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Introduction

The Central Question

What odd primes p can be expressed in the form x2 + ny2 for positive integers n and
integers x , y?
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n = 1

We first consider the canonical example of n = 1 for p = x2 + y2 where x and y are
integers and p is an odd prime.

Fermat’s Two Squares Theorem

For an odd prime p, we have

p ≡ 1 (mod 4) ⇐⇒ p = x2 + y2 (x , y ∈ Z).

Note that the quadratic residues in modulo 4 are 0, 1. Since p can be written as a sum
of two squares, it follows that p ≡ 0, 1, 2 (mod 4). Since p is an odd prime, we must
have

p = x2 + y2 =⇒ p ≡ 1 (mod 4). (1)

The converse is true as well, albeit much harder to prove. We’ll show it in a two-step
process.

Sounak Bagchi



n = 1

Descent

If p | a2 + b2 for gcd(a, b) = 1, then p can be written as a sum of two squares.

Reciprocity

If p ≡ 1 (mod 4), then p | a2 + b2 with gcd(a, b) = 1.

Combining these two steps, along with (1), gives the proof of Fermat’s Two Squares
Theorem. (The proofs are quite instructive, and can be found in my paper.)
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Other Examples

Euler used a similar method to tackle the cases of n = 2 and n = 3. He found that

p ≡ 1, 3 (mod 8) ⇐⇒ p = x2 + 2y2 (x , y ∈ Z)

p ≡ 1 (mod 3) or p = 3 ⇐⇒ p = x2 + 3y2 (x , y ∈ Z)

In particular, the Descent steps that he used were:

If p | x2 + 2y2, gcd(x , y) = 1 then p is of the form a2 + 2b2 for a, b ∈ Z
If p | x2 + 3y2, gcd(x , y) = 1 then p is of the form a2 + 3b2 for a, b ∈ Z

The Reciprocity steps that he used were:

If p ≡ 1, 3 (mod 8), then p | x2 + 2y2, gcd(x , y) = 1
If p ≡ 1 (mod 3), then p | x2 + 3y2, gcd(x , y) = 1
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Are we done? No!

The natural question to ask is: does this easily generalize for all n? If it did, this
presentation would be much shorter. Unfortunately, I’m not done yet, so we’ll have to
show that this doesn’t generalize.

The problem that arises is that the Descent conjecture just isn’t true for general n.

Generalized Descent Conjecture

If p | x2 + ny2 with gcd(x , y) = 1, then p is of the form a2 + nb2 for a, b ∈ Z.

Consider the case for n = 5:

If p | x2 + 5y2, gcd(x , y) = 1 then p is of the form a2 + 5b2 for a, b ∈ Z

Taking x = 1 and y = 2, note that 3 | 12 + 5 · 22 = 21. However, 3 cannot be written
in the form of a2 + 5b2 for integers a, b.
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Generalizing

As it turns out, to fix this ”Descent” step, we will need more advanced tools, namely
Lagrange’s Theorem on binary quadratic forms, which we’ll cover later.

For now, let’s focus on perfecting the Reciprocity Step. We essentially want a set of
residues a1, a2, . . . so that the following statement holds:

p ≡ a1, a2, . . . (mod n) ⇐⇒ p | x2 + ny2, gcd(x , y) = 1

This is rather easily generalizable. Define the standard Legendre Symbol
(

a
p

)
to be

(
a

p

)
=


0 p | a
1 p ∤ a and a is a quadratic residue modulo p

−1 p ∤ a and a is a quadratic nonresidue modulo p
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Generalizing

General Reciprocity

For n > 0 and odd primes p ∤ n, we have

p | x2 + ny2, gcd(x , y) = 1 ⇐⇒
(
−n

p

)
= 1.

Proof: The forward direction is fairly elementary. Note that

x2 + ny2 ≡ 0 (mod p) ⇐⇒ −n ≡ x2

y2
≡

(
x

y

)2

(mod p).

This is legal since y ̸≡ 0 (mod p), as otherwise x ≡ 0 (mod p) and gcd(x , y) ̸= 1. So,
−n is a square modulo p, hence the forward direction is proved.

