
IRPW - Prime Heuristics and its Implications on RSA
Cryptography

Sitar Eswar

July 15, 2024

Abstract

In this paper, we investigate prime heuristics and their applicability in compu-
tational number theory and cryptographic algorithms, specifically in RSA cryptog-
raphy. We conducted a comparison between prime heuristics, taking into account
time effeciency, computational effeciency, and overall performance in the number of
primes that they each produce. We aim to result in a method by which generating
primes is far easier than before, so that we can optimize RSA encryption and de-
cryption processes. This paper will hopefully aid in finding a new method by which
security and speed in cryptography may be superior to what it was before.

1 Introduction

Over thousands of years, heuristics that determine whether a number is prime have
sparked the curiosity of countless mathematicians. In the third century BC, Greek Math-
ematician Erastothenes created one of the most widely known heuristics that we know
today – the sieve of Eratosthenes [11]. Inspired by the abilities of Erastosthenes, Pierre
de Fermat introduced Fermat’s Little Theorem, a method to test for various prime num-
bers using modular exponentiation [1]. Later, in the 17th Century, Marin Mersenne
expounded on Fermats work by creating a specific class of numbers called ”Mersenne
Numbers”, with the property that they can be represented as 2n − 1, for some positive
integer n [1].

Following this, in the early 1930’s, Lucas and Lehmer collated the Lucas-Lehmer prime
test, which was essential in the verification of Mersenne primes [10]. The Lucas-Lehmer
prime test was the first check that used sequences to check if a pseudoprime is indeed
prime. The later part of the 20th century saw further development with probabalistical
methods, including the Miller-Rabin/Solovay-Strassen test, which introduced randomiza-
tion to prime testing. Most recently, in the 1980’s, Selfridge, Pomerance and Wagstaff
came up with the PSW Selfridge prime check, which was revolutionary, as there is no
room for error in their test -[4]. Over time, these heuristics have evolved from simple
guess and check, to complicated functions and structured algorithms. Considering the
vast improvement in our ability to find prime heuristics, it is clear that much more can
be done.

Prime heuristics play an important role in modern cryptography, image compression
algorithms useful in radiology, financial modeling, game theory, combinatorics, AI, Ma-
chine Learning, and much more. However, the scope of this research paper is largely on

1



the implications of prime heuristics in the security of encrypted messages (RSA Cryp-
tography). Throughout this paper, we will explore the abilities of prime heuristics when
selecting large prime numbers to secure cryptographic keys. We will also compare several
popular primality tests to identify the most computationally efficient, time-effective, and
accurate prime heuristic. Our goal in this project is to find an optimal heuristic that will
enhance the security of RSA cryptography and aid in other fields of mathematics that
require the use of prime numbers.

Roadmap: The remainder of this paper is organized as follows. In Section 2, we show
how prime-checking heuristics play a crucial role in computational number theory, offering
various methods to determine the primality of numbers efficiently. These tests range from
historical methods like the Fermat test to more modern approaches such as the Miller-
Rabin and Lucas-Lehmer tests. Each heuristic has its strengths and weaknesses, with
some being highly efficient but having high numbers of false positives, while others are
more reliable but computationally intensive.

In section 3, we evaluate prime number density using the Prime Number Theorem and
the second Hardy-Littlewood conjecture. We evaluate various prime computation meth-
ods (Mersenne, Fermat, Selfridge, Miller-Rabin, Proth) for their application in number
theory and RSA cryptography. We also use prime density graphs and test prime gaps
at different bit scales to have a rough sampling of the number of primes around 256 bits
(RSA private keys have 256-1024 bit primes). we also assess heuristics on prime genera-
tion, time efficiency, and false positives. Findings show Miller-Rabin as the most effective,
with Fermat as a close second. Combining both could optimize RSA encryption.

Finally, in section 4, we discuss the findings and conclusions of this paper, analyzing
the advantages of prime heuristics in RSA cryptography.

2 Background

2.1 Prime Number Heuristics and Checks

2.1.1 Selfridge, Pomerance, Wagstaff Heuristic

One of the most intriguing prime heuristics is the Selfridge Prime Heuristic, a conjecture
that combines elements of the Fermat and Fibonacci tests. Proposed by John Selfridge,
this heuristic states that an odd number p is prime if it meets certain modular constraints:

p ≡ ±2 mod 5,

2p−1 ≡ 1 mod p,

fp+1 ≡ 0 mod p,

where fk is the k’th Fibonacci Number.

This heuristic has yet to be provided with a counterexample. However, we must note
that the Selfridge Prime conjecture is very specific upon the value of p. We would not
be able to specifically discover a new prime, nor factor large composite numbers. The

2



Heuristics: Summary: Pros and Cons:

PSW-Selfridge - 1980 If p is an odd number, p is
prime if the following hold:

p ≡ ±2 mod 5

2p−1 ≡ 1 mod p

fp+1 ≡ 0 mod p

where fn denotes the nth
fibonacci number.

Pros: This prime test does not fail, with a
False-Positive rate of 0 (up until 100,000).

Cons: The PSW-Selfridge primality heuristic is
highly specific and serves primarily as a prime
check rather than a general heuristic. It is also
the least time efficient of all the heuristics.

Fermat - Mid 1600s The Fermat Primality test
is a probabalistic algorithm
that checks if a number n
is prime by verifying that
an−1 ≡ 1 mod n. It is effi-
cient, but it incorrectly iden-
tifies Carmichael numbers as
prime as well.

