
From Classical Complexity to Quantum

Efficiency: The Mathematical Basis of Shor’s

Algorithm

Tyler Rose

July 15, 2024

Abstract

As RSA encryption secures over half of all HTTPS servers and quan-
tum computing advances rapidly, with volumes increasing tenfold annually
since 2020, Shor’s algorithm emerges as a potential cryptographic game-
changer. This paper provides a comprehensive exploration of Shor’s algo-
rithm, from its mathematical foundations to its far-reaching implications.
We analyze its structure, demonstrating its ability to factor large integers
in polynomial time—a task believed intractable for classical computers.
Through complexity analysis and examples, we illustrate the exponential
speedup offered by Shor’s algorithm over classical methods. We examine
its profound implications for current cryptographic systems and discuss
the emerging field of post-quantum cryptography. As quantum computing
evolves, understanding Shor’s algorithm becomes crucial for the future of
secure digital communication.

1 Introduction

As of 2021, approximately 52% of all HTTPS servers and 75% of digital cer-
tificates use RSA encryption, safeguarding trillions of online transactions and
communications daily [3]. Meanwhile, the quantum computing landscape is
evolving rapidly, with quantum volumes increasing by approximately 10 fold
every year since 2020 [1]. What does this rapidly advancing field of quantum
computing have to do with encryption? The answer lies in a groundbreaking
quantum algorithm called Shor’s algorithm, which has the potential to com-
pletely shift the landscape of cryptography. As quantum computers continue
to grow in power and capability, the implications of this algorithm become in-
creasingly significant.

The security of RSA and many other encryption systems relies on the com-
putational difficulty of integer factorization. This mathematical problem, which
involves breaking down a large number into its prime factors, forms the basis
for most modern encryption algorithms. The following subsections delve deeper

1

into the intricacies of this problem and its far-reaching implications in the world
of cryptography and quantum computing.

1.1 The Problem of Integer Factorization

Integer factorization has long been a central problem in number theory and
computer science. While factoring small numbers is relatively straightforward,
the difficulty increases exponentially with the size of the number. For instance,
factoring a 2048-bit number using the most efficient classical algorithms would
take billions of years, even with the most powerful supercomputers available
today.

This inherent difficulty of factoring large numbers is not merely an academic
curiosity. It forms the foundation of many cryptographic systems, most notably
RSA (Rivest-Shamir-Adleman) encryption. RSA relies on the presumed dif-
ficulty of factoring the product of two large prime numbers. The security of
this system, and by extension, much of our digital infrastructure, hinges on the
belief that no efficient algorithm exists for factoring large numbers on classical
computers.

1.2 Cryptographic Significance

The significance of integer factorization in cryptography cannot be overstated.
RSA encryption, which depends on the difficulty of this problem, is widely used
in secure data transmission, digital signatures, and key exchange protocols. It
protects sensitive information in various sectors, including finance, healthcare,
and government communications.

However, the landscape of cryptography is on the brink of a major shift
due to the advent of quantum computing. Quantum computers, leveraging the
principles of quantum mechanics, can perform certain algorithms exponentially
faster than classical computers. This capability poses a significant threat to
current cryptographic systems, as quantum computers could potentially break
encryption methods that are considered secure today.

1.3 Peter Shor

At the heart of this cryptographic revolution is Peter Shor, an American math-
ematician and professor at MIT. In 1994, Shor developed his eponymous algo-
rithm while working at AT&T Bell Laboratories. His breakthrough came at
a time when quantum computing was still a largely theoretical field, with no
practical quantum computers in existence.

Shor’s work was inspired by earlier quantum algorithms, particularly those
developed by David Deutsch and Richard Jozsa. However, Shor’s algorithm was
the first to demonstrate a practical application where quantum computers could
exponentially outperform classical computers on a problem of wide interest.

The development of Shor’s algorithm was not just a mathematical curiosity;
it represented a paradigm shift in our understanding of computational complex-

2

ity and the potential power of quantum computers. It sparked intense interest in
quantum computing and quantum-resistant cryptography, areas that continue
to be at the forefront of research and development today.

1.4 The Breakthrough: Polynomial-Time Factorization

Shor’s seminal work introduced an algorithm that can factor integers in poly-
nomial time on a quantum computer. This stands in stark contrast to the
subexponential time required by the best known classical algorithms. Specif-
ically, Shor’s algorithm can factor an n-bit number in O(n3) time and O(n)
space, a dramatic improvement over classical methods.

This breakthrough has far-reaching implications. It suggests that once large-
scale quantum computers become a reality, many current cryptographic systems
will be vulnerable to attack. The algorithm’s efficiency stems from its clever use
of quantum parallelism and the quantum Fourier transform to find the period of
a carefully chosen function, which can then be used to factor the target number.

In the following sections, we will delve deeper into the mechanics of Shor’s
algorithm. We’ll explore the necessary background in quantum computing,
including concepts like quantum superposition and entanglement. We’ll then
break down the algorithm step by step, from state preparation through quan-
tum Fourier transform to measurement and classical post-processing. We’ll
analyze its complexity, compare it with classical factoring methods, and discuss
its implementation challenges. Finally, we’ll examine the profound implications
of this algorithm for the future of cryptography and the ongoing efforts to de-
velop quantum-resistant encryption methods. Through this exploration, we aim
to provide a comprehensive understanding of one of the most significant algo-
rithms in the field of quantum computing.

2 Background

This section covers the necessary prerequisites for understanding Shor’s algo-
rithm, including relevant concepts from classical computing, quantum comput-
ing basics, and the quantum Fourier transform. [2]

2.1 Classical Computing Concepts

To appreciate the significance of Shor’s algorithm, it’s crucial to understand
certain fundamental concepts from classical computing, particularly in the areas
of computational complexity and factoring algorithms.

