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1 Abstract

In an introductory calculus class, students learn about Taylor Series and Tay-
lor Polynomials, which express certain functions as Power Series and closely
approximate these functions, respectively. Taylor’s Theorem provides an
upper bound on the error between functions and their Taylor Polynomials,
ensuring that the error decreases as the polynomial degree increases, ap-
proaching zero as the degree approaches infinity. However, the theorem only
applies to functions with certain higher order derivatives. While most com-
monly encountered functions like sin(x), cos(x), and ex are analytic, many
real-world functions are not, rendering Taylor Series approximations ineffec-
tive. To address this, the Stone-Weierstrass Theorem offers an alternative,
stating that any continuous function on a closed interval can be uniformly
approximated by a sequence of polynomials. This paper aims to explain
and prove the Stone-Weierstrass Theorem, providing necessary (and more)
background in analysis principles.

The Stone-Weierstrass Theorem: For every continuous real function
f defined on [a, b], there exists a sequence of polynomials {Pn} that converges
uniformly to f on [a, b].
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2 Introduction

Most introductory calculus classes teach the concept of sequence convergence;
that is, that there can be an infinitely long sequence of numbers that slowly
approach a certain value. The sequence is said to converge to that value
if the difference between the value and terms of an arbitrarily large index
can become arbitrarily small. They are also taught about the convergence of
sequences of functions in the context of Power and Taylor Series, although
these concepts are usually not rigorously defined.

Function convergence is a powerful feature of math, as if a sequence of
functions is shown to converge to another function, our understanding of the
functions in the sequence can be used to inform our understanding of the
function they converge to, and vice versa. Thus, the formal definitions and
explanations of function convergence can lead to both interesting intuitions
and useful discoveries.

This paper will assume a basic understanding of sequence convergence of
numbers as would be taught in an introductory calculus course. From there,
we will discuss formal definitions of function convergence by defining and
examining pointwise convergence and uniform convergence. Finally, we will
see the Stone-Weierstrass Theorem and its proof.
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3 Pointwise Convergence

Imagine you would like to define what it would mean for a sequence of func-
tions to converge. One reasonable attempt would be the following definition.

Definition 1. Suppose we have a sequence of functions {fn} where each fi is
defined on a set E. The sequence of functions is said to converge pointwise
to a function f if

f(x) = lim
n→∞

fn(x)

for all x ∈ E.

Pointwise convergence is the most basic type of function convergence, but
as such, it has many limitations. For instance, one would hope that if each
fi in the sequence has a certain property (e.g. continuity, differentiability,
integrability, etc.), then f might retain these properties. However, this is
not the case. Below, two examples are shown of sequences of continuous
functions that converge to a discontinuous function.

Example 2. Let

fn(x) = arctan(nx)

and

f(x) = lim
n→∞

fn(x)

for all x ∈ R. Each fn is continuous, as it is a composition of arctan and
nx, both continuous functions.

We have

f(x) = lim
n→∞

fn(x) = lim
n→∞

arctan(nx) = arctan( lim
n→∞

nx).

If x > 0, limn→∞ nx = ∞, so

arctan( lim
n→∞

nx) = arctan( lim
n→∞

n) =
π

2
.

If x < 0, limn→∞ nx = −∞, so

arctan( lim
n→∞

nx) = arctan( lim
n→−∞

n) = −π

2
.
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If x = 0, then

arctan( lim
n→∞

nx) = arctan( lim
n→∞

0n) = arctan(0) = 0.

Thus, we obtain

f(x) =


−π

2
, x < 0

0, x = 0
π
2
, x > 0

which is discontinuous.
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Example 3. Let

fn(x) = xn

and

f(x) = lim
n→∞

fn(x).

Each fn is continuous and differentiable; for each choice of n, fn is a
polynomial. However, f is not continuous or differentiable. For all x on
[0, 1), limn→∞ fn(x) = 0. However, at fn(1) = 1 for all n. Thus, we have

f(x) =

{
0, 0 ≤ x < 1

1, x = 1
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which is discontinuous.
The same line of reasoning applies to many other sequences of continuous

functions {fn} such that for any 0 ≤ x < 1, limn→∞ fn(x) = 0, and fn(1) =
c ̸= 0 for all n (for example, fn(x) = max(0, n(x− 1) + 1) or fn(x) = nx−1).
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The previous examples demonstrate that a sequence of functions {fn}
with certain properties can converge pointwise to a function f that does not
have these properties. Above, continuity and differentiability were demon-
strated, but it is also true for a number of other properties.