Pros: The Fermat test correctly identifies all
primes. The time required to
perform the computations is very effecient, tak-
ing only 1 second to print primes from 1 through
100,000.

Cons: The Fermat test considers Carmichael
numbers to be prime, such as 341 and 9.

Proth - 1878 Proth’s primality test is used
to determine whether a Proth
number is prime. A Proth
number is of the form k·2n+1,
where k is an odd integer and
2n > k. The test states that
a Proth number p is prime if
there exists an integer a such
that a(p−1)/2 ≡ −1 (mod p).

Pros: The Proth primality test is very time-
efficient, taking only 0.9 seconds to compute all
Proth primes from 1 through 100,000.

Cons: The Proth primality test has a high
False-Positive rate. Does not produce as many
primes as Fermat, Miller-Rabin, and PSW-
Selfridge. It is only applicable to proth num-
bers.

Lucas Lehmer
Mersenne Check
- 1930

The Lucas-Lehmer Prime
check is a method to verify
whether a Mersenne Number,
of the form M = 2n − 1,
is prime. The check uses
a sequence and modular
arithmetic to prove that M is
prime.

Pros: The prime check does not fail. There is
a lot of leniency in selecting the function for the
prime check.

Cons: The prime check is computationally in-
effective. It is not time-effecient.

Miller-Rabin - 1980 The Miller Rabin Test checks
whether a specific property of
primes holds for the number
that is being tested. This
test seperates a number n into
2a ∗ b + 1, where a ≥ 1, and
b is odd. After a series of
steps, one can say whether n
is prime or composite.

Pros: Is very reliable in identifying primes and
composites, if given sufficient number of wit-
nesses. It is almost as reliable as the Fermat
test.

Cons: The prime test largely depends on what
the witness (number generated at random) is..
i.e, 9 may be marked as prime if 8 is a witness.
The time necessary to perform the computations
is higher than Fermats.

Lucas-Lehmer-Riesel
- Early 21st Century

The Lucas-Lehmer-Riesel pri-
mality check is a method to
verify whether a certain num-
ber of the form M = k∗2n−1
is prime. This check, like the
Lucas-Lehmer Check, uses a
sequence to prove the primal-
ity of M .

Pros: The primality check does not fail in iden-
tifying whether the testing number is prime or
composite.

Cons: It is computationally ineffective, amd
similar to the Lucas-Lehmer Test, it is not time-
efficient. The time required to select a starting
value s0 of the sequence is also ineffecient.

Table 1: Overview of Prime Number Heuristics

3



conjecture is purely a method by which we can check whether a number that is ± 2 mod
5 is prime. Hence, we can do better.

2.1.2 Fermat Primality Test

In comparison to the Selfridge Primality test (a heuristic), the Fermat Primality test is
a probabilistic (composite) test. A probabilistic test is a primality test that outputs a
”possible prime”, where the number that gets outputted has a high probability of being
prime. Probabilistic tests are more rigorous than the prime heuristics that are discussed
in the sense that they provide provable bounds on the probability of being misinterpreted
as a prime (when the number is actually composite). However, one may reduce the error
rate by inputting many different values of ”a” from a sample set, as shown below.

The Fermat Primality test goes something like this:
Given an integer n, choose some integer a coprime to n and calculate an−1 modulo n.

If the result is different from 1, then n is composite. If it is 1, then n may be prime.
It is key to note that if it is 1 mod n, n may be prime. A common counterexample is

the ”pseudoprime”, n = 341, with a = 2. 2340 ≡ 1 mod 341, but 341 is not prime (11 *
31).

On the other hand, Carmichael Numbers have the property that an−1 ≡ 1 mod n,
for every a that is coprime to n. Aside from Carmichael Numbers and the vast amount
of pseudoprimes, the Fermat test is used as a rapid test in RSA cryptography, especially
when one is choosing the large prime numbers to multiply.

2.1.3 Miller-Rabin Primality Test

Similar to the Fermat primality Test, the Miller Rabin test checks whether a specific
property of primes holds for the number that is being tested. Let us go into the details
of the Miller-Rabin Test.

Starting off, we consider an odd integer n > 1, and we seperate it into n = 2a ∗ b+ 1,
where a ≥ 1, and b is odd. Example: If n = 17, a = 4, b = 1.

With this construction of n, we can implement a Miller Rabin test, as follows:

• We pick a random y ∈ {1, 2, . . . , n− 1}.

• If yb ≡ ±1 mod n, then n is prime.

• If y2
r∗b ≡ −1 mod n, where 0 ≤ r ≤ a− 1, n is prime

• If this is also false, then n is composite.

However, it is key to note that n is not guaranteed to be prime, and the Miller-Rabin
Primality test is a ”strong probable prime test”.

2.1.4 Proth Primes

Proth’s Primality Test is designed to check whether a specific property of Proth numbers
holds for the number that is being tested. Let’s go into the details of Proth’s Primality
Test. Let us start by considering a Proth number, which is an odd integer of the form

4



n = k ∗ 2m + 1, where k is an odd integer and 2m > k. Example: If n = 17, it can be
expressed as 1 ∗ 24 + 1 with k = 1 and m = 4.

With this construction of nn, we can implement Proth’s Primality Test, beginning by
picking a random integer a such that 1 ≤ a < n. Next, we calculate a(n−1)/2 mod n. If
a(n−1)/2 ≡ −1 mod n, n is prime. If this condition is not met, it is composite. However,
it is important to note that while this test is quite efficient for Proth numbers, it is specif-
ically tailored to this form and cannot be applied to other forms of numbers. However,
note that the rate of False Positives for proth numbers is very high, and although it is a
deterministic test, it is not very effective.

