
INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS

SUHAAN MOBHANI

Abstract. Integer Linear Programming (ILP) is a fundamental optimization
technique widely used in various fields. This paper explores the basics of this
optimization technique, its mathematical formulation, solution methods, and
some of its notable extensions, including mixed integer linear programming,
binary integer linear programming and integer nonlinear programming. We
include detailed examples and step by step solutions to illustrate the application
of these methods.

1. Introduction

Integer Linear Programming (ILP) is a mathematical optimization technique
that involves finding the best solution from a set of feasible solutions, where some
(Mixed Integer Linear Programming) or all of the variables are constrained to take
integer values. It has robust applications in fields such as operations research, eco-
nomics, and computer science due to its ability to efficiently optimize tasks. While
there are many more complicated algorithms to solve the problem with lesser time
complexity, we stick to using the simplex method for the purpose of this paper, as
well as provide an introduction to the linear programming methods that form the
base for figuring integer solutions.

2. Note on Time Complexity

Time complexity plays a vital role in the efficiency of tasks. Using algorithms
with a ”larger” time complexity can lead to wastage of resources and loss of both
money and time (for obvious reasons). While in this paper, we use a smaller
amount of variable factors, real life applications in fields like economics and com-
puter science might introduce a large amount of variables of exponential category,
which are more computation heavy. In such a scenario, the methods presented in
this paper might not be the most efficient.

1



2 SUHAAN MOBHANI

3. Defining the problem

An Integer Linear Programming problem can be formulated as follows:

maximize ζ =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi,

xj ∈ Z,
xj ≥ 0 ∀j.

Where ci, aij, and bi are constants, and xi are integer variables.

3.1. The technique for solving minimization problems. We can use the
same maximization technique presented in this paper to solve minimization prob-
lems as well.

Consider if you want to minimize an objective function ζ. The problem can be
adapted to a maximization problem by simply negating the objective function. So,
now instead we need to maximize −ζ.
The idea behind this is intuitive and needs little justification.

4. Ignoring the Integer Condition

Before trying to solve the problem with integer conditions, we try solving the
problem ignoring any such conditions, that is, we eliminate the integer constraint
and solve the regular linear programming instance. We call the solution that we
obtain through this (that may not necessarily be integers) as the Linear Program-
ming relaxation (LP Relaxation).

An Linear Programming problem can be formulated as:

maximize ζ =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi,

xj ≥ 0

Where ci, aij, and bi are constants, and xi are nondiscrete variables. Notice how
this is the same as our definition for an ILP problem, except that the integer
constraint is removed.
The LP relaxation is particularly useful in the context of understanding the range



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 3

that the integer constraint objective function can obtain. Particularly, we get the
following:

Integer Problem ζ ≤ LP Relaxation ζ

The proof of the above is trivial and can easily be demonstrated by graphical
means as well.
Consider the following example of a LP:

maximize ζ = 4x1 + 3x2

subject to x1 + x2 ≤ 5,

7x1 + 4x2 ≤ 28,

x1, x2 ≥ 0.

There are two inequalities which bound the problem.
Here is a graphical representation of the problem:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x1 + x2 ≤ 5

7x1 + 4x2 ≤ 28

x1

x2

Feasible solutions are the set of values for the decision variables that satisfy
all the constraints. These solutions lie within the feasible region defined by the
intersection of all the constraints. In the graph above, the shaded region represents
the feasible region.
On the other hand, any solution which is not considered feasible is an infeasible
solution. Infeasible solutions lie outside the feasible region and do not represent
valid solutions to the problem.
For example, in our problem, any solution that satisfies x1 + x2 ≤ 5 AND 7x1 +
4x2 ≤ 28 with x1, x2 ≥ 0 is a feasible solution. However, if a solution doesn’t
satisfy both of the conditions, then it is an infeasible solution.



4 SUHAAN MOBHANI

By simple inspection of the graph, we can figure that the maximum lies at the
intersection of the two inequalities.
So, we get that ζ = 53

3
when x1 =

8
3
and x2 =

7
3
.

