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1 Introduction

The study of finite groups of Lie type occupies a central position in modern al-
gebra and group theory. These groups, first systematically explored by Évariste
Galois in the early 19th century and later formalized by Sophus Lie, serve as
a link between algebraic structures and geometric intuitions. They are used in
diverse areas of mathematics, such as representation theory, combinatorics, and
number theory. This paper aims to provide an exposition on finite groups of
Lie type, with a focus on understanding their construction, orders, and the con-
ditions under which they are simple. We begin by discussing the foundational
concepts of algebraic groups and fields before providing an introduction of finite
groups of Lie type. We then examine several key families of these groups, in-
cluding the general linear group GLn(Fq), the special linear group SLn(Fq), and
the orthogonal group, highlighting their construction fundamental properties,
and simplicity conditions.

1.1 Groups

A group (G, ·) is a set G equipped with a binary operation · that satisfies the
following four axioms:

1. Closure: For all a, b ∈ G, the result of the operation a · b is also in G.

2. Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).

3. Identity Element: There exists an element e ∈ G such that for every
element a ∈ G, the equation e · a = a · e = a holds.

4. Inverse Element: For each element a ∈ G, there exists an element b ∈ G
such that a · b = b · a = e, where e is the identity element.

One example is G = Z, the set of integers and consider the binary operation
of addition, denoted by +. We will show that (Z,+) forms a group.

1. Closure: For any two integers a, b ∈ Z, the sum a + b is also an integer,
thus closure holds.
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2. Associativity: Addition of integers is associative, i.e., for all a, b, c ∈ Z,
(a+ b) + c = a+ (b+ c).

3. Identity Element: The identity element for addition in Z is 0, as a+ 0 =
0 + a = a for all a ∈ Z.

4. Inverse Element: For each integer a ∈ Z, its inverse with respect to addi-
tion is −a, since a+ (−a) = (−a) + a = 0.

Therefore, (Z,+) satisfies all the axioms and is a group.

The order of a group G, denoted |G|, is the number of elements in the set
G. If |G| is finite, G is called a finite group.

The order of an element g in a group G is the smallest positive integer n
such that gn = e, where e is the identity element of G.

A subgroup H of a group G is a subset of G that forms a group under the
operation of G.

An important theorem relating to this definition is the Two-Step Subgroup
Test.

1.1.1 Two-Step Subgroup Test

Let G be a group and H a non-empty subset of G. Then H is a subgroup of G
if and only if the following two conditions hold:

1. For all a, b ∈ H, the product ab ∈ H. (Closure under operation)

2. For all a ∈ H, the inverse a−1 ∈ H. (Closure under inverses)

Proof: To prove the Two-Step Subgroup Test, we will show the following:

• If H is a subgroup of G, then conditions (1) and (2) hold.

• If conditions (1) and (2) hold, then H is a subgroup of G.

For the first part of the proof, assume H is a subgroup of G. By definition, H
satisfies the group axioms under the operation inherited from G. In particular:

1. Closure under operation: Since H is a group, for any a, b ∈ H, the product
ab ∈ H.

2. Closure under taking inverses: Since H is a group, for any a ∈ H, the
inverse a−1 ∈ H.

Therefore, if H is a subgroup of G, conditions (1) and (2) hold.

For the second part of the proof, assume the two conditions hold. Now, we need
to verify the subgroup axioms for H:
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1. Identity Element: Since H is non-empty, let e be the identity element
of G. Let a ∈ H. Since a ∈ H and H is closed under inverses, a−1 ∈ H.
Since H is closed under multiplication, aa−1 = e ∈ H.

2. Associativity: The operation on H is inherited from G, which is asso-
ciative. Therefore, the operation is associative on H.

3. Closure under multiplication: This is given by condition (1).

4. Inverse Element: This is given by condition (2).

Therefore, H satisfies the subgroup axioms and is a subgroup of G.

A normal subgroup N of a group G is a subgroup that is invariant under
conjugation by any element of G. That is, N ◁G if for every n ∈ N and g ∈ G,
the element gng−1 ∈ N .