2.1.5 Mersenne Primes

Mersenne Primes are a special class of prime numbers in the form of M = 2n − 1, where
n itself is a prime number. Example: n = 3, thus M = 23 − 1 = 7, a prime number.
However, not all inputs of n result in M being prime. One given example is n = 11,
and M = 211− 1 = 2047, which is indeed not prime. However, in order to verify that a
Mersenne number is prime, we can use the Lucas-Lehmer primality check.

2.1.6 Lucas-Lehmer Test

The Lucas Lehmer Primality test is a prime-check to verify whether a Mersenne pseudo-
prime is prime. The Lucas Lehmer Primality Test begins by constructing a sequence, si,
such that s0 = 4, and si = (s2i−1 − 2), for subsequent si’s.

The first few values of the sequences are; 4, 14, 194, 17634, . . .
According to the Lucas Lehmer Test, M is prime if and only if sn−2 is congruent to 0

mod M. However, the starting value of si does not necessarily have to be 4. For instance,
starting values of 10 and 52 have been proved to be able to confirm the primality of
Mersenne Primes. The Lucas Lehmer test is one of the only primality checks that have
actually been proved. However, due to the large numbers involved, it is computationally
ineffective, lowering time effeciency.

2.1.7 Lucas-Lehmer-Riesel Test

Similar to the Lucas-Lehmer Test, the Lucas-Lehmer-Riesel (LLR) test is used for number
of the form M = k · 2n− 1, where k is an odd positive integer, and n is a positive integer.
Keep in mind that k < 2n. The Lucas-Lehmer-Riesel test proceeds as follows: We
construct a sequence si such that si = (s2i−1 − 2). However, the values of k depends on
our value of s0.

Case 1: k ≡ 1 or 5 mod 6. It is clear that if k ≡ 1 mod 6 and n is even, or k ≡ 5
mod 6 and n is odd, M is divisible by 3.

I will break this down: k = 6m + 1 for some integer m. For an even n, 2n ≡ 1
mod 3, as 22 ≡ 1 mod 3. We also know that k = 1 mod 3. Thus, M = 1 mod 3 ∗ 1
mod 3−1 = 1∗1−1 = 0. Thus, M is divisible by 3 if k = 1 mod 6. Now, if k ≡ 6m+5,
for some integer m, and n is odd, then 2n ≡ 2 mod 3, as 21, 23, 25 ... ≡ 2 mod 3. Also
note k = 2 mod 3. Thus, M = 2 mod 3 ∗ 2 mod 3 − 1 = 4 mod 3 − 1 ≡ 0 mod 3.
Thus, if k ≡ 5 mod 6, and n is odd, then M is divisible by 3.

However, if k ≡ 1 mod 6 and n is odd, or k ≡ 5 mod 6 and n is even, M ≡ 7
mod 24. If this is the case, we take s0 = (2 +

√
3)k + (2−

√
3)k.

5



Generate a random n-bit odd number

Is number divisible with first few primes?

Perform Rabin Miller primality test

Assume number is prime

No

All iterations passed

If it is, we
regenerate

If any iteration
fails, we
regenerate

Figure 1: This figure shows the process by which key-holders choose their private key

Case 2: k is a multiple of 3. It is known that if k = 3 and n ≡ 0 or 3 (mod 4), we can
take s0 = 5778. The Lucas Lehmer Riesel test is primarily used as a check to identify
whether numbers of the form M = k ∗ 2n − 1 are prime. However, similar to the Lucas
Lehmer test, the LLR test is not computaionally effective.

2.2 Prime Numbers and Public Key Cryptography

There are many forms of public key cryptography including RSA [6], Elliptic curve cryp-
tography [2], and Lattice-based cryptography [9]. Here, we focus on RSA cryptography
and the implications of prime heuristics on its security. The key generation process for
RSA cryptography begins by choosing two random primes numbers, denoted p and q.
Keep in mind that p and q are kept confidential. To optimize the robust security of a
private key, the prime numbers should be sufficiently large.

We compute n as a product of p and q, i.e. n = p · q. The value n forms a part of

6



the public key. Following this, we calculate λn using Carmichael’s totient function. Since
n = pq, λn can be determined as λn = lcm (λp, λq). From Carmichael’s totient function*,
we derive that λp = ϕp, where ϕp = p − 1 due to Euler’s Totient Theorem. Similarly,
λq = q − 1 follows the same reasoning. Thus, λn = lcm (p − 1, q − 1) is computed and
maintained as part of the private key. To show how the private key is usually computed
in RSA cryptography, I have drawn a flowchart (Figure 1) from a geeksforgeeks site [3].

Next, we choose an integer e (commonly 216 + 1), such that 0 ≤ e ≤ λn and e is
coprime to λn. The value e is also released as part of the public key. After this, we
determine a value d such that d is the modular multiplicative inverse of e, where d ≡ e−1

mod λn. Unlike e, we keep d confidential, as a component of the private key.

2.2.1 RSA Message Exchange Scenario

This is a scenario illustrating how Bob encrypts a message and transmits it to Alice using
RSA cryptography: First, Alice must generate her public and private keys. She chooses
two sufficiently large prime numbers, (let us say 61 and 53 for simplicity), and multiplies
them. n = 61 · 53 = 3233. Following this, she computes λn, which, by Carmichael’s
totient function, is equal to lcm(p− 1, q − 1) = lcm(60, 52) = 780.