We define this particular solution that disregards the integer condition as the LP
relaxation.

However, there is a more sophisticated way than the graphical method that can
be used for a larger number of variables, known as the simplex tableau.

We convert our problem into standard form by introducing slack variables s1 and
s2. The idea of their implementation is to convert the inequalities into equalities
so that we can carry operations on them by rearranging.

x1 + x2 + s1 = 5,

7x1 + 4x2 + s2 = 28,

x1, x2, s1, s2 ≥ 0.

Now, we present a more organized way of going through these operations. It
involves setting up a simplex tableau to use the simplex method to solve the LP
problem.
Here is the Initial Simplex Tableau for this problem:

x1 x2 s1 s2
Basis cB 4 3 0 0 b
s1 0 1 1 1 0 5
s2 0 7 4 0 1 28

zj 0 0 0 0 0
cj − zj 4 3 0 0

We call the cj row as the row which stores the objective function coefficients for
each variable. This is directly underneath the variable heading row in the initial
simplex tableau.

We store the coefficients of the variables in the constraints in the A matrix,
which is located directly under the cj row.

To the right of the A matrix is the b column, which stores the quantity.
Unit columns are columns which consist of one value being 1 and the others

being 0. Since the part of the A matrix under the variables s1 and s2 are unit
columns, they are known as basic variables.

All other variables are known as nonbasic variables. So, in this case, x1 and x2

are nonbasic variables.
The solutions that is obtained by setting the nonbasic variables to zero is called

basic feasible solution.



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 5

Below the A matrix lies the zj row. For basic variables, the zj row represents
their unit contribution to the objective function value. However, for nonbasic
variables, it represents the value lost if a unit of the variable is added to the
current solution.

These basic variables are stored in the column known as the basis, with their
objective function coefficients placed next to them in the cB column.
Finally, the cj − zj row represents the net change per unit in the objective

function value if that variable is added to the solution.

Next, we identify the entering variable which is the variable with the largest cj−zj)
value. We also identify the leaving variable which is the variable in the basis with
the smallest non-negative ratio of bi/aij. In this case the entering variable is x1

and the leaving variable is s2.

If in any scenario, the ratios for variables in the basis is the same, we usually take
the one with the lower index and swap that out. A similar rule is applied if the
largest cj − zj) value is repeated between multiple variables.
Generally, we define the pivot column as the column of the entering variable, and
the pivot row as the row in the basis of the leaving variable. The Pivot Element is
located at the intersection of the pivot column (of the entering variable) and the
pivot row (of the leaving variable). In this case, the pivot element has a value of
7.

x1 x2 s1 s2
Basis cB 4 3 0 0 b Ratio
s1 0 1 1 1 0 5 5

1
= 5

s2 0 7 4 0 1 28 28
7
= 4

zj 0 0 0 0 0
cj − zj 4 3 0 0

Now, we wish to transform the pivot element to have a unit value. To do this, we
shall divide all values in the pivot row by the unit element. In doing so, our pivot
row looks like this:

x1 x2 s1 s2
Basis cB 4 3 0 0 b
s1 0 1 1 1 0 5
x1 4 7/7 4/7 0/7 1/7 28/7

zj 0 0 0 0 0
cj − zj 4 3 0 0



6 SUHAAN MOBHANI

Now, we must find a value k such that in the pivot column:

s1 − (k)(x1) = 0.

Then, for every value in the s1 row, we replace the original value s1 with s1−(k)(x1)
for the corresponding x1 value.
In this case:

1− (k)(1) = 0 =⇒ k = 1.

Using k = 1 and carrying out the elementary row operations, our simplex tableau
should now look like this:

x1 x2 s1 s2
Basis cB 4 3 0 0 b
s1 0 0 3/7 1 -1/7 1
x1 4 1 4/7 0 1/7 4

zj 0 0 0 0 0
cj − zj 4 3 0 0

Now, we populate the zj row using the following for each column one at a time:

zj =
−→cB ·

(
s1
x1

)
.

