Introduction Definitions General Linear Group Special Linear Group October Special Linear Group October Special Linear Group October Special Linear Group October Special Linear Group Special Linear

Finite Groups of Lie Type

Vishwasri Srinivasan

July 2024

ヘロト 人間 とくほとくほとう

∃ 990

Introduction Definitions General Linear Group Special Linear Group Octhogonal Groups

Introduction

- Initially explored by Évariste Galois in the 19th century and formalized by Sophus Lie.
- Finite groups of Lie type:
 - Arise from Lie algebras and algebraic groups over finite fields.
 - Are used in various areas of mathematics (representation theory, combinatorics, number theory).
- Aim of this talk:
 - Provide an exposition on finite groups of Lie type.
 - Focus on their construction, properties, order, and simplicity conditions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction Definitions General Linear Group Special Linear Group Projective Special Linear Group Orthogonal Groups

A group (G, \cdot) is a set G equipped with a binary operation \cdot that satisfies the following four axioms:

- Closure: For all *a*, *b* ∈ *G*, the result of the operation *a* · *b* is also in *G*.
- Associativity: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- Identity Element: There exists an element e ∈ G such that for every element a ∈ G, the equation e ⋅ a = a ⋅ e = a holds.
- Inverse Element: For each element a ∈ G, there exists an element b ∈ G such that a ⋅ b = b ⋅ a = e, where e is the identity element.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

General Linear Group

Definitions

Introduction

The **order** of a group G, denoted |G|, is the number of elements in the set G. If |G| is finite, G is called a **finite group**.

Special Linear Group

Projective Special Linear Group

Orthogonal Groups

A **subgroup** H of a group G is a subset of G that forms a group under the operation of G.

A **normal subgroup** N of a group G is a subgroup that is invariant under conjugation by any element of G. That is, $N \triangleleft G$ if for every $n \in N$ and $g \in G$, the element $gng^{-1} \in N$.

Example: Consider the group $G = (\mathbb{Z}, +)$, where \mathbb{Z} is the set of integers under addition. Let $H = 2\mathbb{Z}$ be the subgroup of even integers in G. H is a normal subgroup of G since for any $n \in \mathbb{Z}$ and $h \in H$, we have $n + h + (-n) \in H$.

Homomorphisms and Isomorphisms

General Linear Group

Introduction

Definitions

A **homomorphism** between two groups G and H is a function $\phi: G \to H$ that preserves the group operation. More formally, a homomorphism satisfies the following condition:

Special Linear Group

Projective Special Linear Group

Orthogonal Groups

Preservation of Operation: For all a, b ∈ G,
 φ(a ⋅ b) = φ(a) ⋅ φ(b), where ⋅ denotes the group operation in G and H.

An **isomorphism** $\phi : G \to H$ is a bijective homomorphism that preserves the operations of the structures.

Kernels, Images, Simple Groups

General Linear Group

Introduction

Definitions

Let $\phi : G \to H$ be a homomorphism between groups G and H.

Special Linear Group

The **kernel** of ϕ , denoted by ker (ϕ) , is defined as ker $(\phi) = \{g \in G : \phi(g) = e_H\}$, where e_H is the identity element of H.

Projective Special Linear Group

Orthogonal Groups

The **image** of a homomorphism is defined as $Im(\phi) = \{\phi(g) : g \in G\}$, which is a subgroup of H.

A group G is called **simple** if it has no nontrivial proper normal subgroups, i.e., the only normal subgroups of G are the trivial group $\{e\}$ and G itself.

The **Classification Theorem for Finite Simple Groups** states that every finite simple group belongs to one of the following categories:

- Cyclic groups of prime order.
- Alternating groups of degree at least 5.
- **③** Simple groups of Lie type.
- 26 sporadic groups.

We will focus on **finite groups of Lie type**, groups that can be seen as the group of rational points over a finite field of a connected type Lie group. Some examples include the general linear group, special linear groups, and orthogonal groups.

General Linear Group

Definitions

Introduction

General Linear Group

The **general linear group** $GL_n(\mathbb{F})$ is the group of all invertible $n \times n$ matrices with entries from a field \mathbb{F} , under matrix multiplication. Formally,

Special Linear Group

$$GL_n(\mathbb{F}) = \{A \in M_n(\mathbb{F}) \mid \det(A) \neq 0\},\$$

Projective Special Linear Group

Orthogonal Groups

where $M_n(\mathbb{F})$ is the set of all $n \times n$ matrices over \mathbb{F} , and det(A) is the determinant of A.