Next, she chooses an arbitrary e such that e is coprime to λn (As said before, e is
normally 216+1, but for simplicity, let us say Alice picks the prime number 17). After this,
Alice computes d, the modular multiplicative inverse of e, such that d ≡ e−1 mod λn.
Now, using the extended Euclidean Algorithm Theorem*, we can calculate the value of
d = 413. Alice’s public key is (17,3233), and her private key is (413, 61, 53, 780).

Bob wants to send an encrypted message to Alice. Bob first needs to convert his
message into a numerical value, let’s say M = 11. Bob encrypts M using Alice’s public
key, 17 and 3233. Bob calculates the ciphertext, which is C ≡ M e mod n. Next, he
performs modular exponentiation to find that C ≡ 1117 mod 3233 ≡ 3061.

After this, Bob sends the ciphertext to Alice. Alice recieves the ciphertext from
Bob and decrypts it using her private key, d. She calculates M as M ≡ Cd mod n.
This means that M ≡ 3061413 mod 3233 ≡ 11, as desired. After Alice has recieved
M successfully, she interprets M back into the original message Bob encrypted. This
process makes sure that only Alice, with her private key, can decrypt the message that
Bob encrypted with her private key, which ensures safety in their communication.

2.3 Selected Attacks on RSA-based Cryptography

Despite various attacks and vulnerabilities that have been discovered over the years, none
have proven to be devastating. Most attacks highlight the improper use of RSA, such
as using low values of e, the exponent, or common moduli across different users. In the
following subsections, we describe some attacks that have been used against RSA.

2.3.1 Hastad’s Broadcast Attack

In 1988, Hastad presented Hastad’s Broadcast Attack, which involves using small private
exponents, which can be exploited to recover the private key efficiently [13]. Let us
represent this with the Alice and Bob scenario.

Bob wants to send the same encrypted message M , to multiple recipients (multiple
Alice’s), called A1, A2, ...Ak. Each recipient has a different RSA public key, say, (ni, ei),
where ni is the product of the two large primes, and ei is the exponent. Bob encrypts

7



the message M using each recipients public key, producing the Ciphertext’s, Ci, for every
recipient Ai (i.e., Ci ≡ M ei mod ni).

Now, an attacker, Marvin, intercepts the Ciphertexts C1, C2, ...Ck, that is sent to
the recipients. The public exponents are relatively small and common. They are most
commonly 3, or 216+1 = 65537. They are ideally the same for all the Ai’s. It is also safe
to assume that the moduli ni are different and pairwise coprime. We also know that M is
smaller than each of the ni’s. Now, we can apply the Chinese Remainder Theorem. Since
the moduli are all pairwise coprime, Marvin can use CRT to combine the Ciphertexts
that he intercepted. His result is something like this:

C ≡ M e mod n1n2n3...nk

Note that C is a number such that C ≡ Ci mod ni for every i. We know that
M < n1,M < n2...M < nk, so we can find M e < n1n2n3...nk. This implies that M e is in
the range of n1n2...nk. With this, Marvin can compute the e-th root of C find M .

Example with e = 3: Let us assume tha e = 3 and Bob sends the message M with
different moduli n1, n2, n3. Thus, we can say that

1. C1 ≡ M3 mod n1

2. C2 ≡ M3 mod n2

3. C3 ≡ M3 mod n3

Marvin intercepts C1, C2, and C3, and constructs a combined congruence using CRT
as shown above. He results with C ≡ M3 mod n1n2n3. Since M < min (n1n2n3), we
know that M3 < n1n2n3. Thus, M3 is less than the product of the moduli. Now all
Marvin needs to do is cube root C to find M .

2.3.2 Attacks based on weak PRNG Seeds

In 1996, Goldberg and Wagner proposed two attacks on Netscape’s implementation of
RSA public key encryption schemes that uses detailed knowledge of its internals to predict
the encryption key. When a connection is established, an unencrypted challenge value is
sent from the Netscape client to the secure server, which an attacker can intercept. While
Unix browsers are more secure due to better randomization, they are still vulnerable.

The first attack assumes the adversary has access to the Unix system. The attacker
is able to use the ps command to find the process ID (pid) and parent process ID (ppid)
values. By using Ethernet sniffing tools, the attacker can estimate the time of day when
the challenge was sent, which will narrow down the possible seed values used for generating
the encryption key. Since the time is in seconds and the pid, and ppid known, only the
microseconds value remains unknown. This means there are only one million possible
values. The attacker then performs a brute force attack by generating and testing each
possible seed to find the correct one that matches the intercepted challenge value. This
process allows the attacker to recover the secret encryption key efficiently [12].

The second attack assumes the attacker does not have an account on the targeted
UNIX machine, which means that the process ID (pid) and parent process ID (ppid) are
unknown. However, Goldberg and Wagner propose that the values are predictable. The
ppid is often 1 or slightly smaller than the pid, and process IDs can be inferred from other
applications like sendmail [12]. Using these characteristics, the attacker can approximate
the pid and the ppid. This allows the attacker to perform a more efficient brute force
attack by only trying keys generated from plausible seed values. With this, it is possible
for an attacker to break Netscape’s encryption in minutes.

8



2.3.3 RSA Blinding Attack

Boneh describes the RSA blinding attack, which allows Marvin, the adversary, to obtain
a valid signature on a chosen message by transforming the message before requesting
the signature. I will show the process of the attack: Alice, as before, has a private key,
(λn, d), and a public key, (n, e). Marvin, the attacker, wants Alice’s signature to be on
a message, M . Alice refuses to sign M . Now, in order to blind Alice and transfigure the
message, Marvin selects a random r ∈ Zn, and computes

M ′ ≡ reM mod n.