Then, we recalculate the cj − zj row using the new zj values. After doing so, our
tableau should now look like this:

x1 x2 s1 s2
Basis cB 4 3 0 0 b
s1 0 0 3/7 1 -1/7 1
x1 4 1 4/7 0 1/7 4

zj 4 16/7 0 4/7 16
cj − zj 0 5/7 0 -4/7

Now, our first iteration of elementary row operations is complete. However, we
must continue iterating until all the cj−zj values are nonpositive. So, we continue
with the second iteration.
To identify changes to the basis, we recalculate the ratios for our rows:

So, for the second iteration, the leaving variable is s1 and the entering variable
is x2. The pivot element is 3

7
.

Now, we divide all values in the x2 row by the pivot element. Then, we use k = 4
7

and modify the x1 row using x∗
1 = x1 − (4/7)x2, which results in the table looking

like this:



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 7

x1 x2 s1 s2
Basis cB 4 3 0 0 b Ratio
s1 0 0 3/7 1 -1/7 1 7/3
x1 4 1 4/7 0 1/7 4 7

zj 4 16/7 0 4/7 16
cj − zj 0 5/7 0 -4/7

x1 x2 s1 s2
Basis cB 4 3 0 0 b
x2 3 0 1 7/3 -1/3 7/3
x1 4 1 0 -4/3 1/3 8/3

zj 4 16/7 0 4/7 16
cj − zj 0 5/7 0 -4/7

Now, once again, we recalculate our zj and cj − zj values:

x1 x2 s1 s2
Basis cB 4 3 0 0 b
x2 3 0 1 7/3 -1/3 7/3
x1 4 1 0 -4/3 1/3 8/3

zj 4 3 5/3 1/3 53/3

cj − zj 0 0 -5/3 -1/3

Since all our cj − zj values are nonpositive, we terminate the process and no
further iterations needed to be carried out. We have found our maximum ζ = 53

3

when x1 =
8
3
and x2 =

7
3
. This is our LP relaxation.

It is interesting to see how the process of carrying our each iteration moves along
an edge of the feasible region graph until it comes to the final solution. This is
illustrated on the graph below:



8 SUHAAN MOBHANI

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x1 + x2 ≤ 5

7x1 + 4x2 ≤ 28

x1

x2

1st iteration

2nd iteration

Also note how each iteration resulted in a point on the graph, while also giving
the objective function value at that point.

Notice how this process of using the simplex tableau was significantly longer than
the graphical method. However, for a larger number of variables (more than 3), the
graphical method would prove useless, and although it would increase the number
of iterations for even the simplex tableau method, the use of machines to carry
out such advanced computation significantly saves time and improves accuracy.

The simplex method was created by G.B. Dantzig in 1949. However, Chvátal
(1983) introduced a more intuitive dictionary notation to develop the algorithm.
We present the generalized dictionary notation below:

An Linear Programming problem can be formulated as:

maximize ζ =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi,

xj ≥ 0

Where ci, aij, and bi are constants, and xi are nondiscrete variables. We similarly
define our slack variables generally:

wi = bi −
n∑

j=1

aijxj.



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 9

As we saw from our simplex tableau method, we treat the slack variables sim-
ilarly to the original variables. So, to make them indistinguishable, we treat
wi = xn+i. So our new list of x variables is now:

(x1, . . . , xn, w1, . . . , wm) = (x1, . . . , xn, xn+1, . . . , xn+m) .

So, we can rewrite our slack variables as:

xn+i = bi −
n∑

j=1

aijxj.

Adding this to our objective function definition of ζ, we get the starting dictionary.
As we continue carrying out operations throughout the simplex method, the state
will change from one dictionary to the next.

In general, each dictionary will contain m basic variables and n nonbasic variables.
This is fairly straightforward to notice, by referring back to the simplex tableau.
To simplify things further, we define N as the collection of the nonbasic variable
indices. Similarly, we define B as the collection of the basic variable indices. At
the beginning, each of them are:

N = 1, 2, · · · , n,

B = n+ 1, n+ 2, · · · , n+m.

