From Calculus to Analysis: The Stone-Weierstrass Theorem

Anthony Dokanchi

July 2024

Anthony Dokanchi

From Calculus to Analysis: The Stone-Weiers

Sequences/Series of Numbers

$\{a_n\}$ $a_1, a_2, a_3, \ldots \rightarrow a$

э

Defining Sequence Convergence

A sequence of numbers $\{a_n\}$ converges to a number *a* iff

 $\lim_{n\to\infty}a_n=a$

< A 1

★ 3 ★ 3

Defining Sequence Convergence

A sequence of numbers $\{a_n\}$ converges to a number *a* iff

$\forall \varepsilon > 0 \exists N \in \mathbb{Z}^+ : n > N \implies |a_n - a| < \varepsilon$

Defining Sequence Convergence

A sequence of numbers $\{a_n\}$ converges to a number *a* iff

$\forall \varepsilon > 0 \exists N \in \mathbb{Z}^+ : n > N \implies |a_n - a| < \varepsilon$ Can we do this for functions?

Sequences of Functions

$\{f_n\}$ $f_1, f_2, f_3, \ldots \to f$

Anthony Dokanchi

イロト イポト イヨト イヨト

э

Defining Pointwise Convergence

A sequence of functions $\{f_n\}$ defined on a set E converges to a function f on E iff

$$\forall x \in E, \lim_{n \to \infty} f_n(x) = f(x)$$

Defining Pointwise Convergence

A sequence of functions $\{f_n\}$ defined on a set E converges to a function f on E iff

$\forall x \in E, \ \varepsilon > 0 \ \exists \ N \in \mathbb{Z}^+ : n > N \implies |f_n(x) - f(x)| < \varepsilon$

Issues with Pointwise Convergence

It would be useful for this convergence process to conserve certain properties, such as continuity or differentiability.

Issues with Pointwise Convergence

It would be useful for this convergence process to conserve certain properties, such as continuity or differentiability.

However, this is not the case.

Let

$$f_n(x) = x^n$$

on $[0,\infty)$. Each f_n is a polynomial, so it is continuous and differentiable. Now take

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n$$

on the same interval.

▲ 四 ▶

★ ∃ >

э

$$f(x) = \lim_{n \to \infty} x^n$$

If $0 \le x < 1$, we have

$$f(x) = \lim_{n \to \infty} x^n = 0$$

If x = 1, we have

$$f(x) = \lim_{n \to \infty} x^n = 1$$

If x > 1, we have

$$f(x) = \lim_{n \to \infty} x^n = \infty$$

Thus, we have

$$f(x) = egin{cases} 0, & 0 \leq x < 1 \ 1, & x = 1 \ \infty, & x > 1 \end{cases}$$

which is not continuous or differentiable

Anthony Dokanchi

∃ →

2

▲ 伊 → ▲ 三

æ

< ∃⇒

Let

$$f_n(x) = \arctan(nx)$$

on $(-\infty, \infty)$. arctan(x) is continuous and differentiable, so each f_n is continuous and differentiable.

Now take

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \arctan(nx) = \arctan(\lim_{n \to \infty} nx)$$

on the same interval.

A .

э

$$f(x) = \lim_{n \to \infty} \arctan(nx)$$

If $x < 0$,
$$f(x) = \lim_{n \to \infty} \arctan(nx) = \lim_{x \to \infty} \arctan(x) = \frac{\pi}{2}$$

If $x = 0$,
$$f(x) = \lim_{n \to \infty} \arctan(nx) = \lim_{x \to \infty} \arctan(0) = 0$$

If $x > 0$,
$$\pi$$

$$f(x) = \lim_{n o \infty} \arctan(nx) = \lim_{x o \infty} \arctan(-x) = -rac{\pi}{2}$$

Thus,

$$f(x) = \begin{cases} -\frac{\pi}{2}, & x < 0\\ 0, & x = 0\\ \frac{\pi}{2}, & x > 0 \end{cases}$$

which is not continuous or differentiable

Anthony Dokanchi

From Calculus to Analysis: The Stone-Weier

イロト イポト イヨト イヨト

æ

< ∃→

æ

Issues with Pointwise Convergence

If a sequence of functions $\{f_n\}$ is continuous/differentiable on a set E and converges pointwise to a function f on E, that does not guarantee that f is continuous/differentiable.

If a sequence of functions $\{f_n\}$ is continuous/differentiable on a set E and converges pointwise to a function f on E, that does not guarantee that f is continuous/differentiable.

Is there another, stronger statement we can make about $\{f_n\}$ and f?

Defining Uniform Convergence

A sequence of functions $\{f_n\}$ defined on a set E converges **uniformly** to a function f on E iff

$$\forall \varepsilon > 0 \ \exists \ N \in \mathbb{Z}^+ : n > N, \ x \in E \implies |f_n(x) - f(x)| < \varepsilon$$

< ∃ >

Pointwise Convergence vs Uniform Convergence

A sequence of functions $\{f_n\}$ defined on a set E converges to a function f on E iff

$$\forall x \in E, \ \varepsilon > 0 \ \exists \ N \in \mathbb{Z}^+ : n > N \implies |f_n(x) - f(x)| < \varepsilon$$

A sequence of functions $\{f_n\}$ defined on a set E converges **uniformly** to a function f on E iff

$$\forall \varepsilon > 0 \exists N \in \mathbb{Z}^+ : n > N, x \in E \implies |f_n(x) - f(x)| < \varepsilon$$

Pointwise Convergence vs Uniform Convergence

Uniform Convergence Preserves Certain Properties

If a sequence of differentiable functions {f_n} converges uniformly to f, and the sequence of derivatives {f'_n} converges uniformly to g, then

$$f'(x) = \lim_{n \to \infty} f'_n(x) = g(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}\frac{\mathrm{d}}{\mathrm{d}x}f_n(x)=g(x)$$

If a sequence of integrable functions {f_n} converges uniformly to f, then

$$\int_{a}^{b} f(x) = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)$$
$$\int_{a}^{b} \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)$$

The Stone-Weierstrass Theorem

If f is a continuous function on [a, b], there exists a sequence of polynomials $\{P_n\}$ that converges uniformly to f on [a, b].