Once M ′ is found, Marvin asks Alice to sign M ′. Alice agrees, and provides Marvin with
the signature S. Note that

S ≡ (M ′)d mod n.

Next, Marvin computes
S ′ ≡ S ∗ r−1 mod n

which is Alice’s signature on M . Now we can exponentiate both sides of the equation by
e, and result in

(S ′)e = Se ∗ r−e ≡ M mod n.

Thus, Marvin successfully obtains Alice’s signature on M without her realizing it.

Example with Key Generation: Let’s say Alice’s two prime numbers are 3 and 11.
n = 3 ∗ 11 = 33. λn = lcm (p− 1, q − 1) = lcm (2, 10) = 10. Next, we choose a public
exponent such that lcm(e, 10) = 1. Let us say e = 3. Next, we need to choose the private
exponent d such that e ∗ d ≡ 1 mod λn. 3 ∗ d ≡ 1 mod 10, so d = 7. Hence, alice’s
private key is 7, 10, and her public key is 3, 33. Now, to the steps of the RSA blinding
attack. Let us say that the message M that Marvin wants Alice to sign is 5. Marvin
needs to select a random r to compute a new message. Let us say that r = 2. We know
that e = 3, so M ′ ≡ 5∗23 mod 33 = 7. Alice now signs M ′. She provides Marvin with a
signature S = 28, derived from S ≡ (M ′)d mod n. Next, Marvin computes S ′ ≡ S ∗ r−1

mod n, which is Alice’s signature on M . S ′ = 28 ∗ 1/2 mod 33 = 14 mod 33. After
exponentiating, we get that (14)3 ≡ 5 mod 33.

2.3.4 Opportunistic Mining of “P’s” and “Q’s”

In 2012, Heninger et al. [14] delved into vulnerabilities of private keys due to incompetent
random number generators. They harvested public keys by scanning the Internet for TLS
and SSH services and were able to identify the private keys through a gcd attack. The
team recognized consistencies in the random number generators, (urandom), and were
able to calculate the gcd between two moduli, which led them to identifying the private
keys. The method by which they efficiently computed the GCD between moduli is listed
below. They note that 5.57 percent of TLS hosts, and 9.6 percent of SSH hosts use the
same private keys as other hosts, in an apparently vulnerable manner (they were able to
compute 64000 private keys of the TLS hosts, and 108000 private keys of the SSH hosts).

The paper leverages a method proposed by Bernstein et al. [5] to effeciently compute
the GCD between several Moduli in parallel. By finding common factors between different
RSA moduli, the corresponding factor can be identified as well, breaking the private key.
As shown by Bernstein in his paper, we can use a product tree to calculate the gcd
between moduli.

9



First, we construct a product tree by multiply the different moduli P = n1n2n3...nk.
After computing P , we construct a remainder tree, to find the remainders of P mod n2

i ,
for each ni. Let us denote qi to qi = P mod n2

i . The final output for each modulus ni

is the gcd of ni and
qi
ni
. The moduli that result in a gcd ̸= 1 are candidates for having

shared primes. The gcd that results is one of the prime factors.
However, we should note that in some cases, the GCD might be the modulus itself.

This happens when a modulus shares both of its prime factors with two other distinct
moduli. When the gcd gives an output of the moduli, note that we do not know what
the gcd of the moduli are.

3 Empirical Evaluation

In this section, we will delve into the evaluation of prime number density in relation
to two fundamental theorems in number theory: the Prime Number Theorem and the
second Hardy-Littlewood conjecture. The Prime Number Theorem [15] is an asymptotic
distribution of prime numbers, stating that the number of primes less than a given number
x is approximately

π(x) ≈ x

lnx

where π(x) denotes the number of primes less than or equal to x. This theorem serves as
a foundation for graphing the density of prime numbers up to large limits.

The second Hardy-Littlewood conjecture [16] also deals with the approximate number
of primes in an interval, stating that for sufficiently large x and y, the following inequality
holds:

π(x+ y)− π(x) ≤ π(y)

.
Here, we aim to empirically approximate the density of prime numbers for 32-bit,

64-bit, 128-bit, and 256-bit numbers. By calculating the approximate density of primes
within these bit ranges, we will assess the consistency of our findings with the predictions
made by the Prime Number Theorem and the second Hardy-Littlewood Conjecture. This
enables us to analyze the effort required to brute-force an RSA private key and explore
methods for implementing prime heuristics to reduce the computational work involved in
such attempts.

3.1 Efficacy of Prime Heuristics

We shall begin by assessing the efficacy of various prime computation methods and their
practical applications in number theory, RSA cryptography, and computational mathe-
matics. Let us start by exploring Prime density, to give us a model to evaluate the accu-
racy of a prime heuristic. Figure 2 showcases a prime density graph, up to 100,000,000.

To estimate the gaps between consecutive primes with much larger numbers, we gen-
erated random odd numbers at the 255-256 bit scale and tested their primality using the
Miller-Rabin and Fermat primality tests. We generate random odd numbers, check their
primality, and incremented them by 2 if they are not prime. We also subtracted 2 to find
the largest prime number less than the random number generated. We kept track of the
number of additions required to find a prime. After executing the loop 1000 times, we
logged the total number of additions and subtractions, and added them up. Now, since

10



Figure 2: Prime Density graph displaying the density of primes up to 100,000,000

we increment by 2, we multiply the total addition by 2 and divide by 1000 to get the
approximate gap between consecutive primes. We repeat these steps for numbers that
are 32 bit, 64 bit, and 128 bit as well. Figure 6 depicts my findings.