Computational complexity measures the resources required to solve a prob-
lem as a function of the input size. In algorithm analysis, we’re primarily
concerned with time complexity, which quantifies how an algorithm’s running
time scales with its input size. Two key complexity classes are relevant to our
discussion: polynomial time and exponential time.

3

An algorithm runs in polynomial time if its running time is upper bounded
by a polynomial expression in the input size, formally O(nk) for some constant
k, where n is the input size. Problems solvable in polynomial time are generally
considered tractable. In contrast, an algorithm runs in exponential time if its

running time is O(2n
k

) for some constant k. Exponential-time problems are
generally considered intractable for large inputs.

Integer factorization, the problem of decomposing a composite number into
its prime factors, is of particular interest due to its importance in cryptography.
The best known classical algorithms for integer factorization are subexponential
but superpolynomial in complexity. Some notable examples include:

• Trial division: The simplest factoring algorithm, with a time complexity
of O(

√
n). While polynomial in

√
n, it’s exponential in the number of bits

of n.

• Pollard’s rho algorithm: A probabilistic algorithm with an expected
running time of O(4

√
n).

• General number field sieve (GNFS): Currently the most efficient
known classical algorithm for factoring large integers, with a subexponen-

tial time complexity of O(e((64/9)
1/3+o(1))(lnn)1/3(ln lnn)2/3).

The superpolynomial nature of these algorithms makes factoring large num-
bers computationally infeasible with classical computers. For instance, factoring
a 2048-bit number using the GNFS would take billions of years even with the
most powerful classical supercomputers available today. This computational dif-
ficulty forms the basis for the security of many cryptographic systems, including
RSA.

The apparent intractability of integer factorization on classical computers
has led to its widespread use in cryptography. However, as we will see, quan-
tum computing offers a radically different approach to this problem. Shor’s
algorithm achieves polynomial-time factoring by leveraging the unique proper-
ties of quantum systems, potentially undermining the security of systems that
rely on the difficulty of this problem.

2.2 Quantum Computing Fundamentals

Quantum computing harnesses the principles of quantum mechanics to process
information in ways that are fundamentally different from classical computing.
This section introduces the key concepts of quantum computing that are essen-
tial for understanding Shor’s algorithm.

2.2.1 Qubits and Quantum States

The fundamental unit of quantum information is the quantum bit, or qubit.
Unlike classical bits, which can only be in one of two states (0 or 1), qubits can

4

exist in a superposition of states, allowing for much more complex information
processing.

The state of a qubit is represented mathematically by a state vector in a
two-dimensional complex vector space, known as a Hilbert space. This vector
space is spanned by two orthonormal basis vectors, conventionally denoted as
|0⟩ and |1⟩, which correspond to the classical bit states 0 and 1, respectively.
These basis states are represented in vector form as:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
(1)

In quantum mechanics and quantum computing, we use the Dirac or bra-ket
notation to represent state vectors. A ket |ψ⟩ represents a column vector and
denotes a quantum state, while a bra ⟨ψ| represents the conjugate transpose of
the ket, i.e., a row vector.

The general state of a qubit can be written as a linear combination of the
basis states:

|ψ⟩ = α|0⟩+ β|1⟩ (2)

where α and β are complex numbers called probability amplitudes, satisfy-
ing the normalization condition |α|2 + |β|2 = 1. In matrix form, this state is
represented as:

|ψ⟩ =
(
α
β

)
(3)

The corresponding bra vector is:

⟨ψ| =
(
α∗ β∗) (4)

where α∗ and β∗ are the complex conjugates of α and β, respectively.
The inner product of two state vectors |ψ⟩ and |ϕ⟩ is denoted as ⟨ϕ|ψ⟩ and

is calculated as:

⟨ϕ|ψ⟩ = α∗
ϕαψ + β∗

ϕβψ (5)

This inner product is essential for calculating probabilities and expectation
values in quantum mechanics.

Superposition, a fundamental principle of quantum mechanics, allows a
quantum system to exist in a combination of states simultaneously. For a qubit,
this means it can be in a state that is neither definitely |0⟩ nor definitely |1⟩, but
rather a combination of both. The probabilities of measuring the qubit in each
basis state are given by the squared magnitudes of the probability amplitudes:
P (0) = |α|2 and P (1) = |β|2.

Measurement plays a crucial role in quantum computing. When a qubit in
superposition is measured, it collapses to one of the basis states with probabil-
ities determined by the probability amplitudes. This collapse is a fundamental

5

feature of quantum mechanics and has important implications for quantum al-
gorithms.

Transformations on quantum states are represented by unitary operators.
A unitary operator U satisfies U†U = UU† = I, where U† is the conjugate
transpose of U and I is the identity operator. These transformations preserve
the normalization of the state vector and the total probability.

Single-qubit gates are unitary operations that act on individual qubits. Some
important single-qubit gates include:

• Pauli gates: X, Y, and Z gates, represented by the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(6)

• Hadamard gate (H): Creates superposition:

H =
1√
2

(
1 1
1 −1

)
(7)

The Hadamard gate is particularly important as it creates an equal super-
position of |0⟩ and |1⟩ states when applied to |0⟩:

H|0⟩ = 1√
2
(|0⟩+ |1⟩) (8)

2.2.2 Multi-Qubit Systems and Entanglement

While single qubits are the fundamental units of quantum information, most
practical quantum algorithms, including Shor’s algorithm, require multiple qubits
working together. The state space of a multi-qubit system is the tensor prod-
uct of the individual qubit spaces, resulting in a 2n-dimensional complex vector
space for n qubits.

For a system of n qubits, the computational basis states are typically denoted
as |x1x2...xn⟩, where each xi is either 0 or 1. The general state of an n-qubit
system can be written as:

|ψ⟩ =
∑

x∈{0,1}n

cx|x⟩ (9)

where cx are complex amplitudes satisfying the normalization condition∑
x∈{0,1}n |cx|2 = 1.
One of the most important features of multi-qubit systems is entanglement.