With each iteration, exactly one variable goes from being non basic to basic and
exactly one variable goes from basic to nonbasic. Note how this relates to the
entering and leaving variable from the basis in the simplex tableau method. The
naming process and the criteria for selection for each of these variables remains
the same as the simplex tableau method.

Once the entering and leaving variables have been identified, row operations are
carried out on the dictionary. This process of converting one dictionary to the
next is known as a pivot. After carrying out pivots, the current dictionary will
change to look like this:

ζ = ζ̄ +
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B.

In the pivot, we effectively carry out the procedure similar to what was presented
in the simplex tableau of row operations. While it is more algebraic in the case
of the dictionary method, the essence remains the same, and the same type of
manipulation is occurring on the system to end up with the same result.



10 SUHAAN MOBHANI

5. Solution Methods

In this paper, we shall present 3 separate methods of solving such an integer lin-
ear programming problem. The 2 primary ones are the branch and bound method
and the cutting planes method. The third one is compound method that uses the
other two primary ones to find an optimal solution.

5.1. Branch and Bound. Branch and Bound is a method for solving ILP prob-
lems. It involves dividing the problem into smaller subproblems (branching) and
calculating bounds for the objective function in these subproblems. In essence, we
can boil down this method to a bunch of categorized steps:

(1) Branching:
• Select a variable with a noninteger value in the solution of the LP
relaxation.

• Create two subproblems or branches by adding constraints to the se-
lected variable: x ≤ ⌊x∗⌋ and x ≥ ⌈x∗⌉. This is to effectively split the
integer lattice points to either side of the point, which allows for swift
categorization.

(2) Bounding:
• Solve the LP relaxation of the new subproblems.
• If a subproblem is infeasible, discard it.
• If a subproblem has an integer solution, compare it with the best
solution and update if it is better.

(3) Pruning:
• Discard subproblems that cannot produce a better solution than the
best solution.

(4) Iteration:
• Repeat branching, bounding, and pruning steps until all the subprob-
lems are either solved or discarded.

To understand this process further, lets consider the same LP relaxation that we
found previously, where ζ = 53

3
when x1 =

8
3
and x2 =

7
3
.

To apply the Branch and Bound method, we first choose a variable to branch on.
For uniformity sake, we usually go in a sequential order unless there is a special
circumstance. For this problem, we branch on x1 to get the following branches:

x1 ≤ 2 & x1 ≥ 3.

To understand this better, lets consider each of the branches graphically. The
x1 ≤ 2 branch is colored pink, and the x1 ≥ 3 branch is colored red. Note that



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 11

our target solutions are only lattice points within the branches, and not the entire
branch.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x1 + x2 ≤ 5

7x1 + 4x2 ≤ 28

x1

x2

Notice how the subproblems have effectively split the points to the right and
the left of the original LP relaxation (marked as a red cross in the diagram). For
context, the objective function from the LP relaxation is plotted as the black line
passing through the red cross.

To keep a better track of the individual branches, we create a tree noting down
our new subproblems. This is called an enumeration tree. Each element in the
tree will consist of its relation to other elements as well as the best solution offered
by that particular branch. Here is how our tree looks after the first branch on x1:

x1 = 2.67
x2 = 2.33
ζ = 17.67

x1 = 2
x2 = 3
ζ = 17

x1 = 3
x2 = 1.75
ζ = 17.25

x1 ≤ 2

x1 ≥ 3

Since the best solution in our x1 ≤ 2 branch is an integer solution, we can
update the variable BEST to a value of 17. Since we got an integer value from
this branch, there is no need to branch it further.
Looking at our x1 ≥ 3 branch, we see that our best solution results in a noninteger



12 SUHAAN MOBHANI

value for x2. This means that we must branch it further.

