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Sequences/Series of Numbers

{an}

a1, a2, a3, . . . → a
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Defining Sequence Convergence

A sequence of numbers {an} converges to a number a iff

lim
n→∞

an = a

∀ε > 0 ∃ N ∈ Z+ : n > N =⇒ |an − a| < ε

Can we do this for functions?
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Sequences of Functions

{fn}

f1, f2, f3, . . . → f
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Defining Pointwise Convergence

A sequence of functions {fn} defined on a set E converges to a function f
on E iff

∀x ∈ E , lim
n→∞

fn(x) = f (x)

∀x ∈ E , ε > 0 ∃ N ∈ Z+ : n > N =⇒ |fn(x)− f (x)| < ε
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Issues with Pointwise Convergence

It would be useful for this convergence process to conserve certain
properties, such as continuity or differentiability.

However, this is not the case.
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Example 1

Let

fn(x) = xn

on [0,∞). Each fn is a polynomial, so it is continuous and differentiable.
Now take

f (x) = lim
n→∞

fn(x) = lim
n→∞

xn

on the same interval.
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Example 1

f (x) = lim
n→∞

xn

If 0 ≤ x < 1, we have
f (x) = lim

n→∞
xn = 0

If x = 1, we have
f (x) = lim

n→∞
xn = 1

If x > 1, we have
f (x) = lim

n→∞
xn = ∞

Thus, we have

f (x) =


0, 0 ≤ x < 1

1, x = 1

∞, x > 1

which is not continuous or differentiable
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Example 1

−1 −0.5 0.5 1 1.5 2
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fn(x)

fn(x) = xn
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Example 2

−1 −0.5 0.5 1 1.5 2

−1

1

2

x

fn(x)

fn(x) = max((0, n(x − 1) + 1))
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Example 3

Let

fn(x) = arctan(nx)

on (−∞,∞). arctan(x) is continuous and differentiable, so each fn is
continuous and differentiable.
Now take

f (x) = lim
n→∞

fn(x) = lim
n→∞

arctan(nx) = arctan( lim
n→∞

nx)

on the same interval.
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Example 3

f (x) = lim
n→∞

arctan(nx)

If x < 0,
f (x) = lim

n→∞
arctan(nx) = lim

x→∞
arctan(x) =

π

2

If x = 0,
f (x) = lim

n→∞
arctan(nx) = lim

x→∞
arctan(0) = 0

If x > 0,

f (x) = lim
n→∞

arctan(nx) = lim
x→∞

arctan(−x) = −π

2

Thus,

f (x) =


−π

2 , x < 0

0, x = 0
π
2 , x > 0

which is not continuous or differentiable
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Example 3

−3 −2 −1 1 2 3
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fn(x)

fn(x) = arctan(nx)
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Issues with Pointwise Convergence

If a sequence of functions {fn} is continuous/differentiable on a set E
and converges pointwise to a function f on E , that does not
guarantee that f is continuous/differentiable.

Is there another, stronger statement we can make about {fn} and f ?
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Defining Uniform Convergence

A sequence of functions {fn} defined on a set E converges uniformly to a
function f on E iff

∀ε > 0 ∃ N ∈ Z+ : n > N, x ∈ E =⇒ |fn(x)− f (x)| < ε
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Pointwise Convergence vs Uniform Convergence

A sequence of functions {fn} defined on a set E converges to a function f
on E iff

∀x ∈ E , ε > 0 ∃ N ∈ Z+ : n > N =⇒ |fn(x)− f (x)| < ε

A sequence of functions {fn} defined on a set E converges uniformly to a
function f on E iff

∀ε > 0 ∃ N ∈ Z+ : n > N, x ∈ E =⇒ |fn(x)− f (x)| < ε
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Pointwise Convergence vs Uniform Convergence
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fn(x)

fn(x) = max((0, n(x − 1) + 1))
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Uniform Convergence Preserves Certain Properties

1 If a sequence of differentiable functions {fn} converges uniformly to f ,
and the sequence of derivatives {f ′n} converges uniformly to g , then

f ′(x) = lim
n→∞

f ′n(x) = g(x)

d

dx
lim
n→∞

fn(x) = lim
n→∞

d

dx
fn(x) = g(x)

2 If a sequence of integrable functions {fn} converges uniformly to f ,
then ∫ b

a
f (x) = lim

n→∞

∫ b

a
fn(x)∫ b

a
lim
n→∞

fn(x) = lim
n→∞

∫ b

a
fn(x)
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The Stone-Weierstrass Theorem

If f is a continuous function on [a, b], there exists a sequence of
polynomials {Pn} that converges uniformly to f on [a, b].
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