Entangled states are quantum states that cannot be factored as tensor products
of individual qubit states. For example, the Bell state:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (10)

6

is an entangled two-qubit state. Entanglement allows for correlations be-
tween qubits that are stronger than any classical correlation and is a key resource
in many quantum algorithms, including Shor’s algorithm.

Multi-qubit gates operate on two or more qubits simultaneously. The Controlled-
NOT (CNOT) gate is a fundamental two-qubit gate that flips the second qubit
(target) if the first qubit (control) is |1⟩:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (11)

Quantum circuits are diagrams representing sequences of quantum gates ap-
plied to a set of qubits. In these diagrams, horizontal lines represent qubits,
boxes on these lines represent single-qubit gates, and vertical lines connecting
boxes represent multi-qubit gates. Time flows from left to right in these dia-
grams.

Measurement in multi-qubit systems can be partial, where only a subset of
qubits is measured. This operation collapses the measured qubits but leaves the
others in a superposition, conditioned on the measurement outcome.

A set of quantum gates is considered universal if any unitary operation can
be approximated to arbitrary accuracy using only gates from this set. Some
universal gate sets include H, T, CNOT and H, S, T, CNOT, where S and T
are phase gates introducing π/2 and π/4 phase shifts, respectively.

In physical quantum computers, these abstract gates and operations are
implemented using controlled electromagnetic pulses or laser beams, depending
on the specific qubit technology (e.g., superconducting qubits, trapped ions,
photonic qubits).

Understanding these quantum computing fundamentals is crucial for grasp-
ing the power and potential of quantum algorithms like Shor’s algorithm, which
leverage quantum superposition, entanglement, and interference to achieve com-
putational speedups over classical algorithms.

3 Shor’s Algorithm: An Overview

Shor’s algorithm, developed by Peter Shor in 1994, is a quantum algorithm
designed to solve the integer factorization problem efficiently. This problem,
which involves finding the prime factors of a large composite number, is believed
to be computationally difficult for classical computers. The best known classical
algorithms for this task have subexponential time complexity, which forms the
basis for the security of many cryptographic systems, including RSA.

The significance of Shor’s algorithm lies in its ability to factor large inte-
gers in polynomial time on a quantum computer, potentially undermining the
security of widely used public-key cryptosystems. The algorithm combines prin-
ciples from quantum mechanics with number theory to achieve this remarkable
speedup.

7

3.1 The Core Idea: Period Finding

At its heart, Shor’s algorithm is a period-finding algorithm. The key insight is
that the problem of factoring can be reduced to finding the period of a certain
function. Specifically, for a number N to be factored, we define the function:

f(x) = ax mod N (12)

where a is a randomly chosen integer coprime toN . This function is periodic,
meaning there exists a smallest positive integer r such that:

f(x+ r) = f(x) for all x (13)

This r is called the period of the function. If we can find this period, we can
use it to factor N with high probability using classical post-processing steps.

The period-finding problem is difficult for classical computers but can be
solved efficiently using quantum computation. This is where the power of Shor’s
algorithm lies.

3.2 Quantum Parallelism in Shor’s Algorithm

Shor’s algorithm leverages quantum parallelism to evaluate the function f(x)
for many values of x simultaneously. This is achieved through the following
steps:

1. State Preparation: The algorithm begins by preparing a quantum
state that is a superposition of all possible inputs x. This is typically done using
Hadamard gates on a register of n qubits, where n is chosen to be approximately
2 log2N . The resulting state is:

|ψ⟩ = 1√
2n

2n−1∑
x=0

|x⟩ (14)

2. Function Evaluation: The function f(x) = ax mod N is then ap-
plied to this superposition. This is done using a quantum circuit for modular
exponentiation, resulting in the state:

|ψ⟩ = 1√
2n

2n−1∑
x=0

|x⟩|f(x)⟩ (15)

This step effectively computes f(x) for all 2n values of x simultaneously,
showcasing the power of quantum parallelism.

3. Quantum Fourier Transform: The Quantum Fourier Transform (QFT)
is then applied to the first register. The QFT is crucial for extracting the peri-
odicity information from the superposition state.

4. Measurement: The state is measured, collapsing the superposition.
The measurement result, when processed classically, yields information about
the period r.

8

3.3 Key Components of the Algorithm

Shor’s algorithm consists of both quantum and classical parts:
1. Quantum Part: - State preparation - Modular exponentiation - Quan-

tum Fourier Transform - Measurement
2. Classical Part: - Pre-processing (choosing a, checking for trivial fac-

tors) - Post-processing of measurement results (continued fraction expansion,
checking candidate factors)

The quantum part of the algorithm is where the exponential speedup occurs.
It allows us to extract information about the period r in a time that scales
polynomially with logN , rather than exponentially as in classical algorithms.

3.4 Complexity and Efficiency

The time complexity of Shor’s algorithm is O((logN)3), which is polynomial in
the number of digits of N . This is exponentially faster than the best known
classical factoring algorithms, such as the General Number Field Sieve, which

has a subexponential time complexity of O(e((64/9)
1/3+o(1))(lnN)1/3(ln lnN)2/3).

The space complexity of Shor’s algorithm is O(logN) qubits, which is poly-
nomial in the input size. However, this still represents a significant challenge
for current quantum hardware, as factoring even modest-sized numbers requires
more coherent qubits than are currently available.

3.5 Probabilistic Nature

It’s important to note that Shor’s algorithm is probabilistic. It may need to
be run multiple times to factor N successfully. However, the probability of
success in each run is sufficiently high that the expected number of repetitions
is constant, preserving the overall polynomial time complexity.

4 Detailed Explanation of Shor’s Algorithm

This section will break down the algorithm into its constituent steps.

4.1 Step 1: Quantum State Preparation

The first step in Shor’s algorithm is the preparation of the initial quantum state,
which sets up the quantum superposition necessary for parallel evaluation of the
modular exponentiation function. This step involves two quantum registers and
a series of quantum operations.