In this case, our value of ζ from the x1 ≥ 3 branch is larger than our BEST
variable (17.25 > 17). This means that there is potential for a ”better” solution
to exist in our unsolved branch, hence we must branch it further. However, if any
branch results in a ζ value lesser than the current BEST variable, then there is
no potential for a better solution from that branch, so we discard processing it
entirely. A simple observation such this saves us from doing a lot more excessive
computation, which is really significant when there are a lot more variables.

So, now, we branch further on the x1 ≥ 3 branch by branching on x2, until we get
an integer solution. We get the following branches:

x2 ≤ 1 x2 ≥ 2.

Plotting these new branches graphically, we obtain:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x1 + x2 ≤ 5

7x1 + 4x2 ≤ 28

x1

x2

Our x2 ≤ 1 branch is shaded green, and the x2 ≥ 2 branch lies entirely outside
our feasible region, hence it is unplotted. We call such a branch infeasible.
We now update our enumeration tree by adding the new branches.



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 13

x1 = 2.67
x2 = 2.33
ζ = 17.67

x1 = 2
x2 = 3
ζ = 17

x1 = 3
x2 = 1.75
ζ = 17.25

x1 ≤ 2

x1 ≥ 3

x1 = 4
x2 = 0
ζ = 16

INFEASIBLE

BEST = 17

x2 ≤ 1

x2 ≥ 2

Even though our green subproblem results in an integer solution, but since its
value of ζ is lesser than the BEST variable (16 < 17), we do not update the BEST
variable. Since both the branches were definitive (one resulting in an integer
solution and the other being infeasible), they do not branch further. This means
our enumeration tree is complete. Notice how the definitive branches of the tree are
boxed twice. This is a standard convention used to keep better track of unsolved
branches when larger problems have to be solved.

So our optimal solution to the ILP is:

ζ = 17, x1 = 2, x2 = 3.

Note how the ζ value from our integer solution is lesser than that found in the LP
relaxation.

5.1.1. Searching using Enumeration Trees

When searching using an enumeration tree, we could use either Breadth-first
search or Depth-first search. In Breadth-first search, we would solve all the prob-
lems on a given level of the tree before going deeper to a further level. On the
other hand, in depth-first search, we go deep by solving all subproblems on a
branch until the branch is definitive before going to another branch on the same
level.

Typically, carrying out a depth-first search is preferred for several reasons:



14 SUHAAN MOBHANI

(1) Integer solutions are usually found deep in the tree. Finding these early
helps in pruning the tree, by comparing branches with the BEST variable,
hence improving efficiency.

(2) Depth-first search is easily implemented using recursion, making the algo-
rithm simpler to code.

(3) Moving deeper in the tree only requires adding or refining bounds on vari-
ables, simplifying further LP problems. This also helps with pruning.

5.2. Cutting Planes. Cutting Planes is another method used to solve ILP prob-
lems by iteratively adding linear constraints (cuts) to exclude fractional solutions,
thereby moving closer to the integer solution.

First, we must identify a constraint (cut) that excludes the current non-integer
solution x∗ but does not exclude any feasible integer solutions. We choose to use
Gomory cuts.

For a basic non-integer variable x∗
i , we derive a Gomory fractional cut:∑

j∈N

(aij − ⌊aij⌋)xj ≥ 1− (x∗
i − ⌊x∗

i ⌋),

where N is the set of non-basic variables.

We can then add the cut to the original set of constraints, creating a new linear
programming problem. We then solve the new LP relaxation with the added cut.
If the solution is an integer, it is the optimal solution to the ILP. If not, we must
repeat the process by generating additional cuts until we find an integer solution.

The cutting planes method iteratively refines the feasible region by adding lin-
ear constraints, systematically converging to the integer optimal solution while
ensuring all feasible integer solutions remain within the feasible region.

5.3. Branch and Cut. The Branch and Cut method combines two powerful tech-
niques: branch and bound, and cutting planes, to solve integer linear programming
(ILP) problems. This method iteratively refines the feasible region by branching
on fractional variables and adding cutting planes to exclude noninteger solutions.