Consider the group G = (Z,+), where Z is the set of integers under addition.
Let H = 2Z be the subgroup of even integers in G. H is a normal subgroup of
G since for any n ∈ Z and h ∈ H, we have n+ h+ (−n) ∈ H.

1.1.2 Relations between Groups

A homomorphism between two groups G and H is a function ϕ : G → H
that preserves the group operation. More formally, a homomorphism satisfies
the condition that for all a, b ∈ G, ϕ(a · b) = ϕ(a) · ϕ(b), where · denotes the
group operation in G and H.

Let G and H be algebraic structures of the same type. An isomorphism
ϕ : G → H is a bijective homomorphism that preserves the operations of the
structures.

Homomorphisms generalize the concept of isomorphisms by allowing for non-
bijective mappings that preserve the group structure.

Let ϕ : G→ H be a homomorphism between groups G and H. The kernel
of ϕ, denoted by ker(ϕ), is defined as ker(ϕ) = {g ∈ G : ϕ(g) = eH}, where
eH is the identity element of H. The image of a homomorphism is defined as
Im(ϕ) = {ϕ(g) : g ∈ G}, which is a subgroup of H.

A simple group has no nontrivial normal subgroups. Examples include the
alternating group An for n ≥ 5. Now, we will discuss a way to classify a certain
kind of simple group.

1.1.3 Classification Theorem

The Classification Theorem for Finite Simple Groups states that every
finite simple group belongs to one of the following categories:
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1. Cyclic groups of prime order.

2. Alternating groups of degree at least 5.

3. Simple groups of Lie type.

4. 26 sporadic groups.

We will focus on finite groups of Lie type, groups that can be seen as the
group of rational points over a finite field of a connected type Lie group. Before
introducing our first finite group of Lie type, we must discuss the a few more
definitions.

1.1.4 Group Actions

A group action of a group G on a set X is a function · : G × X → X that
satisfies certain properties, such as the identity element acting as the identity
function on X.

Some examples of group actions are rotation of a cube, permutation of a set,
symmetries of a polygon.

A group action is said to be faithful if different group elements induce dif-
ferent permutations of the set X.

A group action of a group G on a set X is said to be transitive if, for any
x, y ∈ X, there exists g ∈ G such that g · x = y.

A group G acts primitively on a set Ω if the only blocks of Ω preserved by
G are the trivial ones: ∅ and Ω.

Also, in the context of group actions, a block is a non-empty subset B of
the set X such that for all g ∈ G, either g ·B = B or g ·B ∩B = ∅.

The stabilizer of an element x in a group action is the subgroup that fixes
x, while the orbit of x is the set of all elements in X that x can be mapped to
under the group action.

A permutation groups is a group whose elements are permutations of a
set, forming a group under composition.

The commutator subgroup is the group generated by all the commutators
aba−1b−1 for a, b in the group.

A group G is called perfect if G is equal to its commutator subgroup G′.
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1.2 Fields

A field is a set equipped with two operations, addition and multiplication,
satisfying certain properties like closure, associativity, distributivity, and the
existence of inverses.

A subfield of a field is a subset that is itself a field under the same opera-
tions.

The order of a field is the number of elements in the field, and a finite
field is a field with a finite number of elements.

1.3 Some Basic Linear Algebra

A vector space is a set of vectors equipped with two operations, vector addi-
tion and scalar multiplication, satisfying certain properties.

Examples include the set of all real-valued functions defined on a closed in-
terval, with operations defined pointwise.

Also, a square matrix A is said to be invertible if there exists another
square matrix B such that AB = BA = I, where I is the identity matrix.

2 General Linear Group

The general linear group GLn(F) is the group of all invertible n × n matri-
ces with entries from a field F, under the operation of matrix multiplication.
Formally,

GLn(F) = {A ∈Mn(F) | det(A) ̸= 0},

where Mn(F) denotes the set of all n × n matrices over F, and det(A) is the
determinant of A.

For n ≥ 2, the group GLn(F) is not simple because it has a non-trivial
normal subgroup, the center Z(GLn(F)), consisting of scalar matrices:

Z(GLn(F)) = {λIn | λ ∈ F∗},

where F∗ is the multiplicative group of the field F.