Let N be the number we want to factor. We use two quantum registers:

1. An input register with n = 2⌈log2N⌉ qubits.

2. An output register with ⌈log2N⌉ qubits.

9

The size of the input register ensures that the period r of the modular
exponentiation function (which is at most N) can be represented, and provides
sufficient precision for the Quantum Fourier Transform in a later step. The
output register can represent numbers from 0 to N − 1.

Initially, both registers are set to the |0⟩ state. The starting state of the
system is thus:

|ψ0⟩ = |0⟩⊗n ⊗ |0⟩⊗⌈log2N⌉ (16)

where ⊗ denotes the tensor product.
To create a superposition of all possible input states, we apply a Hadamard

gate (H) to each qubit in the input register. The Hadamard gate is defined as:

H =
1√
2

(
1 1
1 −1

)
(17)

When applied to the |0⟩ state, it produces:

H|0⟩ = 1√
2
(|0⟩+ |1⟩) (18)

Applying this operation to all n qubits in the input register results in:

(H⊗n ⊗ I)|ψ0⟩ =
1√
2n

2n−1∑
x=0

|x⟩ ⊗ |0⟩ (19)

where I is the identity operator applied to the output register.
The final state after preparation is:

|ψ1⟩ =
1√
2n

2n−1∑
x=0

|x⟩ ⊗ |0⟩ (20)

This state represents a uniform superposition of all possible inputs x from
0 to 2n − 1 in the input register, while the output register remains in the |0⟩
state.

The creation of this superposition state is crucial for quantum parallelism,
allowing simultaneous evaluation of the modular exponentiation function for all
possible inputs in the subsequent step. This parallel processing capability is
a fundamental advantage over classical computing, where function evaluation
would need to be performed sequentially for each input.

Mathematically, this state preparation can be represented as a unitary trans-
formation Uprep acting on the initial state:

Uprep = (H⊗n ⊗ I) (21)

such that:

|ψ1⟩ = Uprep|ψ0⟩ (22)

10

This unitary nature ensures that the quantum information is preserved
throughout the operation.

It’s worth noting that while this state preparation is mathematically straight-
forward, maintaining such a superposition state in physical quantum systems
presents significant challenges due to decoherence effects. The coherence time of
the system effectively sets a countdown for the remaining computational steps,
emphasizing the need for efficient subsequent operations and robust error cor-
rection techniques in practical implementations of Shor’s algorithm.

4.2 Step 2: Modular Exponentiation

Building upon the superposition state created in Step 1, the second step of
Shor’s algorithm involves applying the modular exponentiation function to this
state. This step is the computational core of the algorithm and the source of
its quantum speedup.

The modular exponentiation function we need to implement is:

f(x) = ax mod N (23)

where N is the number we want to factor, a is a randomly chosen integer
coprime to N (1 ¡ a ¡ N), and x is the input represented in the superposition
state of the input register.

Our goal is to transform the state |ψ1⟩ from Step 1 into:

|ψ2⟩ =
1√
2n

2n−1∑
x=0

|x⟩ ⊗ |f(x)⟩ (24)

This transformation must be unitary to preserve the quantum nature of the
computation. We can represent it as a unitary operator Uf such that:

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f(x)⟩ (25)

where ⊕ denotes bitwise addition modulo 2.
The implementation of Uf leverages the binary decomposition of x:

ax = ax0·20 · ax1·21 · ax2·22 · ... · axn−1·2n−1

(26)

where xi are the binary digits of x. This decomposition allows us to construct
Uf as a series of controlled modular multiplications:

Uf =

n−1∏
i=0

(|0⟩⟨0|i ⊗ I + |1⟩⟨1|i ⊗Ma2i mod N) (27)

Here, Ma2i mod N is the unitary operation that performs modular multipli-

cation by a2
i

mod N .
Each Ma2i mod N can be further decomposed into a sequence of modular

additions and bit shifts. A common approach is to use the quantum version

11

of the Montgomery multiplication algorithm, which allows for efficient modular
multiplication without division.

Mathematically, the Montgomery multiplication for computing ab mod N
can be expressed as:

MontMult(a, b,N) = abR−1 mod N (28)

where R is a power of 2 greater thanN , and R−1 is its modular multiplicative
inverse modulo N .

The complexity of this step is O((logN)3) quantum gates, which dominates
the overall complexity of Shor’s algorithm. This cubic complexity arises from the
need to perform O(logN) modular multiplications, each requiring O((logN)2)
operations.

It’s crucial to note that while we’ve described this operation in terms of its
action on computational basis states, the power of quantum computation allows
it to be applied to the superposition of all possible inputs simultaneously. This
parallel processing is what gives Shor’s algorithm its advantage over classical
factoring algorithms.

The final state after this step encodes the period of the modular exponenti-
ation function in the amplitudes of the superposition:

|ψ2⟩ =
1√
2n

2n−1∑
x=0

|x⟩ ⊗ |ax mod N⟩ (29)

This state preparation sets the stage for the next step of the algorithm, where
the Quantum Fourier Transform will be used to extract the period information
encoded in this superposition.

4.3 Step 3: Quantum Fourier Transform

Following the modular exponentiation step, Shor’s algorithm employs the Quan-
tum Fourier Transform (QFT) to transform the periodicity encoded in the func-
tion values into a measurable phase difference. This step is crucial for efficiently
extracting the period information.

The QFT is the quantum analogue of the classical discrete Fourier transform.
For a quantum state |x⟩ in an n-qubit register, the QFT is defined as:

QFTn|x⟩ =
1√
2n

2n−1∑
y=0

e2πixy/2
n

|y⟩ (30)

The QFT acts linearly on superpositions of states:

QFTn

(
2n−1∑
x=0

cx|x⟩

)
=

2n−1∑
y=0

c̃y|y⟩ (31)

where c̃y = 1√
2n

∑2n−1
x=0 cxe

2πixy/2n .