Now, we must determine which heuristic can be most applicable in RSA cryptography.
To determine the optimal heuristic, I have graphed five different approaches (Mersenne,
Fermat, Selfridge, Miller-Rabin, and Proth) across three dimensions: the quantity of true
primes generated, their production time efficiency, and the incidence of false positives.

Figure 3 illustrates the number of primes that are produced by each Prime Heuristic.
Specifically, this graph shows that the Mersenne prime heuristic is extremely inefficient
when calculating primes in strict bounds. Additionally, it reveals that Proth’s heuristic is
ineffective for generating primes below 100,000. It is evident that Fermat, Miller-Rabin,
and Selfridge are the most effective in prime generation.

Next, we’ll delve into the time-efficiency aspect of the prime heuristics. I have repre-
sented the time required to recieve outputs from the same 5 heuristics up until 100000
in Figure 4. This figure shows the time it takes to output values in seconds. With the
PSW-selfridge test taking the longest, at 24 seconds, we do not need to consider it as a
plausible prime heuristic for computing primes at a large 128 bit scale. However, Miller-
Rabin and Fermat proved to be the most efficient, with the time only taking 4 seconds
and 1 second respectively. Note that Proth and Mersenne have high time efficiency due
to minimal outputs.

Now, we can discuss the 3rd dimension to these heuristics, the number of False-
Positives. False Positives are the numbers that are marked as Prime by the heuristics,
but are, in fact, composite. Figure 5 uses a bar graph to represent the number of False-
Positives throughout the 5 heuristics. With this bar graph, we can see that Proth has the
highest rate of False positives (with over 300 marked as prime), Fermat’s with around
150, and Mersenne with 11. However, Selfridge and Miller-Rabin do not have any false
positives. This is because the PSW-Selfridge test is an exceptionally specific primality
check (for instance, it only takes into account numbers that are ±2 mod 5. Miller-Rabin

11



Figure 3: Miller Rabin, Fermat, and Selfridge produce the most number of primes within
certain bounds

has 0 False-Positives with 20 iterations of witnesses for each number that it checks.
Combining the results from these 3 graphs, we can concur that Miller Rabin is the

most effective prime heuristic, with Fermat’s being a close second. Although Miller-Rabin
is not as time-efficient as Fermat’s, the number of False Positives is drastically smaller.
Note that both of these are due to the number of iterations of witnesses that I used.
With a smaller iteration, Miller-Rabin will be more time efficient, but it will most likely
have False-Positives. With these factors into consideration, it is understandable why RSA
cryptography uses the Miller-Rabin prime heuristic to verify if ones private key is indeed
prime. However, it is important to note that, in my research, Fermat’s proved to be more
computationally effective, so it may be beneficial to combine the works of Fermat and
Miller-Rabin to produce an optimal encryption.

3.2 Number Field Sieve’s applications in RSA Cryptography
and Factoring large prime numbers

The Number Field Sieve algorithm is currently the best known method for factoring
composite numbers with more than 100 digits [8]. There are two main variations: the
Special Number Field Sieve (SNFS) and the General Number Field Sieve (GNFS). he
SNFS can quickly factor large numbers but is limited to numbers of a special form. The
GNFS, on the other hand, can factor any composite number, although it is slightly slower
than the SNFS due to its broader applicability.

3.2.1 Special Number Field Sieves

The Special Number Field Sieve (SNFS) is an algorithm used for factoring integers of a
special form

n = re ± s

12



Figure 4: Illustration of the time required for heuristics to print prime numbers from 0
to 100000

, where r and s are relatively small integers. The SNFS is an optimized version of
the general Number Field Sieve (NFS), taking advantage of the algebraic structure of
the specific form of n. Heuristically, its complexity for factoring an integer n is of the
form [7]:

exp

(
(1 + o(1))

(
32

9
log n

)1/3

(log log n)2/3
)

= Ln

[
1

3
,

(
32

9

)1/3
]

Let us start with some definitions. First, we define two number fields; the rational
number field Q(x) and an algebraic number field Q(θ) where θ is a root of f(x). Next, we
will define a smooth relation. A smooth number is an integer that factors completely into
small prime numbers i.e. an n-smooth number is a number whose prime factors are all
less than or equal to n (This is similar to a factor base, which is the set of all primes less
than or equal to n). For example, a 7-smooth number is a number who’s prime factors
are all primes less than or equal to 7. One example of a 7-smooth number is 30, as all
the prime factors of 30 are less than 7 (2, 3, and 5). A relation is a pair (a, b) such that
a − bθ (in the algebraic number field) and a − br in the rational field are both smooth
numbers. We shall also explain what a multiplicative relation is.

First, we identify a large number of multiplicative relations among a factor base in
Z/nZ, ensuring the number of relations exceeds the number of factor base elements.
Combine these relations so that all exponents are even, forming congruences of the type

a2 ≡ b2 mod n

, which lead to factorizations of n.
To factor n, we follow these steps: We first choose an irreducible polynomial f with

integer coefficients and an integer m such that f(m) ≡ 0 (mod n). Let α be a root of
f , forming the ring Z[α]. There is a unique ring homomorphism ϕ from Z[α] to Z/nZ
mapping α to m. Next, we establish two factor bases: one in Z[α] and one in Z. The
former consists of primes in Z[α] with norms below a chosen bound Nmax, and the latter

13



Figure 5: Plot illustrates False-Positive rates between Heuristics

consists of prime integers up to a certain limit. After this, we search for pairs of integers
(a, b) such that a+bm is smooth relative to the Z factor base and a+bα is smooth relative
to the Z[α] factor base. This process involves sieving, similar to the Sieve of Eratosthenes.
For each pair, apply the ring homomorphism ϕ and the standard homomorphism from Z
to Z/nZ. We set these equal to derive a multiplicative relation among the elements in
Z/nZ.