2.0.1 Center of GL(n, F ) is a Normal Subgroup

Note that the proof is clear for n = 1, so we consider the case where n ≥ 2
here. Suppose i, j are distinct elements of {1, 2, 3, . . . , n} and λ ∈ F . Define
eij(λ) to be the matrix with λ in the (ij)th entry and zeroes elsewhere. eij(1) is
termed the (ij)th matrix unit. Define Eij(λ) as the sum of the identity matrix
and eij(λ):

Eij(λ) = I + eij(λ).
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Since, Eij(λ) and Eij(−λ) are two-sided multiplicative inverses for any
λ ∈ F , Eij(λ) ∈ GL(n, F ). Any matrix that commutes with Eij(1) must
also commute with eij(1), because of distributivity and the fact that the ma-
trix commutes with the identity. Thus, any matrix in the center of GL(n, F )
commutes with eij(1) for i ̸= j. Suppose A is a matrix with aji ̸= 0 for some
i ̸= j. Consider the matrix B = eij(1). Then, the (jj)

th entry of AB is nonzero,
while the (jj)th entry of BA is zero. Thus, any matrix that commutes with all
the off-diagonal matrix units eij(1) cannot have any off-diagonal entries. Sup-
pose A is a diagonal matrix with aii ̸= ajj . Then A does not commute with
the permutation matrix corresponding to the transposition of i and j, because
conjugation by that matrix switches aii with ajj .

Combining the first two steps yields that any matrix in the center ofGL(n, F )
must be diagonal, and the third step then yields that it must be scalar. Looking
at when two scalar matrices commute, we see that the matrix must in fact be a
scalar matrix with the scalar value itself a nonzero element of F .

To show that Z(GL(n, F )) is a normal subgroup, we need to show that
for any g ∈ GL(n, F ) and any z ∈ Z(GL(n, F )), the element gzg−1 is also in
Z(GL(n, F )). Since z is a scalar matrix, say z = λI for some λ ∈ F , we have:

gzg−1 = g(λI)g−1 = λ(gIg−1) = λI = z.

Therefore, gzg−1 = z ∈ Z(GL(n, F )), proving that the center Z(GL(n, F ))
is a normal subgroup of GL(n, F ).

2.1 Projective General Linear Group

The projective general linear group PGLn(F) is defined as the quotient
group:

PGLn(F) = GLn(F)/Z(GLn(F)).
For n ≥ 2 and F a finite field, PGLn(F) is simple.

2.1.1 Simplicity of PGLn(F)

We will prove that PGLn(F) is simple for n ≥ 2 and F a finite field. Let N be a
non-trivial normal subgroup of PGLn(F). We need to show that N = PGLn(F).
Consider the action of PGLn(F) on the projective space Pn−1(F). The group
PGLn(F) acts transitively on Pn−1(F). This means that for any two points
in Pn−1(F), there exists an element in PGLn(F) that maps one point to the
other. Consider the stabilizer subgroup of a point in Pn−1(F). This stabilizer is
isomorphic to PGLn−1(F). Since PGLn−1(F) is simple for n−1 ≥ 2, any normal
subgroup of PGLn(F) must either act trivially on Pn−1(F) or be the whole
group. Since N is non-trivial, it must act non-trivially on Pn−1(F). Therefore,
N must be the whole group PGLn(F).

We have shown that any non-trivial normal subgroup of PGLn(F) must be
the whole group. Therefore, PGLn(F) is simple for n ≥ 2 and F a finite field.
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3 Special Linear Group

The special linear group SLn(F) is the group of all n × n matrices with
determinant 1, under the operation of matrix multiplication. Formally,

SLn(F) = {A ∈Mn(F) | det(A) = 1}.

Note that this group can also be defined as the kernel of the homomorphism

det : GL(n, F ) → F× = {x ∈ F | x ̸= 0}

where F is a field.

