
Shor’s Algorithm: A Quantum Leap in Factorization
Lets Decrypt the Algorithm

Tyler Rose

t.atwood.rose@gmail.com
Euler Circle

July 16, 2024

1 / 22



Overview

1. Introduction

2. Context and Importance

3. Background: Quantum Computing Basics

4. Core Concept: Period Finding

5. Key Steps of Shor’s Algorithm

6. Conclusion

2 / 22



The Cryptographic Landscape

• As of 2021:
• 52% of HTTPS servers use RSA
• 75% of digital certificates use RSA

• Safeguarding trillions of online transactions

• But a quantum storm is brewing...

Image Source:
https://threatpost.com/why-web-browser-
padlocks-shouldnt-be-trusted/159659/

Key Point

RSA encryption is the backbone of current internet security.

3 / 22



The Quantum Revolution

• Quantum computing is evolving rapidly

• Quantum volumes increasing 10 fold
yearly since 2020

• Potential to completely shift the
cryptographic landscape

Image: Exponential growth of quantum volume
(https://www.quantinuum.com/news/quantinuum-
extends-its-significant-lead-in-quantum-computing-
achieving-historic-milestones-for-hardware-fidelity-and-
quantum-volume)
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The Problem of Integer Factorization

• Central problem in number theory and computer science

• Difficulty increases exponentially with number size
• Example: Factoring a 2048-bit number

• Classical computers: Billions of years
• Quantum computers with Shor’s algorithm: Hours or days

• Forms the foundation of many cryptographic systems, especially RSA

Definition: Integer Factorization

The process of decomposing a composite number into a product of smaller integers.
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Peter Shor and His Algorithm

• Peter Shor: American mathematician and
MIT professor

• Developed Shor’s algorithm in 1994 at
AT&T Bell Laboratories

• One of the algorithms to show quantum
computers could exponentially outperform
classical computers on a problem of wide
interest

• Sparked intense interest in quantum
computing and quantum-resistant
cryptography Image: Peter Shor
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The Breakthrough: Polynomial-Time Factorization

• Shor’s algorithm: Integer factorization in polynomial time on a quantum computer

• Dramatic improvement over classical methods

• Can factor an n-bit number in O(n3) time and O(n) space
• Implications:

• Many current cryptographic systems will be vulnerable to attack
• Need for quantum-resistant cryptography

Key Insight

Shor’s algorithm reduces factoring to finding the period of a quantum function.
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Qubits: The Fundamental Unit

• Qubit: Quantum bit, the basic unit of quantum
information

• Unlike classical bits, qubits can be in superposition

• Represented as |ψ⟩ = α|0⟩+ β|1⟩
• α and β are complex numbers: |α|2 + |β|2 = 1

Image:
Bloch sphere representation of a qubit

Superposition Principle

A qubit can exist in a superposition of multiple states until measured.
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Quantum State Representation

• Quantum states are represented by vectors in complex Hilbert space

• For a single qubit:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
• General state:

|ψ⟩ = α|0⟩+ β|1⟩ =
(
α
β

)
• Multiple qubits: tensor product of individual qubit states

Key Point

The state space grows exponentially with the number of qubits!
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Tensor Product: Combining Quantum Systems

• Tensor product () combines individual qubit states

• For two qubits |ψ1⟩ = a|0⟩+ b|1⟩ and
|ψ2⟩ = c |0⟩+ d |1⟩:

|ψ1⟩ ⊗ |ψ2⟩ = ac|00⟩+ ad |01⟩+ bc|10⟩+ bd |11⟩

• State space grows exponentially: n qubits require
2n amplitudes

(
a
b

)
⊗
(
c
d

)
=


ac
ad
bc
bd



Key Point

Tensor product enables description of multi-qubit systems!

