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Introduction

Initially explored by Évariste Galois in the 19th century and
formalized by Sophus Lie.

Finite groups of Lie type:

Arise from Lie algebras and algebraic groups over finite fields.
Are used in various areas of mathematics (representation
theory, combinatorics, number theory).

Aim of this talk:

Provide an exposition on finite groups of Lie type.
Focus on their construction, properties, order, and simplicity
conditions.
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Definitions

A group (G , ·) is a set G equipped with a binary operation · that
satisfies the following four axioms:

Closure: For all a, b ∈ G , the result of the operation a · b is
also in G .

Associativity: For all a, b, c ∈ G , (a · b) · c = a · (b · c).
Identity Element: There exists an element e ∈ G such that
for every element a ∈ G , the equation e · a = a · e = a holds.

Inverse Element: For each element a ∈ G , there exists an
element b ∈ G such that a · b = b · a = e, where e is the
identity element.
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Order and Subgroups

The order of a group G , denoted |G |, is the number of elements in
the set G . If |G | is finite, G is called a finite group.

A subgroup H of a group G is a subset of G that forms a group
under the operation of G .

A normal subgroup N of a group G is a subgroup that is
invariant under conjugation by any element of G . That is, N ◁ G if
for every n ∈ N and g ∈ G , the element gng−1 ∈ N.

Example: Consider the group G = (Z,+), where Z is the set of
integers under addition. Let H = 2Z be the subgroup of even
integers in G . H is a normal subgroup of G since for any n ∈ Z
and h ∈ H, we have n + h + (−n) ∈ H.
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Homomorphisms and Isomorphisms

A homomorphism between two groups G and H is a function
ϕ : G → H that preserves the group operation. More formally, a
homomorphism satisfies the following condition:

Preservation of Operation: For all a, b ∈ G ,
ϕ(a · b) = ϕ(a) · ϕ(b), where · denotes the group operation in
G and H.

An isomorphism ϕ : G → H is a bijective homomorphism that
preserves the operations of the structures.
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Kernels, Images, Simple Groups

Let ϕ : G → H be a homomorphism between groups G and H.

The kernel of ϕ, denoted by ker(ϕ), is defined as
ker(ϕ) = {g ∈ G : ϕ(g) = eH}, where eH is the identity element of
H.

The image of a homomorphism is defined as
Im(ϕ) = {ϕ(g) : g ∈ G}, which is a subgroup of H.

A group G is called simple if it has no nontrivial proper normal
subgroups, i.e., the only normal subgroups of G are the trivial
group {e} and G itself.
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Classification Theorem for Finite Simple Groups

The Classification Theorem for Finite Simple Groups states
that every finite simple group belongs to one of the following
categories:

1 Cyclic groups of prime order.

2 Alternating groups of degree at least 5.

3 Simple groups of Lie type.

4 26 sporadic groups.

We will focus on finite groups of Lie type, groups that can be
seen as the group of rational points over a finite field of a
connected type Lie group. Some examples include the general
linear group, special linear groups, and orthogonal groups.
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General Linear Group

The general linear group GLn(F) is the group of all invertible
n × n matrices with entries from a field F, under matrix
multiplication. Formally,

GLn(F) = {A ∈ Mn(F) | det(A) ̸= 0},

where Mn(F) is the set of all n × n matrices over F, and det(A) is
the determinant of A.
Example: Consider GL2(R), the group of invertible 2× 2 matrices
with real entries. For instance,

A =

(
1 2
3 4

)
∈ GL2(R),

since det(A) = 1 · 4− 2 · 3 = −2 ̸= 0.
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General Linear Group over Finite Fields

When F = Fq (the finite field with q elements), GLn(Fq) is the
group of all invertible n × n matrices over Fq. The order of
GLn(Fq) is given by:

|GLn(Fq)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).
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Deriving the Order of GLn(Fq)

We need to determine the number of non-singular n × n
matrices over the finite field Fq.

The first row u1 can be any non-zero vector, giving qn − 1
possibilities.

For any choice of u1, the second row u2 can be any vector not
a multiple of u1, giving qn − q possibilities.

For any choice of u1 and u2, the third row u3 can be any
vector not a linear combination of u1 and u2, giving qn − q2

possibilities.

Continuing in this manner, the k-th row can be any vector not
a linear combination of the previous k − 1 rows, giving
qn − qk−1 possibilities.