3.0.1 SLn(F) is a normal subgroup of GLn(F)

Because the determinants of the elements of SLn(F) are not 0, they are nonsin-
gular. So SLn(F) is a subset of GLn(F). With this, we need only to show that
SLn(F) is a subgroup of GLn(F). Let A and B be elements of SLn(F). Since
A is nonsingular we have that it has an inverse A−1 ∈ GL(n,K). As

det
(
A−1

)
=

1

det(A)

, we can say
det

(
A−1

)
= 1

So A−1 ∈ SL(n,K). Also,

det(AB) = det(A) det(B) = 1

Using the Two-Step Subgroup Test, we can now say that SLn(F) is a subgroup
of GLn(F). To prove that it is a normal subgroup of the latter, suppose A ∈
SLn(F ) and B ∈ GLn(F ). Now

det
(
BAB−1

)
= det(B) det(A) det(B)−1 = det(A) = 1,

since multiplication in F is commutative. Since, BAB−1 ∈ SLn(F ), SLn(F ) is
normal in GLn(F ).

3.0.2 SLn(F) is the commutator subgroup of GLn(F)

LetN be the commutator subgroup of the general linear group GL(2, F ), defined
as:

N =
〈
ABA−1B−1 | A,B ∈ GL(2, F )

〉
.

First, it is clear that N is contained in the special linear group SL(2, F ),
since det(ABA−1B−1) = 1 for any A,B ∈ GL(2, F ). Next, we claim that N
contains all matrices (

1 b
0 1

)
,
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where b ∈ F .
This follows from noting that(

1 b
0 1

)
=

(
1 b
0 b

)(
1 1
0 1

)(
1 b
0 b

)−1 (
1 1
0 1

)−1

.

By taking transposes, it also follows that N contains all matrices(
1 0
c 1

)
,

where c ∈ F .
Further, N contains all matrices(

a 0
0 a−1

)
,

where a ∈ F×, since(
a 0
0 a−1

)
=

(
a 0
0 1

)(
0 1
1 0

)(
a 0
0 1

)−1 (
0 1
1 0

)−1

.

Now let (
a b
c d

)
∈ SL(2, F ).

Then ad− bc = 1. Using the above results,(
a b
c d

)
=

(
1 0
c/a 1

)(
1 ab
0 1

)(
a 0
0 a−1

)
,

if a ̸= 0, and(
a b
c d

)
=

(
0 1
−1 0

)(
1 −d/b
0 1

)(
1 0
ab 1

)(
1/b 0
0 b

)
,

if b ̸= 0, and similarly for other cases.
Thus, SL(2, F ) ⊆ N , implying N = SL(2, F ) for finite fields F . This com-

pletes the proof.

3.1 Orders of SLn(Fq) and GLn(Fq)

The finite groups GL(n, q), SL(n, q) have orders:

|GL(n, q)| = q
n(n−1)

2 (qn − 1)
(
qn−1 − 1

)
· · · (q − 1)

|SL(n, q)| = q
n(n−1)

2 (qn − 1)
(
qn−1 − 1

)
· · ·

(
q2 − 1

)
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Proof: Let V be an n-dimensional vector space over F = GF (q). Then V has
qn elements. Choose a basis (v1, v2, · · · , vn) for V . Then an automorphism f of
V is given by its value on the basis. There are qn − 1 choices for f (v1). Given
f (v1), there are qn − q1 choices for f (v2) since it can be any vector not in the
span of f (v1). There are qn − q2 choices for f (v3) and so on. Thus

|GL(V )| = (qn − 1) (qn − q) · · ·
(
qn − qn−1

)
= q1+2+···+(n−1) (qn − 1) · · · (q−

1)
And |SL(n, q)| = |GL(V )|/ |F×| = |GL(n, q)|/(q − 1).

3.2 Projective Special Linear Group

The projective special linear group PSLn(F) is defined as the quotient
group:

PSLn(F) = SLn(F)/Z(SLn(F)),

where Z(SLn(F)) is the center of SLn(F), consisting of scalar matrices with
determinant 1.