Since this is a compound method, it is typically used for much larger problems
consisting of larger numbers or a larger number of variables. At each iteration, a



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 15

subproblem is created, similar to the Branch and Bound method presented before,
and for larger subproblems, the cutting planes method can be used to simplify
things further. At each iteration, a choice is made on the usage of each depending
on a number of factors. Using both of these methods together is much more
effective than using any one of them by themselves.

6. Extensions of ILP

6.1. Mixed Integer Linear Programming (MILP). Mixed Integer Linear
Programming involves problems where only some of the variables are constrained
to be integers, while others can be continuous. By being continuous, we mean that
they can take on analogous values, including fractional values or even irrational
real values that might not necessarily be an integer.

Altering the formulation of an ILP, AMixed Integer Linear Programming (MILP)
problem can be formulated as follows:

maximize ζ =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi,

xj ∈ Z ∀j ∈ I,
xj ≥ 0,

where cj, aij, and bi are constants, xj are decision variables, and I ⊆ {1, 2, . . . , n} is
the index set of variables that are required to be integers. The remaining variables
can take any non-negative real values.

The process for solving MILP problems is similar to the Branch and Bound process
we used for ILP problems, but simply tweaking it so that variables that must not
be integers are not ever branched. To understand it better, lets consider the same
problem as before, but with the condition that ONLY x1 must be an integer,
whereas x2 can take on any real value. Hence, we get our new definition for the



16 SUHAAN MOBHANI

problem as this:

maximize ζ = 4x1 + 3x2

subject to x1 + x2 ≤ 5,

7x1 + 4x2 ≤ 28,

x1 ∈ Z,
x1, x2 ≥ 0.

If we recollect, our LP relaxation was: ζ = 53
3
when x1 =

8
3
and x2 =

7
3
.

We set up slack variables similarly to how we did before, and carry out the first
process where we branch on x1:

x1 ≤ 2 x1 ≥ 3.

This results in the following enumeration tree:

x1 = 2.67
x2 = 2.33
ζ = 17.67

x1 = 2
x2 = 3
ζ = 17

x1 = 3
x2 = 1.75
ζ = 17.25

x1 ≤ 2

x1 ≥ 3

Notice how both the subproblems are double boxed. This means that they’ve
both produced a definitive value. Unlike ILP, we don’t need to branch the x1 ≥ 3
subproblem any further since there is no condition on x2 having to be an integer.

Through obvious inspection, we see that we get our optimal solution from the
x1 ≥ 3 branch. Notice how this is different to what we had obtained using ILP.
So, our final solution to this MILP problem is:

ζ = 17.25, x1 = 3, x2 = 1.75

This process can be adapted for any MILP problem with any number of variables,
as we simply use the Branch and Bound method presented for ILP’s. For MILPs,
there are significantly lesser number of branches than ILPs due to the lesser number
of conditions. Generically, the lesser number of variables that are required to be



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 17

integers, the lesser computation and branches will be required to find an optimal
solution on average.

6.2. Integer Nonlinear Programming (INLP). Integer Nonlinear Program-
ming involves optimization problems with nonlinear objective functions or con-
straints. (ie: degrees more than one)

We can adapt a similar method of branching and bounding to solve Integer Non-
linear Programming problems, using graphical methods. However, as numbers get
larger, and the number of variables increase, using such methods can become quite
difficult and computation heavy, apart from time consuming. The exact method
has not been covered in this paper, but using the previously presented methods
and with a little extension can be figured out as an exercise by the reader.

6.3. Binary (0-1) Integer Linear Programming. Binary (0-1) variables are
decision variables that can only take on the values 0 or 1. These determine whether
to include a certain non-decision variable in a solution (1) or not (0).

A Binary (0-1) Integer Linear Programming (BILP) problem can be formulated
as follows:

maximize ζ =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi,

xj ∈ {0, 1} ∀j,

where cj, aij, and bi are constants, and xj are binary decision variables that can
only take values of 0 or 1.

BILP is particularly useful for fixed cost problems. Fixed cost problems often
involve scenarios where there are substantial initial costs incurred if a particular
decision is made, and these costs must be incorporated into the optimization model.
They usually involve binary decision variables linked with other nonbinary regular
variables.