Thus, our problem becomes one of the properties of convergence: is there
a stronger statement that can be made about the manner in which a sequence
of functions converges that allows us to make stronger statements about what
properties are conserved?
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4 Uniform Convergence

Definition 4. A sequence of functions {fn} defined on a set E converges
uniformly to a function f on E if for every ε > 0 there exists an integer N
such that for all n ≥ N , x ∈ E,

|fn(x)− f(x)| < ε.

The definition is very similar to that of pointwise convergence; in fact, any
function that converges uniformly also converges pointwise. The difference
is that for a function to converge pointwise, for each x ∈ E there must be a
value of N (which may depend on x) such that |fn(x)−f(x)| ≤ ε individually,
whereas for it to converge uniformly, there must be a value of N such that
|fn(x)− f(x)| ≤ ε for all x ∈ E simultaneously.

Uniform convergence is a much stronger property than pointwise conver-
gence, so when a sequence of functions uniformly converges, we are able to
make much more powerful statements about the properties of these functions.

Theorem 5 (Cauchy Criterion for Uniform Convergence). If (and only if) a
sequence of functions {fn} converges on E, then for all ε > 0, there is some
integer N such that m ≥ N , n ≥ N , x ∈ E implies

|fn(x)− fm(x) ≤ ε.

Proof. Say {fn} converges to f . There must be some N such that for any
n > N , x ∈ E implies

|fn(x)− f(x)| ≤ ε

2
.

This means that if m ≥ N, n ≥ N, x ∈ E,

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| ≤
ε

2
+

ε

2
= ε.

To prove the converse, we will take without proof that {fn} converges to
f pointwise and will prove that this convergence is uniform. Take any ε > 0,
and choose N such that |fn(x)− fm(x)| ≤ ε. Letting m → ∞, we get

lim
m→∞

|fn(x)− fm(x)| = |fn(x)− lim
m→∞

fm(x)| = |fn(x)− f(x)| ≤ ε
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proving the theorem.
QED

Theorem 6. If {fn} is a sequence of functions that converges uniformly to
f on a set E, then

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Proof. We set

lim
t→x

fn(t) = An.

Our goal is now to prove that

lim
t→x

f(t) = lim
n→∞

An.

Say we have some ε > 0. Since {fn} converges uniformly, there is a value
N such that for all inputs in the domain of f , n ≥ N,m ≥ N implies

|fn(t)− fm(t)| ≤ ε.

Letting t → x, we get

lim
t→x

|An(t)− Am(t)| ≤ ε∣∣∣lim
t→x

fn(t)− lim
t→x

fm(t)
∣∣∣ ≤ ε.

|An(t)− Am(t)| ≤ ε.

By the Cauchy Criterion, A converges to some value. Let this value be
A.

Since f uniformly converges and A converges, we can choose some n such
that

|f(t)− fn(t)| ≤
ε

3

for all t ∈ E and

|An − A| ≤ ε

3
.
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There is some neighborhood V such that if t ∈ V ∩ E and t ̸= x,

|fn(t)− An| ≤
ε

3
.

Finally, since |f(t)−A| ≤ |f(t)− fn(t)|+ |fn(t)−An|+ |An −A|, we can
substitute from the last three equalities to obtain

|f(t)− A| ≤ ε.

The above equality holds for any ϵ > 0 and t ∈ V ∩ E and t ̸= x, so it
must hold as t → x. Thus, we have

lim
t→x

f(t) = A = lim
n→∞

An

proving the theorem.
QED

The previous theorem shows that if we have fn → f uniformly, then if
each fn is continuous, f must be continuous.

The following are properties that are true of uniformly convergent se-
quences that will not be proven in this paper.

Theorem 7. If a sequence of differentiable functions {fn} converges uni-
formly to a function f , and the sequence of derivatives {f ′

n} converges uni-
formly to a fucntion g, then

f ′(x) = lim
n→∞

f ′
n(x) = g(x)

which is equivalent to

d

dx
lim
n→∞

fn(x) = lim
n→∞

d

dx
fn(x) = g(x)

Theorem 8. If a sequence of integrable functions {fn} converges uniformly
to a function f , then ∫ b

a

f(x) = lim
n→∞

∫ b

a

fn(x)

which is equivalent to∫ b

a

lim
n→∞

fn(x) = lim
n→∞

∫ b

a

fn(x)
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5 The Stone-Weierstrass Theorem

Lemma 9. For all real x ∈ [0, 1] and n ≥ 1, (1− x2)n ≥ 1− nx2.

Proof. Consider the function f(x) = (1− x2)n − 1 + nx2. We have f(0) = 0
and f ′(x) = 2nx(1− (1− x2)n−1).