3.2.1 Properties of PSLn(F)

1. Quotient Group: PSLn(F) is formed by identifying matrices in SLn(F)
that differ by a scalar matrix.

2. Simplicity: For n ≥ 2 and F a finite field, PSLn(F) is simple.

3.2.2 Examples of PSLn(F)

Let’s look at the case n = 2 and q = 5, i.e. 2 by 2 matrices whose entries are
integers mod 5. This is the smallest example of PSL(n, q) which is a simple
group. We denote these matrices by(

a b
c d

)
and the requirement of having determinant 1 means ad − bc = 1. A rough es-
timate of the number of matrices in SL(2, 5) would be 125 since we have three
degrees of freedom (four variables minus constraining equation) and each degree
of freedom can take on five possible values. However, as you cannot always fix
three variables and solve for the fourth, the exact number of elements turns out
to be 120. To transition from SL(2, 5) to PSL(2, 5) we must look at the center of
SL(2, 5). These are the diagonal matrices in SL(2, 5) with constant entries along
the diagonal. This implies a = d and b = c = 0. Since the determinant is 1, we
have a2 = 1, so a = 1 or a = 4. More intuitively we could say a = 1 or a = −1
since 4 and -1 are the same mod 5. We consider a matrix and its negative to be
the same matrix. Since SL(2, 5) had 120 elements and we’ve identified elements
in pairs, PSL(2, 5) has 60 elements.
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Now, let us look at PSL(3, 5). This is the set of 3 by 3 matrices with elements
from the integers mod 5 and determinant 1. The center of SL(3, 5) is the set of
multiples of the identity matrix with determinant 1. If the diagonal elements
are a, then the determinant condition says a3 = 1. If we cube the numbers
0, 1, 2, 3, 4 and take the remainders by 5, we see that 1 is the only cube root of
1 mod 5. This means that the center is just the identity matrix, and modding
out by the group identity does nothing. Now we have that PSL(3, 5) = SL(3, 5).

3.3 Order of PSLn(Fq)

For a finite field Fq with q elements, the order of PSLn(Fq) is given by:

|PSLn(Fq)| =
|SLn(Fq)|

|Z(SLn(Fq))|
.

3.4 Simplicity of PSLn(Fq)

To find and prove the simplicity conditions of PSLn(Fq), we will use Iwasawa’s
Lemma.

3.4.1 Iwasawa’s Lemma

This lemma assumes that G is a primitive permutation group on Ω. Suppose
that some point stabilizer Gα contains an abelian normal subgroup A (that is,
A◁Gα) whose conjugates in G generate all of G. Then any nontrivial normal
subgroup N of G contains G′, the commutator subgroup of G. In particular, if
G is perfect, then G is simple.

Proof: Suppose N is a normal subgroup of G different from {1}. Our first claim
is that there exists an α ∈ Ω for which N ̸⊂ Gα. Assume to the contrary that N
is contained in every stabilizer. But, since G acts faithfully on Ω, no nontrivial
element of N can induce the identity permutation on Ω, a contradiction. So,
let α ∈ Ω be such that N ̸⊂ Gα. Since the action of G on Ω is primitive, the
stabilizers Gβ are maximal subgroups of G. It follows that the subgroup NGα

must be all of G. Let A◁Gα be as in the statement of Iwasawa’s Lemma. Let
g ∈ G = NGα, and write g = nh, where n ∈ N and h ∈ Gα. Then

gAg−1 = nhAh−1n−1 = nAn−1 ⊂ NAN = NA,

where the last equality follows by normality of N . But, since the conjugates of
A in G generate G, we see that G = NA. By the Second Isomorphism Theorem,
we have that

G/N ∼= NA/N ∼= A/(A ∩N).