12

To understand how and why the QFT works, let’s consider its action on a
periodic state. Suppose we have a state with period r:

|ψ⟩ = 1√
r

r−1∑
k=0

|x0 + kr⟩ (32)

where x0 is some starting point. Applying the QFT to this state gives:

QFTn|ψ⟩ =
1√
r2n

2n−1∑
y=0

r−1∑
k=0

e2πi(x0+kr)y/2
n

|y⟩ (33)

The key insight is that this sum will have large amplitudes for values of y
that are close to multiples of 2n/r. To see why, let’s factor out the x0 term:

QFTn|ψ⟩ =
1√
r2n

2n−1∑
y=0

e2πix0y/2
n

(
r−1∑
k=0

e2πikry/2
n

)
|y⟩ (34)

The sum in parentheses is a geometric series. It will be large when ry/2n is
close to an integer, i.e., when y is close to a multiple of 2n/r. Specifically, this
sum equals r when y is an exact multiple of 2n/r, and is much smaller for other
values of y.

This property of the QFT is what allows us to extract the period r. After
applying the QFT, measuring the state will yield a value of y that is likely to
be close to a multiple of 2n/r. From this measurement, we can deduce r with
high probability.

In Shor’s algorithm, we apply the QFT to the input register of our state
after modular exponentiation:

|ψ3⟩ = (QFTn ⊗ I)|ψ2⟩ (35)

Expanding this out, we get:

|ψ3⟩ =
1

2n

2n−1∑
y=0

2n−1∑
x=0

e2πixy/2
n

|y⟩ ⊗ |ax mod N⟩ (36)

The QFT can be implemented efficiently using a quantum circuit consisting
of Hadamard gates and controlled rotation gates. For an n-qubit register, the
circuit requires n Hadamard gates and n(n−1)/2 controlled rotation gates. The
controlled rotation gates are of the form:

Rk =

(
1 0

0 e2πi/2
k

)
(37)

The unitary matrix representing the QFT on n qubits can be expressed as:

13

UQFT =
1√
2n

1 1 1 · · · 1
1 ω ω2 · · · ω2n−1

1 ω2 ω4 · · · ω2(2n−1)

...
...

...
. . .

...
1 ω2n−1 ω2(2n−1) · · · ω(2n−1)(2n−1)

 (38)

where ω = e2πi/2
n

is the 2n-th root of unity.
The QFT can be implemented using O(n2) gates, where n is the number of

qubits. This is exponentially faster than the classical Fast Fourier Transform,
which requires O(n2n) gates. In practice, an approximate version of the QFT
is often used, where rotations by very small angles are omitted. This reduces
the number of gates required while maintaining sufficient accuracy for Shor’s
algorithm.

The QFT is crucial in Shor’s algorithm as it transforms the periodic structure
in the function values into a form that can be efficiently measured. It allows us
to extract the period r with high probability using only a single measurement,
rather than requiring many repeated function evaluations as would be necessary
classically. This transformation of the periodic structure into a measurable
phase difference is what enables Shor’s algorithm to achieve its exponential
speedup over classical period-finding methods.

4.4 Step 4: Measurement and Classical Post-processing

The final step of Shor’s algorithm involves measuring the quantum state and
performing classical post-processing on the measurement results to determine
the factors of N. This step translates the quantum information encoded in the
superposition state into classical information that can be used to factor N.

After applying the QFT, the state of our quantum system is:

|ψ3⟩ =
1

2n

2n−1∑
y=0

2n−1∑
x=0

e2πixy/2
n

|y⟩ ⊗ |ax mod N⟩ (39)

When we measure the input register, we obtain a value y with probability:

P (y) =

∣∣∣∣∣ 12n
2n−1∑
x=0

e2πixy/2
n

∣∣∣∣∣
2

(40)

Due to the periodicity of the function f(x) = ax mod N , this probability
distribution has peaks at values of y that are close to multiples of 2n/r, where
r is the period we’re trying to find.

The classical post-processing steps following the measurement are crucial for
extracting the period r and using it to factor N. These steps involve number
theory techniques and can be summarized as follows:

1. Continued Fraction Expansion: We use the continued fraction expansion
of y/2n to find a rational approximation d/r′ where r′ is a candidate for the

14

period r. We look for a fraction where r′ < N . The continued fraction expansion
can be computed using the following recurrence relations:

a0 = ⌊y/2n⌋ (41)

p0 = a0, q0 = 1 (42)

p1 = a0a1 + 1, q1 = a1 (43)

pi = aipi−1 + pi−2 (44)

qi = aiqi−1 + qi−2 (45)

where ai are the quotients in the continued fraction expansion.
2. Check Candidate Period: For each candidate period r′, we check if:

ar
′
≡ 1 (mod N) (46)

If this condition is met, r′ is likely to be the actual period r or a multiple of
it.

3. Factor Finding: If we find a suitable r′, we compute:

gcd(ar
′/2 ± 1, N) (47)

If r′ is even and this gcd is nontrivial (not 1 or N), it gives us a factor of N.
This step is based on the fact that if r is the period of ax mod N , then:

ar − 1 = (ar/2 − 1)(ar/2 + 1) ≡ 0 (mod N) (48)

Therefore, if r is even, N must divide (ar/2−1)(ar/2+1), but it’s unlikely to
divide both factors, so one of the gcd computations is likely to yield a non-trivial
factor.

The probability of measuring a y that leads to the correct period r is at
least:

P (success) ≥ 4

π2
≈ 0.405 (49)

This means that, on average, we need to repeat the quantum part of Shor’s
algorithm only a constant number of times to find the period with high proba-
bility.