Therefore, the number of non-singular matrices is:

(qn − 1) (qn − q)
(
qn − q2

)
· · ·

(
qn − qn−1

)
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Special Linear Group

The special linear group SLn(F) is the subgroup of GLn(F)
consisting of matrices with determinant 1. Formally,

SLn(F) = {A ∈ GLn(F) | det(A) = 1}.

SLn(F) is a normal subgroup of GLn(F).
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Special Linear Group over Finite Fields

When F = Fq, SLn(Fq) is the group of all n × n matrices over Fq

with determinant 1. The order of SLn(Fq) is given by:

|SLn(Fq)| =
|GLn(Fq)|
q − 1

=
(qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

q − 1
.
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Deriving the Order of SLn(Fq)

Consider the set of all n × n matrices over the finite field Fq
with q elements.
The special linear group SLn(Fq) consists of all matrices with
determinant 1.
We know the order of the general linear group GLn(Fq):

|GLn(Fq)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

To find the order of SLn(Fq), note that multiplying the first
row of a matrix with determinant 1 by any non-zero field
element a results in a matrix with determinant a.
Each non-zero determinant can be achieved this way, creating
a bijection between matrices with different determinants.
Hence, the total number of matrices is divided among the
q − 1 possible non-zero determinants.
Therefore:

|SLn(Fq)| =
1

q − 1
|GLn(Fq)|

Substituting the order of GLn(Fq):

|SLn(Fq)| =
1

q − 1
(qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)
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Projective Special Linear Group

The projective special linear group PSLn(F) is defined as the
quotient group of the special linear group SLn(F) by its center
Z (SLn(F)). The center Z (SLn(F)) consists of scalar matrices λIn
where λn = 1. Formally,

PSLn(F) = SLn(F)/Z (SLn(F)).

Order: The order of PSLn(Fq) is:

|PSLn(Fq)| =
|SLn(Fq)|

|Z (SLn(Fq))|
.

PSLn(Fq) is simple for n ≥ 2 and q sufficiently large.
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Definitions for Proof - 1

A group action of a group G on a set Ω is a mapping
· : G × Ω → Ω such that:{

g1 · (g2 · ω) = (g1g2) · ω, for all g1, g2 ∈ G and ω ∈ Ω,

e · ω = ω, for all ω ∈ Ω,

where e is the identity element of G .

Example: Consider the group G = Z/4Z (integers modulo 4)
acting on the set Ω = {1, 2, 3, 4} by rotation. Each element g ∈ G
represents a rotation of Ω by g positions. For instance, 1 · 2 = 3
and 3 · 4 = 3.
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Definitions For Proof - 2

Primitive Group Action: A group action of G on Ω is called
primitive if the only G -invariant partitions of Ω are trivial
(singletons or the whole set Ω).

Stabilizers: The stabilizer of a point ω ∈ Ω under the action of
G , denoted Gω or G (ω), is the subgroup of G that fixes ω, i.e.,

Gω = {g ∈ G | g · ω = ω}.
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Iwasawa’s Lemma

Iwasawa’s Lemma: Let G be a primitive permutation group on
Ω. Suppose that some point stabilizer Gα contains an abelian
normal subgroup A (i.e., A◁ Gα) whose conjugates in G generate
all of G . Then any nontrivial normal subgroup N of G contains G ′,
the commutator subgroup of G . If G is perfect, then G is simple.

It states that any non-trivial normal subgroup of a group
containing an abelian normal subgroup must also contain the
commutator subgroup.
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Proof of Simplicity of PSLn(Fq)

1 Consider PSLn(Fq) acting on Pn−1(Fq), where the action is
primitive.

2 The stabilizer of a point in Pn−1(Fq) is isomorphic to
PGLn−1(Fq).

3 PGLn−1(Fq) contains an abelian normal subgroup (its center),
whose conjugates generate PSLn(Fq).

4 Apply Iwasawa’s Lemma to show any non-trivial normal
subgroup of PSLn(Fq) contains the commutator subgroup
PSLn(Fq)

′, which equals PSLn(Fq) as PSLn(Fq) is perfect.

5 Conclude that PSLn(Fq) is simple for n ≥ 2 and q > 3 .
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Orthogonal Groups

The orthogonal group On(F) is the group of n × n matrices A
over F that preserve a non-degenerate symmetric bilinear form, i.e.,
ATA = In. Formally,

On(F) = {A ∈ GLn(F) | ATA = In}.

Example:
Consider O2(R), the group of all 2× 2 orthogonal matrices with
real entries. For instance,

A =

(
cos θ − sin θ
sin θ cos θ

)
∈ O2(R),

since ATA = I2.
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Thank You

Thank you for your attention!
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