By setting these equal, we establish a relationship among elements in Z/nZ that
involves products of primes (or prime ideals) from the respective factor bases. This
relation, when combined with others obtained through similar processes (such as sieving),
contributes to constructing congruences of the form a2 ≡ b2 (mod n) or similar, which
help in the factorization process [8].

3.2.2 General Number Field Sieves (GNFS)

The general number field sieve is one of the most efficient algorithms for factoring integers
larger than 256 bits. It is commonly known as [7]:

exp

((
64

9

) 1
3

(log n)
1
3 (log log n)

2
3

)
= Ln

[
1

3
,

(
64

9

) 1
3

]
The number field sieve generalizes the Special Number Field Sieve, which, as we know

takes only numbers of special form into consideration. However, the General Number
Field Sieve can factor any number except prime powers, but, of course, factoring a prime
power is trivial, as one can just take its roots.

The number field sieve, just like the special number field sieve, is an upgrade of the
quadratic and rational number field sieves, which look for smooth numbers of order n

1
2 .

The GNFS searches for smooth numbers that are subexponential in size, making them
more likely to be smooth and improving efficiency. To expedite the process as described,
one must perform the factorizations in number fields [8].

14



Figure 6: Average prime gap increases as bit length increases

Factorization:
To factor a number using the GNFS, two polynomials f(x) and g(x) with small

degrees and integer coefficients are selected. These polynomials must be irreducible over
the rationals and share a common root modulo n.Once the polynomials are chosen, the
algorithm works with number field rings Z[r1] and Z[r2], where r1 and r2 are roots of f
and g respectively. The goal is to find pairs of integers a and b such that the values r and
s, derived from f(a/b) and g(a/b), are smooth relative to a chosen basis of primes. This
is typically achieved through lattice sieving, requiring a large factor base for efficiency.

After gathering enough smooth pairs, Gaussian elimination is used to find products
of certain r and s that are squares simultaneously. These products are then mapped
through homomorphisms to the ring Z/nZ, allowing the final factorization of n by finding
the greatest common divisor of n and the difference between two computed squares.

3.2.3 Implementation of NFS in MSieve

MSieve is a highly optimized C library designed for integer factorization, particularly
effective for large composite integers like RSA moduli. It utilizes both the Quadratic Sieve
(QS) for numbers up to around 100 digits and the Number Field Sieve (NFS) for larger
numbers, using multiple polynomial selection, sieving strategies, parallel processing, and
mathematical optimizations (including prime heuristics) to enhance performance. In
cryptographic applications, MSieve is essential for evaluating the security of RSA keys
by efficiently factoring the product of two large prime numbers. Figure 7 displays the
time in seconds to factor a number (bit length is listed) made by multiplying two large
prime numbers.

15



Figure 7: Experiments were run using the Msieve library on a 4-CPU 2.9 Ghz Ubuntu
system. Approximately 3 mins to factor 256-bit number, but computation time rises
exponentially! (x-axis: bit length; y-axis: time, in seconds)

4 Discussion

4.1 How do prime heuristics assist in brute forcing RSA keys?

Prime heuristics are essential tools for identifying prime numbers efficiently. This effi-
ciency is crucial in two main areas: generating RSA keys and attacking RSA by finding
plausible prime factors of the modulus n. For key generation, prime heuristics are es-
sential in the process of finding large prime numbers, which are fundamental to creating
secure RSA keys. In the context of attacks, these heuristics help narrow down the search
for prime factors of n, thereby making the factorization process more feasible. The ability
to quickly identify primes significantly helps both in the generation of secure keys and
the vulnerability assessment of existing keys.

4.2 Importance of Targeting the Correct Range for Prime Fac-
tors

When attempting to factorize a very large composite number n as an RSA moduli, target-
ing the correct range for potential prime factors is crucial. Typically, the prime factors of
an n-bit composite number are approximately n

2
bits in size. For example, if n is a 1024-

bit number, each prime factor would likely be around 512 bits. Focusing the search within
this range dramatically reduces the number of candidates that need to be checked. With-
out this targeted approach, one would have to consider a much broader range of possible
factors, which increases the number of potential candidates exponentially. For instance,
if one was to search for factors of a 1024-bit number without narrowing down the range,
one might have to consider every possible prime number up to 1024 bits. This is an
astronomically large number of possibilities.

However, by narrowing the search to around 512-bit numbers, the number of candi-
dates is significantly reduced. The number of prime numbers less than a given number x
can be approximated by x

ln(x)
according to the Prime Number Theorem. For a 1024-bit

number, this would be approximately 21024

ln(21024)
, which is vastly larger than the number of

16



primes in the range of 511-512 bit, approximately 2512

ln(2512)
- 2511

ln(2511)
. This reduction from

1024 bits to 512 bits in the search range means going from considering around 10308 po-
tential candidates to around 10153. This dramatic decrease in the number of candidates
makes the factorization process far more efficient and feasible.