If the post-processing fails to find a factor (which can happen due to the
probabilistic nature of the algorithm), we repeat the entire process with a new
random a. The classical post-processing steps have polynomial time complexity:

- Continued fraction expansion: O((logN)2) - Modular exponentiation check:
O((logN)3) - GCD computation: O((logN)3)

These are dominated by the O((logN)3) complexity of the quantum part of
the algorithm.

To illustrate this process, consider factoring N = 15. Suppose we measure
y = 213 in a 16-qubit input register. Then:

15

y

2n
=

213

216
=

1

8
(50)

This suggests a period of 8. We check a8 ≡ 1 (mod 15). If this holds, we
compute gcd(a4 ± 1, 15), which may give us a factor of 15.

The efficiency of this measurement and post-processing step, combined with
the quantum speedup in evaluating the modular exponentiation function, is
what gives Shor’s algorithm its power to factor large numbers efficiently. The
algorithm transforms the problem of factoring, which is believed to be computa-
tionally hard for classical computers, into the problem of period-finding, which
can be solved efficiently on a quantum computer.

5 Complexity Analysis

The efficiency of Shor’s algorithm is one of its most remarkable features, offering
a significant speedup over classical factoring methods. This section provides a
detailed analysis of the algorithm’s time and space complexity, comparing it
with classical factoring algorithms and exploring its probabilistic nature.

5.1 Time Complexity

The time complexity of Shor’s algorithm is dominated by three main compo-
nents: the Quantum Fourier Transform (QFT), modular exponentiation, and
classical post-processing. Let’s examine each of these components in detail.

The QFT on an n-qubit register can be implemented using O(n2) quantum
gates. In Shor’s algorithm, we use n = 2 logN qubits, resulting in a complexity
of O((logN)2) for the QFT step.

The modular exponentiation step, which computes ax mod N for super-
positions of x, is the most time-consuming part of the algorithm. Using fast
multiplication techniques, this step can be implemented with O((logN)3) quan-
tum gates. The complexity of this step dominates the overall time complexity
of the algorithm.

The classical part of the algorithm, including continued fraction expansion
and greatest common divisor computations, has a time complexity ofO((logN)3).
This includes the post-processing of measurement results to extract the period
and compute the factors.

Combining these components, the overall time complexity of Shor’s algo-
rithm is:

T (N) = O((logN)2 + (logN)3 + (logN)3) = O((logN)3) (51)

This polynomial time complexity represents an exponential speedup over
the best known classical factoring algorithms. To put this into perspective, let’s
compare it with the General Number Field Sieve (GNFS), the most efficient
classical factoring algorithm for large numbers.

The GNFS has a subexponential time complexity of:

16

TGNFS(N) = O(e((64/9)
1/3+o(1))(lnN)1/3(ln lnN)2/3) (52)

To illustrate the dramatic difference, consider factoring a 2048-bit number,
which is common in RSA cryptography. Shor’s algorithm would require ap-
proximately (log2 2048)

3 ≈ 1.7× 106 operations, while the GNFS would require
approximately 2112 operations. This latter figure is infeasible with current and
foreseeable classical computing power.

5.2 Space Complexity and Probabilistic Nature

The space complexity of Shor’s algorithm is determined by the number of qubits
required. The algorithm needs 2 logN qubits for the input register, logN qubits
for the output register, and a small number of additional qubits for the mod-
ular exponentiation circuit. Therefore, the total number of qubits required is
O(logN).

While this space complexity is polynomial in the input size, it still presents
a significant challenge for current quantum hardware. For instance, factoring a
2048-bit RSA key would require approximately 4096 qubits for the input register
alone, which exceeds the capabilities of current quantum computers.

It’s crucial to note that Shor’s algorithm is probabilistic in nature. Each run
of the algorithm has a probability of at least 4/π2 ≈ 0.405 of succeeding. This
probability arises from the quantum measurement process and the subsequent
classical post-processing.

If we denote the probability of failure in a single run as p, then the probability
of failure after k runs is pk. To achieve a success probability of at least 1 − ϵ,
we need to run the algorithm k times, where:

k ≥ log ϵ

log p
(53)

Given that p ≤ 1− 4/π2, we can ensure a high probability of success with a
constant number of repetitions, independent of the size of N. This means that
the probabilistic nature of the algorithm does not affect its overall polynomial
time complexity.

The algorithm’s efficiency stems from its clever use of quantum superpo-
sition and the quantum Fourier transform to find the period of the modular
exponentiation function. This period-finding is at the heart of the algorithm’s
ability to factor large numbers efficiently.

While the asymptotic complexity of Shor’s algorithm is impressive, practical
implementation faces several challenges. These include the need for quantum
error correction, limited coherence times of qubits, and the high fidelity require-
ments for quantum gates. These factors make the implementation of Shor’s
algorithm for large numbers a significant engineering challenge, despite its the-
oretical efficiency.

In conclusion, the complexity analysis of Shor’s algorithm reveals its poten-
tial to revolutionize factoring and, by extension, cryptography. Its polynomial

17

time complexity offers an exponential speedup over classical methods, while its
space complexity, though challenging for current technology, remains polyno-
mial in the input size. The probabilistic nature of the algorithm, far from being
a drawback, is managed efficiently to ensure a high probability of success with
minimal impact on the overall complexity.

6 Example: Factoring a Small Number

To illustrate the workings of Shor’s algorithm, let’s walk through a concrete
example of factoring a small number. We’ll factor N = 15, which, while trivial
for classical methods, serves as a good demonstration of the quantum algorithm’s
steps.

6.1 Setup and Initial Steps

Our goal is to factor N = 15. We’ll use a = 7 as our randomly chosen number
coprime to N.

