so

$$N_n(x) = \sum_{k=0}^n \binom{n}{k} (n-k)! (x-1)^k.$$

Setting x = 0 gives:

$$N_0 = \sum_{k=0}^n \binom{n}{k} (n-k)! (-1)^k = (-1)^k n!.$$

10/57	nn H	luang
vvy		ruang

Image: A matrix and a matrix

Ferrers Boards

Definition 7

A Ferrers board of shape (b_1, \ldots, b_m) is defined by the integers $0 \le b_1 \le \cdots \le b_m$ and consists of the set $B = \{(i,j) : 1 \le i \le m, 1 \le j \le b_i\}$, where we use Cartesian coordinates with the square (1,1) located at the bottom left.

Theorem 8

Let $\sum r_k x^k$ be the rook polynomial of the Ferrers board B with shape (b_1, \ldots, b_m) . Define $s_i = b_i - i + 1$. Then:

$$\sum_{k=0}^m r_k(x)_m - k = \prod_{i=1}^m (x+s_i).$$

イロト 不得 トイヨト イヨト 二日

Unimodal Sequences & V-partitions

Unimodal Sequence: - A sequence $d_1 d_2 \dots d_m$ is unimodal if:

2 There exists a j such that $d_1 \le d_2 \le \ldots \le d_j \ge d_{j+1} \ge \ldots \ge d_m$ Generating Function for U(q)

$$U(q) = \sum_{n \ge 0} u(n)q^n = q + 2q^2 + 4q^3 + 8q^4 + 15q^5 + \dots$$

Lemma 9

$$U(q) = \sum_{k \ge 1} \frac{q^k}{[k-1]![k]!}$$

イロト 不得 トイヨト イヨト 二日

Definition 10

A V-partition of n is an N-array:

$$\begin{bmatrix} a_1 & a_2 & \cdots \\ c & & \\ b_1 & b_2 & \cdots \end{bmatrix}$$

such that all numbers are natural,

$$c + \sum a_i + \sum b_i = n$$
, $c \ge a_1 \ge a_2 \ge \dots$, and $c \ge b_1 \ge b_2 \ge \dots$

Lemma 11

$$V(q) = \sum_{k \ge 0} \frac{q^k}{[k]!^2}$$

Wynn Huang

Sieve Methods in Combinatorics

July 15, 2024

12/15

Double Partitions: - *N*-array:

$$\begin{bmatrix} a_1 & a_2 & \cdots \\ b_1 & b_2 & \cdots \end{bmatrix}$$

Generating function D(q):

$$D(q) = \sum_{n \ge 0} d(n)q^n = \prod_{k \ge 1} (1 - q^k)^{-2}$$

Define a map $F_1: D_n \to V_n$ by:

$$F_{1}\begin{bmatrix}a_{1} & a_{2} & \cdots \\ b_{1} & b_{2} & \cdots \end{bmatrix} = \begin{cases} \begin{bmatrix} a_{2} & a_{3} & \cdots \\ a_{1} & & & \\ & b_{1} & b_{2} & \cdots \end{bmatrix}, & \text{if } a_{1} \ge b_{1} \\ \begin{bmatrix} a_{1} & a_{2} & \cdots \\ b_{1} & & & \\ & b_{2} & b_{3} & \cdots \end{bmatrix}, & \text{if } b_{1} > a_{1} \\ & & & & \\ & & & & & \\ \end{bmatrix}$$

Define a new map $F_2: D_{n-1} \rightarrow V_n^1$ by:

$$F_2 \begin{bmatrix} a_1 & a_2 & \cdots \\ b_1 & b_2 & \cdots \end{bmatrix} = \begin{cases} \begin{bmatrix} a_2 & a_3 & \cdots \\ a_1 + 1 & & \\ & b_1 & b_2 & \cdots \\ \\ a_1 + 1 & a_2 & \cdots \\ b_1 & & & \\ & b_2 & b_3 & \cdots \end{bmatrix}, \quad \text{if } b_1 > a_1 + 1$$

We continue to define maps $F_i: D_{n-\binom{i}{2}} \to V_n^{i-1}$ until $\binom{i}{2} > n$, so we obtain the following formula:

$$v(n) = d(n) - d(n-1) + d(n-3) - d(n-6) + \dots$$

where we set d(m) = 0 for m < 0.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 · のへで

Lemma 12

$$U(q) + V(q) = D(q) = \prod_{k \ge 1} (1 - q^k)^{-2}$$

Theorem 13

$$U(q) = \sum_{n\geq 1} (-1)^{n-1} q^{\binom{n+1}{2}} \prod_{k\geq 1} (1-q^k)^{-2}.$$

) 4 (
Wynn Huang	Sieve Methods in Combinatorics	July 15, 2024	15 / 15