Example: Consider $GL_2(\mathbb{R})$, the group of invertible 2×2 matrices with real entries. For instance,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in GL_2(\mathbb{R}),$$

since $det(A) = 1 \cdot 4 - 2 \cdot 3 = -2 \neq 0$.

General Linear Group over Finite Fields

General Linear Group

000

Introduction

Definitions

When $\mathbb{F} = \mathbb{F}_q$ (the finite field with q elements), $GL_n(\mathbb{F}_q)$ is the group of all invertible $n \times n$ matrices over \mathbb{F}_q . The order of $GL_n(\mathbb{F}_q)$ is given by:

Special Linear Group

Projective Special Linear Group

Orthogonal Groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$|GL_n(\mathbb{F}_q)| = (q^n - 1)(q^n - q)(q^n - q^2)\cdots(q^n - q^{n-1}).$$

Deriving the Order of $GL_n(F_q)$

General Linear Group

Introduction

Definitions

 We need to determine the number of non-singular n × n matrices over the finite field F_q.

Special Linear Group

- The first row u_1 can be any non-zero vector, giving $q^n 1$ possibilities.
- For any choice of u_1 , the second row u_2 can be any vector not a multiple of u_1 , giving $q^n q$ possibilities.
- For any choice of u_1 and u_2 , the third row u_3 can be any vector not a linear combination of u_1 and u_2 , giving $q^n q^2$ possibilities.
- Continuing in this manner, the k-th row can be any vector not a linear combination of the previous k 1 rows, giving $q^n q^{k-1}$ possibilities.
- Therefore, the number of non-singular matrices is:

$$(q^n-1)(q^n-q)(q^n-q^2)\cdots(q^n-q^{n-1})$$

Projective Special Linear Group

Orthogonal Groups

Introduction Definitions General Linear Group Special Linear Group Projective Special Linear Group Orthogonal Groups Special Linear Group

The **special linear group** $SL_n(\mathbb{F})$ is the subgroup of $GL_n(\mathbb{F})$ consisting of matrices with determinant 1. Formally,

$$SL_n(\mathbb{F}) = \{A \in GL_n(\mathbb{F}) \mid \det(A) = 1\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $SL_n(\mathbb{F})$ is a normal subgroup of $GL_n(\mathbb{F})$.

Special Linear Group over Finite Fields

General Linear Group

Introduction

Definitions

When $\mathbb{F} = \mathbb{F}_q$, $SL_n(\mathbb{F}_q)$ is the group of all $n \times n$ matrices over \mathbb{F}_q with determinant 1. The order of $SL_n(\mathbb{F}_q)$ is given by:

Special Linear Group

Projective Special Linear Group

Orthogonal Groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$|SL_n(\mathbb{F}_q)| = rac{|GL_n(\mathbb{F}_q)|}{q-1} = rac{(q^n-1)(q^n-q)(q^n-q^2)\cdots(q^n-q^{n-1})}{q-1}$$

Deriving the Order of $SL_n(F_q)$

General Linear Group

Introduction

Definitions

• Consider the set of all $n \times n$ matrices over the finite field F_q with q elements.

Special Linear Group

- The special linear group $SL_n(F_q)$ consists of all matrices with determinant 1.
- We know the order of the general linear group $GL_n(F_q)$:

$$|GL_n(F_q)| = (q^n - 1)(q^n - q)(q^n - q^2)\cdots(q^n - q^{n-1})$$

- To find the order of $SL_n(F_q)$, note that multiplying the first row of a matrix with determinant 1 by any non-zero field element *a* results in a matrix with determinant *a*.
- Each non-zero determinant can be achieved this way, creating a bijection between matrices with different determinants.
- Hence, the total number of matrices is divided among the q-1 possible non-zero determinants.
- Therefore:

$$|SL_n(F_q)| = \frac{1}{q-1} |GL_n(F_q)|$$

Projective Special Linear Group Orthogonal Groups

Projective Special Linear Group

General Linear Group

Introduction

Definitions

The **projective special linear group** $PSL_n(\mathbb{F})$ is defined as the quotient group of the special linear group $SL_n(\mathbb{F})$ by its center $Z(SL_n(\mathbb{F}))$. The center $Z(SL_n(\mathbb{F}))$ consists of scalar matrices λI_n where $\lambda^n = 1$. Formally,

Special Linear Group

Projective Special Linear Group

Orthogonal Groups

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$PSL_n(\mathbb{F}) = SL_n(\mathbb{F})/Z(SL_n(\mathbb{F})).$$

Order: The order of $PSL_n(\mathbb{F}_q)$ is:

$$|PSL_n(\mathbb{F}_q)| = \frac{|SL_n(\mathbb{F}_q)|}{|Z(SL_n(\mathbb{F}_q))|}.$$

 $PSL_n(\mathbb{F}_q)$ is simple for $n \ge 2$ and q sufficiently large.