For x ∈ [0, 1] and n ≥ 1, 0 ≤ 1−x2 ≤ 1, so 0 ≤ 1− (1−x2)n−1 ≤ 1. Also,
for nonnegative x and n, 2nx ≥ 0. Thus, f ′(x) = 2nx(1 − (1 − x2)n−1) ≥ 0
for all x ∈ [0, 1] and n ≥ 1.

Thus, for x ∈ [0, 1], f(x) is constant or increasing, so f(x) ≥ f(0).
Substituting, we get (1 − x2)n − 1 + nx2 ≥ 0, implying (1 − x2)n ≥ 1 −
nx2. QED

Theorem 10 (The Stone-Weierstrass Theorem). For every continuous real
function f defined on [a, b], there exists a sequence of polynomials {Pn} that
converges uniformly to f on [a, b].

Proof. It suffices to prove the theorem for functions on the interval [0, 1]. If
we wish to apply the theorem for a function f on [a, b], consider

g(x) = f((b− a)x+ a)

which exists on [0, 1]. Suppose there is a sequence of polynomials Pn that
converges uniformly to g. In that case, there also must be a sequence of
polynomials that converges uniformly to f , since f(x) = g( 1

b−a
x− a

b−a
), and

if we have |Pn(x)− g(x)| ≤ ε for x ∈ [0, 1], then

|Pn(
1

b− a
x− a

b− a
)− g(

1

b− a
x− a

b− a
)| = |Pn(

1

b− a
x− a

b− a
)− f(x)| < ε

for x ∈ [a, b]. Outside the interval [0, 1], we can define our function to
have the value 0 for all inputs.

Additionally, it suffices to prove the theorem for functions with roots at 0
and 1. If we wish to apply the theorem for a function f where this does not
hold, consider g(x) = f(x)−f(0)+x(f(1)−f(0)). It is easily seen that g(0) =
g(1) = 0. Suppose there is a sequence of polynomials Pn that converges
uniformly to g. In that case, there also must be a sequence of polynomials
that converges uniformly to f , as f(x) = g(x)+x(f(1)− f(0))+ f(0), which
is the sum of g and a degree 1 polynomial.

We can define a sequence of functions Qn such that

10



Qn(x) = cn(1− x2)n

where cn is a constant chosen to ensure∫ 1

−1

Qn(x)dx = 1.

From this and from Lemma 9, we obtain

1 =

∫ 1

−1

Qn(x)dx (1)

= cn

∫ 1

−1

(1− x2)ndx (2)

= 2cn

∫ 1

0

(1− x2)ndx (3)

≥ 2cn

∫ 1/
√
n

0

(1− x2)ndx (4)

≥ 2cn

∫ 1/
√
n

0

(1− nx2)dx (5)

=
4cn
3
√
n

(6)

>
cn√
n
. (7)

Thus, we have cn
n
< 1, so cn <

√
n.

It follows that for δ ≤ |x| ≤ 1, Qn(x) ≤
√
n(1− δ2)n.

Now we define a sequence of functions Pn such that

Pn(x) =

∫ 1

−1

f(x+ t)Qn(t)dt.

Our goal is now to show that Pn is a sequence of polynomials that con-
verges to f uniformly.

Since earlier we set f(x) = 0 for all x not in [0, 1], we can reduce the
bounds of the integral to [0 − x, 1 − x] = [−x, 1 − x]. Then, by a change of
variable t to t− x, we have
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Pn(x) =

∫ 1−x

−x

f(x+t)Qn(t)dt =

∫ 1

0

f(t)Qn(t−x)dt =

∫ 1

0

f(t)cn(1−(t−x)2)ndt.

This last integral (and thus Pn) is a polynomial in x, as (1 − (t − x)2)n

can be expanded using the binomial theorem, and all appearances of t will
become constants under the definite integral.

For ε > 0 we take δ > 0 such that |y − x| < δ implies |f(y)− f(x)| < ε
2
.

Setting M = sup|f(x)|, on 0 ≤ x ≤ 1 we have

|Pn(x)− f(x)|

=

∣∣∣∣∫ 1

−1

f(x+ t)Qn(t)− f(x)

∫ 1

−1

Qn(t)

∣∣∣∣
=

∣∣∣∣∫ 1

−1

(f(x+ t)− f(x))Qn(t)dt

∣∣∣∣
≤

∫ 1

−1

|(f(x+ t)− f(x))Qn(t)| dt

≤ 2M

∫ −δ

−1

Qn(t)dt+
ε

2

∫ δ

−δ

Qn(t)dt+ 2M

∫ 1

δ

Qn(t)dt

≤ 4M
√
n(1− δ2)n +

ε

2
< ε

for n of sufficient size. We have that for all large enough n and for all
x ∈ [0, 1], |Pn(x)− f(x)| < ε, proving that Pn converges uniformly to f and
thus proving the theorem. QED
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