6.1.1 Quantum Register Sizes

We need:

• Input register: 2⌈log2 15⌉ = 8 qubits

• Output register: ⌈log2 15⌉ = 4 qubits

6.1.2 Initial State Preparation

We start with all qubits in the |0⟩ state:

|ψ0⟩ = |0⟩⊗8 ⊗ |0⟩⊗4 (54)

Apply Hadamard gates to the input register:

|ψ1⟩ =
1√
28

255∑
x=0

|x⟩ ⊗ |0⟩ (55)

6.2 Quantum Computation Steps

6.2.1 Modular Exponentiation

We apply the function f(x) = 7x mod 15 to our state:

|ψ2⟩ =
1√
28

255∑
x=0

|x⟩ ⊗ |7x mod 15⟩ (56)

The period of this function is actually 4, as we can see from the sequence:

18

70 ≡ 1 (mod 15)
71 ≡ 7 (mod 15)
72 ≡ 4 (mod 15)
73 ≡ 13 (mod 15)

74 ≡ 1 (mod 15) (cycle repeats)

6.2.2 Quantum Fourier Transform

Apply QFT to the input register:

|ψ3⟩ =
1

28

255∑
y=0

255∑
x=0

e2πixy/2
8

|y⟩ ⊗ |7x mod 15⟩ (57)

6.3 Measurement and Classical Post-processing

6.3.1 Measurement

We measure the input register. Let’s say we obtain y = 64.

6.3.2 Continued Fraction Expansion

We compute the continued fraction expansion of 64
256 = 1

4 .
This immediately gives us the candidate period r’ = 4.

6.3.3 Verify the Period

We check if 74 ≡ 1 (mod 15), which is true.

6.3.4 Find Factors

We compute:

gcd(74/2 − 1, 15) = gcd(48, 15) = 3 (58)

gcd(74/2 + 1, 15) = gcd(50, 15) = 5 (59)

6.4 Result

We have successfully factored 15 into 3 and 5 using Shor’s algorithm.

6.5 Observations

• In this simple example, we were fortunate to measure a y that immediately
gave us the correct period. In practice, we might need to repeat the
quantum part of the algorithm several times.

19

• For such a small number, the quantum algorithm is overkill. Classical
methods would be much faster. The power of Shor’s algorithm becomes
apparent only for very large numbers.

• In a real implementation, we would need to account for quantum errors
and the limitations of actual quantum hardware, which we’ve ignored in
this idealized example.

This example demonstrates the basic flow of Shor’s algorithm, from quantum
state preparation through measurement and classical post-processing, resulting
in the successful factorization of our target number.

7 Implications for Cryptography

Shor’s algorithm represents a paradigm shift in the field of cryptography, with its
potential to efficiently factor large numbers posing a significant threat to many
widely used cryptographic systems. This section explores the mathematical
foundations of these systems, how Shor’s algorithm undermines them, and the
emerging field of post-quantum cryptography.

The security of many public-key cryptosystems, including RSA, ElGamal,
and elliptic curve cryptography, relies on the presumed difficulty of certain math-
ematical problems. RSA, for instance, bases its security on the difficulty of
factoring the product of two large prime numbers. The time complexity for
factoring an n-bit RSA modulus using the best known classical algorithms, such
as the General Number Field Sieve (GNFS), is:

Tclassical = O(e((64/9)
1/3+o(1))(n ln 2)1/3(ln(n ln 2))2/3) (60)

This subexponential complexity has long been considered sufficient for prac-
tical security. However, Shor’s algorithm can factor the same number in poly-
nomial time:

TShor = O(n3) (61)

This exponential speedup is not limited to integer factorization. Shor’s algo-
rithm can also efficiently solve the discrete logarithm problem, which underpins
the security of systems like ElGamal and DSA. For a cyclic group of order n,
classical algorithms like the baby-step giant-step algorithm have a time com-
plexity of O(

√
n), while Shor’s algorithm achieves O((log n)3).

Elliptic curve cryptography (ECC), which relies on the difficulty of the ellip-
tic curve discrete logarithm problem (ECDLP), is similarly vulnerable. While
the best classical algorithms for ECDLP have a complexity of O(

√
n), where

n is the order of the elliptic curve group, Shor’s algorithm solves ECDLP in
O((log n)3) time.

It’s worth noting that symmetric key cryptography, such as AES, is less af-
fected by quantum computing. Grover’s algorithm provides a quadratic speedup
for brute-force attacks on symmetric ciphers, reducing the effective key strength

20

by half. However, this can be mitigated by doubling the key size. The time com-
plexity for a brute-force attack on a symmetric cipher with key size n becomes:

TGrover = O(2n/2) (62)

compared to the classical O(2n).
The threat posed by quantum computers has spurred the development of

post-quantum cryptography (PQC), a field dedicated to creating cryptographic
systems secure against both quantum and classical computers. Several mathe-
matical approaches are being explored:

1. Lattice-based cryptography relies on the difficulty of certain problems in
lattice theory, such as the shortest vector problem (SVP) and the closest vector
problem (CVP). These problems are believed to be hard even for quantum
computers. The security of lattice-based systems often relies on the hardness of
the Learning With Errors (LWE) problem or its ring-based variant (Ring-LWE).

2. Hash-based signatures, such as SPHINCS+, offer another quantum-
resistant alternative. These schemes rely on the security of their underlying
hash functions and the difficulty of finding collisions or preimages. The security
of these systems can be expressed in terms of the collision resistance of the hash
function:

Pcollision ≈ q2

2n
(63)

where q is the number of queries an attacker can make, and n is the output
size of the hash function.

3. Code-based cryptography, like the McEliece system, bases its security on
the difficulty of decoding a general linear code. The best known algorithms for
decoding random linear codes have a time complexity of:

Tdecode = O(20.0885n) (64)

where n is the code length.
4. Multivariate cryptography relies on the difficulty of solving systems of

multivariate polynomial equations over finite fields. The general problem of
solving such systems is NP-hard, with the best algorithms having exponential
complexity in the number of variables.

The transition to post-quantum cryptography presents several challenges,
including performance issues (many PQC algorithms have larger key sizes or
slower performance), implementation difficulties, and the need for extensive
scrutiny to build confidence in their security.