10 / 22



Quantum Fourier Transform (QFT)

• Quantum analogue of the classical Fourier transform

• Crucial component in many quantum algorithms, including Shor’s

• Transforms quantum state from computational basis to Fourier basis

• For an n-qubit state |x⟩:

QFT |x⟩ = 1√
2n

2n−1∑
y=0

e2πixy/2
n |y⟩

• Can be implemented efficiently using O(n2) quantum gates

QFT Superpower

QFT can extract periodicity information from quantum states!
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Quantum Parallelism and Interference
Quantum Parallelism:

• Ability to perform operations on many
computational states at the same time

• Enabled by superposition

• Example: Evaluating a function for multiple inputs

Quantum Interference:

• Amplitudes can interfere constructively or
destructively

• Crucial for extracting useful information from
quantum computations

Quantum interference

Key Insight

Quantum parallelism and interference are key to quantum speedups!
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Reducing Factoring to Period Finding

• Key insight: Factoring can be reduced to finding the period of a function

• For a number N to be factored, define:

f (x) = ax mod N

where a is coprime to N

• This function is periodic: f (x) = f (x + r) for some r

• Finding this period r can lead to factors of N

Key Point

Period finding is hard classically but efficient quantumly!
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From Period to Factors

• If we find the period r :
• Compute ar/2 mod N
• If this equals ±1 mod N, try next a
• Otherwise, gcd(ar/2 ± 1,N) likely gives a factor

• Example: For N = 15, a = 7
• Period r = 4
• 72 mod 15 = 4
• gcd(4− 1, 15) = 3 and gcd(4 + 1, 15) = 5
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Overview of Shor’s Algorithm

1. Quantum state preparation

2. Modular exponentiation

3. Quantum Fourier Transform

4. Measurement and classical post-processing
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Step 1: Quantum State Preparation

• Initialize two quantum registers:
• Input register: n = 2⌈log2 N⌉ qubits
• Output register: ⌈log2 N⌉ qubits

• Apply Hadamard gates to create superposition:

|ψ1⟩ =
1√
2n

2n−1∑
x=0

|x⟩|0⟩

Key Point

This superposition allows us to evaluate the function for all inputs simultaneously!
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Step 2: Modular Exponentiation

• Apply the function f (x) = ax mod N to the superposition:

|ψ2⟩ =
1√
2n

2n−1∑
x=0

|x⟩|ax mod N⟩

• Implemented using controlled modular multiplication

• Most computationally intensive part of the algorithm

17 / 22



Step 3: Quantum Fourier Transform

• Apply QFT to the input register:

|ψ3⟩ =
1

2n

2n−1∑
y=0

2n−1∑
x=0

e2πixy/2
n |y⟩|ax mod N⟩

• Transforms periodicity in function values to phase differences

• Efficient implementation using O(n2) gates

Key Insight

QFT allows us to extract period information efficiently!
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Step 4: Measurement and Classical Post-processing

1. Measure the input register to obtain y

2. Use continued fraction expansion to find r ′ approximating 2n

y

3. Check if ar
′ ≡ 1 (mod N)

4. If r ′ is even, compute gcd(ar
′/2 ± 1,N)

5. If we find a non-trivial factor, we’re done; otherwise, repeat

Success Probability

The algorithm succeeds with probability Ω(1/ log logN) per iteration
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Implications for Cryptography

• Shor’s algorithm threatens RSA and other public-key cryptosystems
• Need for quantum-resistant cryptography:

• Lattice-based cryptography
• Hash-based signatures
• Code-based cryptography
• Multivariate cryptography

• NIST Post-Quantum Cryptography Standardization

Key Point

We need to prepare for a post-quantum cryptographic landscape!
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Current State and Future Prospects

• Largest number factored using Shor’s: 21 (as of
2012)

• Challenges:
• Quantum error correction
• Maintaining coherence
• Scaling up number of qubits

• Ongoing research to improve implementation

• Potential impact beyond cryptography
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Recap and Final Thoughts

• Shor’s algorithm: A quantum solution to integer factorization

• Exponential speedup over classical algorithms
• Key components:

• Quantum parallelism
• Period finding
• Quantum Fourier Transform

• Significant implications for cryptography and beyond

• Drives development in quantum computing and post-quantum cryptography

Final Thought

Shor’s algorithm exemplifies the transformative potential of quantum computing!
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