The rightmost factor is obviously abelian, which impliesG′ ⊆ N . This completes
the proof.
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3.4.2 Application of Iwasawa’s Lemma to PSLn(Fq)

Now, we will apply the lemma to prove the simplicity of PSLn(Fq) for n ≥ 2
and Fq a finite field. Consider the action of PSLn(Fq) on the projective
space Pn−1(Fq). This action is primitive because the stabilizers of points in
Pn−1(Fq) are maximal subgroups. The point stabilizer in PSLn(Fq) is iso-
morphic to PGLn−1(Fq), which contains an abelian normal subgroup A (the
center of PGLn−1(Fq)). The conjugates of A in PSLn(Fq) generate the entire
group PSLn(Fq). By Iwasawa’s Lemma, any nontrivial normal subgroup N of
PSLn(Fq) contains the commutator subgroup PSLn(Fq)

′. Since PSLn(Fq)
is perfect, PSLn(Fq) = PSLn(Fq)

′, and thus N = PSLn(Fq). Therefore,
PSLn(Fq) is simple.

4 Orthogonal Groups

The orthogonal group, O(n), is the subset of orthogonal matrices, those in-
vertible real matrices whose inverse is equal to its transpose. In other words,

O(n) =
{
Q ∈ GLn(R) | Q⊤ = Q−1

}
First, we will prove that O(n) ≤ GLn(R). Let ϕ ∈ O(n). By definition,

O(n) = {ϕ ∈ GLn(R) | ∀x, y ∈ Rn : ⟨ϕx, ϕy⟩ = ⟨x, y⟩}

Then, in particular, ϕ ∈ GLn(R) and ϕ−1 exists. For all x, y ∈ Rn, we have〈
ϕ−1x, ϕ−1y

〉
=

〈
ϕϕ−1x, ϕϕ−1y

〉
= ⟨x, y⟩

This implies ϕ−1 ∈ O(n). Additionally, if ψ ∈ O(n), then for all x, y ∈ Rn,

⟨ψϕx, ψϕy⟩ = ⟨ϕx, ϕy⟩ = ⟨x, y⟩

Thus, we conclude ψ ·ϕ ∈ O(n). Trivially, the identity transformation is in O(n).
Therefore, O(n) is a non-empty subset of the group GLn(R) and is closed under
composition and taking inverses. Hence, we conclude that O(n) is a subgroup
of GLn(R).

Also, a square matrix U is orthogonal if and only if its column vectors form
an orthonormal set. Let U be an n×n orthogonal matrix and let u1,u2, . . . ,un

be the column vectors of U . Then

U⊤U = (uij)
⊤
(uij) =

(
u⊤
i uj

)
= (ui · uj)

Therefore, U⊤U = In if and only if ui ·uj =

{
0, i ̸= j
1, i = j

if and only if the

columns of U are an orthonormal set.
Since U⊤ = U−1 and UU⊤ = UU−1 = I, it also follows that the row

vectors of an orthogonal matrix U must also form an orthonormal set. The
orthogonal group O(n) consists of all rotation and reflection matrices of Rn,
when interpreted geometrically.

This time, we will discuss another way to define orthogonal groups rather
than describing their orders and simplicity conditions.

11



4.0.1 Another Definition for Orthogonal Groups

We will again start with a few preliminary definitions.

If V is a vector space over a field K, a function f : V × V → K is called a
bilinear form if, for each v ∈ V , the functions f(v, u) and f(u, v) are linear
functionals on V .

A bilinear form f is called symmetric if f(v, u) = f(u, v) for all u, v ∈ V ,
and it is called alternating if f(v, v) = 0 for all v
∈ V .

An inner product space (V, f) is nondegenerate (or nonsingular) if one (and
hence any) of the inner product matrices of f is nonsingular.

If f : V × V → K is either symmetric, alternating, or hermitian (which will
not be defined in this paper), then we call the ordered pair (V, f) an inner
product space.

Let (V, f) be an inner product space. If {v1, . . . , vn} is an ordered basis of V ,
then the inner product matrix of f relative to this basis is

A = [f (vi, vj)]

It is clear that f is completely determined by an inner product matrix, for if
u =

∑
αivi and w =

∑
βivi, then

(u,w) =
∑
i,j

αiβjf (vi, vj)

Now we can define orthogonal groups again. The orthogonal group On(F)
is the group of n×nmatrices A over F that preserve a non-degenerate symmetric
bilinear form, i.e., ATA = In. Formally,

On(F) = {A ∈ GLn(F) | ATA = In}.
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