While the threat from quantum computers is not immediate due to cur-
rent hardware limitations, the cryptographic community is actively working to
prepare for a post-quantum future. The goal is to develop and deploy quantum-
resistant cryptographic systems before large-scale quantum computers become
a reality, ensuring the continued security of our digital communications and
transactions in the quantum era.

21

The U.S. National Institute of Standards and Technology (NIST) is cur-
rently in the process of standardizing post-quantum cryptographic algorithms,
aiming to identify and standardize one or more quantum-resistant public-key
cryptographic algorithms. This process involves rigorous mathematical analy-
sis and testing to ensure the selected algorithms provide the necessary security
guarantees in a post-quantum world.

In conclusion, Shor’s algorithm has profound implications for cryptography,
necessitating a fundamental shift in our approach to secure communication. The
mathematical challenges posed by this quantum algorithm have sparked innova-
tive research in cryptography, leading to the development of new mathematical
techniques and problems that we believe will remain hard even in the face of
quantum computation. As we transition into this new era of cryptography,
the interplay between quantum computing, number theory, and computational
complexity will continue to drive advancements in the field.

8 Conclusion

Shor’s algorithm stands as a landmark achievement in the field of quantum
computing, demonstrating the potential for quantum algorithms to solve prob-
lems that are intractable for classical computers. Through this paper, we have
explored the algorithm’s structure, its mathematical foundations, and its far-
reaching implications.

8.1 Summary of Key Points

• Shor’s algorithm provides a quantum method for factoring large integers in
polynomial time, a task believed to be exponentially difficult for classical
computers.

• The algorithm’s power stems from its clever use of quantum parallelism
and the quantum Fourier transform to extract the period of a modular
exponentiation function.

• With a time complexity of O((logN)3), Shor’s algorithm offers an expo-
nential speedup over the best known classical factoring algorithms.

• The algorithm’s potential to break widely used public-key cryptosystems,
particularly RSA, has profound implications for cybersecurity and has
spurred the development of post-quantum cryptography.

8.2 Significance and Impact

The significance of Shor’s algorithm extends beyond its immediate application to
factoring. It serves as a proof of concept, demonstrating that quantum comput-
ers can indeed solve certain problems exponentially faster than classical comput-
ers. This has energized the field of quantum computing, driving both theoretical
research and practical efforts to build large-scale quantum computers.

22

In the realm of cryptography, Shor’s algorithm has initiated a paradigm
shift. It has highlighted the vulnerability of many current cryptographic systems
to quantum attacks and has catalyzed the development of quantum-resistant
cryptographic methods. This ongoing work in post-quantum cryptography is
crucial for ensuring the security of digital communications in a future where
powerful quantum computers exist.

8.3 Future Outlook

While the full realization of Shor’s algorithm on a scale that threatens cur-
rent cryptographic systems remains a future prospect, the algorithm continues
to play a central role in quantum computing research and development. As
quantum hardware advances, we can expect to see implementations of Shor’s
algorithm on increasingly larger numbers, serving as important milestones in
the progress of quantum computing.

The journey from Shor’s theoretical breakthrough to practical implemen-
tation highlights the interdisciplinary nature of quantum computing, involving
physics, computer science, mathematics, and engineering. Overcoming chal-
lenges such as quantum error correction and maintaining quantum coherence
will be crucial in bringing the full power of Shor’s algorithm to bear.

8.4 Broader Implications

Beyond its specific application to factoring and cryptography, Shor’s algorithm
exemplifies the potential of quantum computing to revolutionize computational
approaches across various fields. It encourages us to reconsider problems cur-
rently deemed intractable and to explore new algorithmic possibilities offered
by quantum systems.

As we stand on the brink of the quantum computing era, Shor’s algorithm
remains a shining example of the transformative potential of this technology.
It continues to inspire researchers, drive technological development, and shape
our preparation for a future where quantum computers are a reality. The story
of Shor’s algorithm is far from over; indeed, it may be just the beginning of a
new chapter in the history of computation.

References

[1] Ilyas Khan and Jenni Strabley. Quantinuum extends its significant lead in
quantum computing, achieving historic milestones for hardware fidelity and
quantum volume, 4 2024. Accessed on July 14, 2024.

[2] Eleanor Rieffel and Wolfgang Polak. Quantum Computing: A Gentle Intro-
duction. MIT Press, Cambridge, MA, 2011.

[3] David Warburton and Sander Vinberg. The 2021 tls telemetry report, Oc-
tober 2021. Accessed on July 14, 2024.

23

	Introduction
	The Problem of Integer Factorization
	Cryptographic Significance
	Peter Shor
	The Breakthrough: Polynomial-Time Factorization

	Background
	Classical Computing Concepts
	Quantum Computing Fundamentals
	Qubits and Quantum States
	Multi-Qubit Systems and Entanglement

	Shor's Algorithm: An Overview
	The Core Idea: Period Finding
	Quantum Parallelism in Shor's Algorithm
	Key Components of the Algorithm
	Complexity and Efficiency
	Probabilistic Nature

	Detailed Explanation of Shor's Algorithm
	Step 1: Quantum State Preparation
	Step 2: Modular Exponentiation
	Step 3: Quantum Fourier Transform
	Step 4: Measurement and Classical Post-processing

	Complexity Analysis
	Time Complexity
	Space Complexity and Probabilistic Nature

	Example: Factoring a Small Number
	Setup and Initial Steps
	Quantum Register Sizes
	Initial State Preparation

	Quantum Computation Steps
	Modular Exponentiation
	Quantum Fourier Transform

	Measurement and Classical Post-processing
	Measurement
	Continued Fraction Expansion
	Verify the Period
	Find Factors

	Result
	Observations

	Implications for Cryptography
	Conclusion
	Summary of Key Points
	Significance and Impact
	Future Outlook
	Broader Implications