This approach is widely used in various industries, including logistics, manufac-
turing, and project management.



18 SUHAAN MOBHANI

7. Applications

Integer linear programming, Integer nonlinear Programming and Mixed Integer
Linear Programming have a wide range of applications in the real world in several
fields. Some of these applications are below:

• Optimization of supply chains in economics: ILP is used to optimize
production, inventory, and distribution in supply chains.

• Operations Scheduling: ILP and MILP are applied to schedule tasks,
jobs, or resources efficiently.

• Designing Network: ILP and INLP are used to design optimal networks
for telecommunications, transportation, and utilities for optimized connec-
tivity.

• Optimization of Returns on Financial Portfolios: MILP helps in
selecting the optimal mix of investment assets to maximize returns and
minimize risks.

With the advent of quantum computing, linear programming methods has a larger
range of use cases. As such methods are further developed, ILP methods will be
used in a larger variety of scenarios across all fields.

8. Conclusion

The simplex method, while being one of the more ”simple” methods, is a strong
but powerful tool used for solving linear programming instances. Recently, in-
creased computational power and algorithmic improvements have significantly en-
hanced its practicality, allowing for the efficient solving of larger scale linear pro-
gramming problems that were previously unreachable.

Integer Linear Programming is a versatile and powerful optimization technique
with numerous applications. Its extensions, such as Mixed Integer Linear Pro-
gramming and Integer Nonlinear Programming allow for the modeling and solving
of even more complex problems. While all of these follow virtually similar meth-
ods, it is very important to identify which technique is the most appropriate for
that scenario and implement it accordingly.

Due to its adaptability and robust nature, Integer Linear Programming and its
extensions will undoubtedly remain a critical component in the toolkits of a wide
range of people striving to achieve optimal solutions in their respective fields with
greater precision and confidence.



INTEGER LINEAR PROGRAMMING AND ITS EXTENSIONS 19

References

G. B. Dantzig, Programming in a Linear Structure, Rand Corporation, P-392, Santa Monica,
1949.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed.,
MIT Press, 2009.
A. H. Land and A. G. Doig, An Automatic Method of Solving Discrete Programming Problems,
Econometrica, 28(3), pp. 497-520, 1960.
R. E. Gomory, Outline of an Algorithm for Integer Solutions to Linear Programs, Bulletin of
the American Mathematical Society, 64(5), pp. 275-278, 1958.
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Dover Publications, 1998.
W. L. Winston, Operations Research: Applications and Algorithms, 4th ed., Brooks/Cole, 2004.
R. J. Vanderbei, Linear Programming: Foundations and Extensions, 3rd ed., Springer, 2008.
H. Paul Williams, Model Building in Mathematical Programming, 5th ed., Wiley, 2013.
Laurence A. Wolsey, Integer Programming, Wiley-Interscience, 1998.
Richard Kipp Martin, Large Scale Linear and Integer Optimization: A Unified Approach,
Springer, 1999.
Fred Glover, Handbook of Metaheuristics, Springer, 2003.
John N. Hooker, Logic-Based Methods for Optimization: Combining Optimization and Con-
straint Satisfaction, Wiley-In
Nemhauser, G. & Wolsey, L. (1988), Integer and Combinatorial Optimization, Wiley, New York.
Garfinkel, R. & Nemhauser, G. (1972), Integer Programming, John Wiley and Sons, New York.


	1. Introduction
	2. Note on Time Complexity
	3. Defining the problem
	3.1. The technique for solving minimization problems

	4. Ignoring the Integer Condition
	5. Solution Methods
	5.1. Branch and Bound
	5.2. Cutting Planes
	5.3. Branch and Cut

	6. Extensions of ILP
	6.1. Mixed Integer Linear Programming (MILP)
	6.2. Integer Nonlinear Programming (INLP)
	6.3. Binary (0-1) Integer Linear Programming

	7. Applications
	8. Conclusion
	References