Accurately identifying the correct range for potential prime factors ensures that com-
putational resources are used effectively. By focusing on the more likely candidates
(around n

2
bits), the factorization process becomes more manageable and less time-

consuming. Instead of wasting computational power on an impractically large set of
possibilities, it can be focused on a much smaller and more promising set of candidates.
This approach is especially important in cryptograpy, where the efficiency of factorization
is related to the security from cryptographic attacks.

4.3 Utilization of Prime Heuristics for Identifying Primes and
Composites

Prime heuristics are invaluable for distinguishing between prime and composite numbers.
Among the various primality tests available, the Fermat and Miller-Rabin tests stand
out as particularly effective strategies. The Fermat primality test is based on Fermat’s
Little Theorem and can quickly identify non-prime numbers, though it may occasionally
produce false positives (Carmichael numbers). The Miller-Rabin test, an enhancement
of the Fermat test, is a probabilistic test that significantly reduces the likelihood of
false positives. By using these tests in combination, one can achieve a high degree of
confidence in the identification of prime numbers, thereby improving the efficiency of
both key generation and factorization attacks. Note that this combination is what we
used in our programs to find the average prime gap in large bit bounds.

4.4 Superior Performance of Number Sieve Implementations

Implementations of the Number Sieve, such as the Quadratic Sieve (QS) and the Number
Field Sieve (NFS), greatly outperform näıve brute-force approaches to factoring RSA
moduli. The QS is highly effective for numbers up to around 100 digits, while the NFS
is the most efficient algorithm known for factoring very large integers, making it the
best method for numbers beyond this range. These sophisticated algorithms leverage
advanced mathematical techniques to decompose large composite numbers much faster
than simple trial division or basic algorithms. Despite these advancements, 1024-bit RSA
cryptography remains robust against contemporary attacks. Current factoring methods,
even with the most optimized sieves, still require an impractical amount of time and
computational power to break a 1024-bit RSA key, ensuring its security in the face of
modern computational capabilities.

4.5 Conclusion

In summary, prime heuristics play a vital role in both the generation and assessment
of RSA keys by efficiently identifying prime numbers. Targeting the appropriate range
for potential prime factors streamlines the factorization process, while effective primality
tests like Fermat and Miller-Rabin enhance the identification of primes. Advanced Num-
ber Sieve implementations significantly outperform basic brute-force methods, though

17



1024-bit RSA remains secure against current attack methodologies and system limita-
tions.

References

[1] M. Agrawal. Primality tests based on fermat’s little theorem. Unpublished work.

[2] N. Author. Elliptic curve cryptography (ecc).
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-
cryptography-ecc.

[3] N. Author. How to generate large prime numbers for rsa algorithm,
2022. https://www.geeksforgeeks.org/how-to-generate-large-prime-numbers-for-rsa-
algorithm.

[4] R. Baillie et al. Strengthening the baillie-psw primality test. Mathematics of Com-
putation, page 1, Jan 2021. Accessed: 20 Feb. 2021.

[5] D. J. Bernstein. Papers. Cr.yp.to, 2024. Accessed: 2024-06-28.

[6] D. Boneh. Twenty years of attacks on the rsa cryptosystem. Notices of the American
Mathematical Society, 46:203–212, 1999.

[7] J. Buhler, H. Lenstra, and C. Pomerance. Factoring integers with the number field
sieve.

[8] M. Case. A beginner’s guide to the general number field sieve.

[9] D. P. Chi, J. W. Choi, J. S. Kim, and T. Kim. Lattice based cryptography for
beginners. https://eprint.iacr.org/2015/938.pdf.

[10] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective.
Springer, Berlin, 1st edition, 2001. chapter 4.2.1.

[11] A. Diab. Development of sieve of eratosthenes and sieve of sundaram’s proof.
ArXiv.org, May 2021. Accessed: 27 June 2024.

[12] I. Goldberg and D. Wagner. Randomness and the netscape browser, December 1996.

[13] J. Hastad. Solving simultaneous modular equations of low degree. SIAM Journal on
Computing, 17(2):336–341, 1988.

[14] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your ps and
qs: Detection of widespread weak keys in network devices. Rev, 2, 2012.

[15] B. Peterson. Prime number theorem, 1996.
https://www.math.ucdavis.edu/ tracy/courses/math205A/PNT Petersen.pdf.

[16] M. Visser. The second hardy-littlewood conjecture is true, 01 2021.

18


	Introduction
	Background
	Prime Number Heuristics and Checks
	Selfridge, Pomerance, Wagstaff Heuristic
	Fermat Primality Test
	Miller-Rabin Primality Test
	Proth Primes
	Mersenne Primes
	Lucas-Lehmer Test
	Lucas-Lehmer-Riesel Test

	Prime Numbers and Public Key Cryptography
	RSA Message Exchange Scenario

	Selected Attacks on RSA-based Cryptography
	Hastad's Broadcast Attack
	Attacks based on weak PRNG Seeds
	RSA Blinding Attack
	Opportunistic Mining of ``P's'' and ``Q's''


	Empirical Evaluation
	Efficacy of Prime Heuristics
	Number Field Sieve's applications in RSA Cryptography and Factoring large prime numbers
	Special Number Field Sieves
	General Number Field Sieves (GNFS)
	Implementation of NFS in MSieve


	Discussion
	How do prime heuristics assist in brute forcing RSA keys?
	Importance of Targeting the Correct Range for Prime Factors
	Utilization of Prime Heuristics for Identifying Primes and Composites
	Superior Performance of Number Sieve Implementations
	Conclusion