Sounak Bagchi



Generalizing

For the backwards direction, write

−n ≡ a2 (mod p).

Thus, we must find a solution (x , y) in modulo p such that

x2 − a2y2 ≡ 0 (mod p) ⇐⇒ (x − ay)(x + ay) ≡ 0 (mod p),

where x , y ̸≡ 0 (mod p). Then, it suffices to fix x = 1 and choose y to be the inverse
of a modulo p, though many other solutions exist, of course.

Both directions have been proved, hence we’re done. ■
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Quadratic Forms

Lagrange first introduced the concept of Quadratic Forms in two variables

f (x , y) = ax2 + bxy + cy2, a, b, c ∈ Z

Along with quadratic forms, Lagrange introduced discriminants, reduced forms, and
equivalence.

As it turns out, Lagrange’s Theory on reduced forms gives us a solution for the
Descent Step looking for. Then, along with the Reciprocity Step, this will give the
answer to our central question for some cases n.

For the sake of time, we won’t introduce definitions relating to binary quadratic forms.
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Quadratic Forms

Equivalence

Two quadratic forms f (x , y) and g(x , y) are equivalent if there are integers p, q, r , s
for which

f (x , y) = g(px + qy , rx + sy) ps − qr = ±1.

If ps − qr = 1, then f and g are properly equivalent, and if ps − qr = −1, then f and
g are improperly equivalent.

There is a relationship between proper representation and proper equivalence, that we
uncover in the next lemma.

Lemma 2

A form f (x , y) properly represents an integer m if and only if f (x , y) = ax2+ bxy + cy2

is properly equivalent to a quadratic form g(x , y) = mx2 + b′xy + c ′y2.
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Quadratic Forms

Lemma 3

Let D ≡ 0, 1 (mod 4) be an integer and let m be an odd integer relatively prime to D.
Then m is properly represented by a primitive form with discriminant D if and only if
D is a quadratic residue modulo m.

Corollary 1

Let n be an integer and p be an odd prime that does not divide n. Then(
−n

p

)
= 1 ⇐⇒ p is represented by a primitive form with discriminant -4n.

Proof. This is a result of Lemma 2 along with basic properties of the Legendre

Symbol, as
(
−4n
p

)
=

(
−n
p

)
. Since p being represented by a primitive form with

discriminant −4n is equivalent to
(
−4n

p

)
= 1, the result follows. ■
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Reduced Forms

We can do this using the next type of quadratic forms:

Reduced Quadratic Forms

A primitive positive definite form f (x , y) = ax2 + bxy + cy2 (i.e. f (x , y) > 0 for all
(x , y) ̸= (0, 0)) is said to be reduced if

|b| ≤ a ≤ c , and b ≥ 0 if either |b| = a or a = c .

Corollary 2

The quadratic form f (x , y) = x2 + ny2 is always reduced.

Proof: Check! ■
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Reduced Forms

Theorem 1

Every primitive positive definite quadratic form is properly equivalent to a unique
reduced one.

To demonstrate the use of this theorem, consider the primitive positive definite forms
f (x , y) = 3x2 + 2xy + 5y2 and g(x , y) = 3x2 − 2xy + 5y2. These forms are obviously
equivalent since f (x , y) = g(x ,−y), and moreover they are both reduced. So,
Theorem 1 implies that these forms are not properly equivalent.

On the other hand, consider f (x , y) = 2x2+2xy +3y2 and g(x , y) = 2x2− 2xy +3y2.
Note that only f (x , y) = 2x2 + 2xy + 3y2 is reduced, since for both f and g , a = |b|.
Hence, using Theorem 1, it follows that f and g are properly equivalent to each other.
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Class Number

Class Number

Let h(D), the class number, denote the number of equivalence classes of primitive
positive definite forms with discriminant D, with the equivalence relation being proper
equivalence among quadratic forms.

Corollary 3

h(D) counts the number of reduced forms of discriminant D, and is finite.

Proof: This is true because of Theorem 1 - the finiteness part can be proved by
bounding the coefficients of the quadratic form by some expression in D. ■
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Class Number Table

Table 1: Reduced Forms for Certain Discriminants D.