Definitions for Proof - 1

Definitions

Introduction

A **group action** of a group G on a set Ω is a mapping $\cdot : G \times \Omega \rightarrow \Omega$ such that:

General Linear Group Special Linear Group

$$egin{cases} g_1 \cdot (g_2 \cdot \omega) = (g_1 g_2) \cdot \omega, & ext{for all } g_1, g_2 \in \mathcal{G} ext{ and } \omega \in \Omega, \ e \cdot \omega = \omega, & ext{for all } \omega \in \Omega, \end{cases}$$

Projective Special Linear Group

Orthogonal Groups

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where e is the identity element of G.

Example: Consider the group $G = \mathbb{Z}/4\mathbb{Z}$ (integers modulo 4) acting on the set $\Omega = \{1, 2, 3, 4\}$ by rotation. Each element $g \in G$ represents a rotation of Ω by g positions. For instance, $1 \cdot 2 = 3$ and $3 \cdot 4 = 3$.

Introduction Definitions General Linear Group October Special Linear Group

Primitive Group Action: A group action of G on Ω is called **primitive** if the only G-invariant partitions of Ω are trivial (singletons or the whole set Ω).

Stabilizers: The **stabilizer** of a point $\omega \in \Omega$ under the action of *G*, denoted G_{ω} or $G(\omega)$, is the subgroup of *G* that fixes ω , i.e.,

$$G_{\omega} = \{g \in G \mid g \cdot \omega = \omega\}.$$

Iwasawa's Lemma

Definitions

Introduction

General Linear Group

Iwasawa's Lemma: Let G be a primitive permutation group on Ω . Suppose that some point stabilizer G_{α} contains an abelian normal subgroup A (i.e., $A \lhd G_{\alpha}$) whose conjugates in G generate all of G. Then any nontrivial normal subgroup N of G contains G', the commutator subgroup of G. If G is perfect, then G is simple.

Special Linear Group

Projective Special Linear Group

Orthogonal Groups

It states that any non-trivial normal subgroup of a group containing an abelian normal subgroup must also contain the commutator subgroup.

Proof of Simplicity of $PSL_n(\mathbb{F}_q)$

Introduction

Definitions

General Linear Group

Onsider PSL_n(𝔽_q) acting on 𝔼ⁿ⁻¹(𝔽_q), where the action is primitive.

Special Linear Group

Projective Special Linear Group

Orthogonal Groups

- **2** The stabilizer of a point in $\mathbb{P}^{n-1}(\mathbb{F}_q)$ is isomorphic to $PGL_{n-1}(\mathbb{F}_q)$.
- PGL_{n-1}(F_q) contains an abelian normal subgroup (its center), whose conjugates generate PSL_n(F_q).
- Apply Iwasawa's Lemma to show any non-trivial normal subgroup of PSL_n(F_q) contains the commutator subgroup PSL_n(F_q)', which equals PSL_n(F_q) as PSL_n(F_q) is perfect.
- Solution Conclude that $PSL_n(\mathbb{F}_q)$ is simple for $n \ge 2$ and q > 3.

Introduction Definitions General Linear Group Special Linear Group Octhogonal Groups Octhogonal Groups

The **orthogonal group** $O_n(\mathbb{F})$ is the group of $n \times n$ matrices A over \mathbb{F} that preserve a non-degenerate symmetric bilinear form, i.e., $A^T A = I_n$. Formally,

$$O_n(\mathbb{F}) = \{A \in GL_n(\mathbb{F}) \mid A^T A = I_n\}.$$

Example:

Consider $O_2(\mathbb{R})$, the group of all 2×2 orthogonal matrices with real entries. For instance,

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in O_2(\mathbb{R}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

since $A^T A = I_2$.

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

æ