D h(D) Reduced Forms of Discriminant D

−4 1 x2 + y2

−8 1 x2 + 2y2

−12 1 x2 + 3y2

−20 2 x2 + 5y2, 2x2 + 2xy + 3y2

−28 1 x2 + 7y2

−56 4 x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2

−108 3 x2 + 27y2, 4x2 ± 2xy + 7y2

−256 4 x2 + 64y2, 4x2 + 4xy + 17y2, 5x2 ± 2xy + 13y2
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Class number

As can be seen in the table above, for the values n = 1, 2, 3, the quadratic forms
x2 + y2, x2 + 2y2, x2 + 3y2 are the only reduced forms with discriminant −4n. Hence,
by using quadratic reciprocity, we can immediately find when the values (−1/p),
(−2/p), (−3/p) are equal to 1, and from there we can determine what primes are
represented as x2 + ny2.

However, this only works because h(−4n) = 1 for the values n = 1, 2, 3, 7, as the only
reduced form is x2 + ny2 in these cases.

Theorem 2

If n is a positive integer, then

h(−4n) = 1 ⇐⇒ n = 1, 2, 3, 4, or 7
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Genus Theory

Corollary 1

Let n be an integer and p be an odd prime that does not divide n. Then(
−n

p

)
= 1 ⇐⇒ p is represented by a primitive form with discriminant -4n.

As an example, for n = 5, we have

p ≡ 1, 3, 7, 9 (mod 20) ⇐⇒
(
−5

p

)
= 1 ⇐⇒ p = x2+5y2 or p = 2x2+2xy+3y2.

We need to find another way to separate these two forms. This is precisely where
genus theory comes into play. Consider our example with n = 5 as above. Note that

x2 + 5y2 represents 1, 9 (mod 20)

2x2 + 2xy + 3y2 represents 3, 7 (mod 20)
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Genus

We say that two primitive positive definite forms, both with discriminant D, are part of
the same genus if they represent the same values modulo D.

So, for example, in the above case for D = −56, x2 + 14y2 and 2x2 + 7y2 would
belong to the same genus, and in total there are two genera.

Now, consider the case n = 5 again. Using what we know about genera, we can
conclude that

p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

p = 2x2 + 2xy + 3y2 ⇐⇒ p ≡ 3, 7 (mod 20)

The top line, indeed, does give a full class of solutions for n = 5, as expected.
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Genus Theory

This is still not entirely sufficient since each genus can have more than one class of
forms. In fact, it’s not known how many such n exist where each genus has one class.

While we won’t go over the proof of a final result, as it requires heavy machinery such
as class field theory that takes time to establish, genus theory is one of the ways in
which we can effectively deal with this problem. Once again, for more elaboration (and
a final solution), take a look at my paper.
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Special Conjectures

Euler made conjectures for the special cases n = 27 and n = 64, which were proved
using cubic reciprocity and biquadratic reciprocity. For the sake of time we won’t prove
them here (a proof can be found in my paper), but they are below:

Euler’s Conjecture for n = 27

Let p be a prime in Z. Then p = x2 + 27y2 for x , y ∈ Z if and only if p ≡ 1 (mod 3)
and 2 is a cubic residue modulo p.

Euler’s Conjecture for n = 64

If π = a+ bi is a primary prime in Z[i ], then(
2

π

)
4

= iab/2.

If p is prime, then p = x2 + 64y2 if and only if p ≡ 1 (mod 4) and 2 is a
biquadratic residue modulo p.
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For all n

The Main Result

Let n > 0 be an integer. Then there is an irreducible monic polynomial fn(x) ∈ Z[x ] of
degree h(−4n) such that, if an odd prime p divides neither n nor the discriminant of
fn(x), then

p = x2 + ny2 ⇐⇒

{
(−n/p) = 1 and fn(x) ≡ 0 (mod p)

has an integer solution

Furthermore, fn(x) may be taken to be the minimal polynomial of a real algebraic
integer α for which L = K (α) is the Hilbert Class Field of K = Q(

√
−n). Finally, if

fn(x) is any monic integer polynomial of degree h(−4n) for which the above
equivalence holds, then fn(x) is irreducible over Z and is the minimal polynomial of a
primitive element of L.
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