Stability Analysis in Dynamical Systems

Siddharth K

July 2024

化重氮 化重氮

4 0 8

4 伺 ▶

÷,

Dynamical Systems

Dynamical system: a system that evolves over time.

Described by:

$$
\dot{x}=f(x(t),t)
$$

where $x \in \mathbb{R}^n$ and $\dot{x} = \frac{dx}{dt}$.

Definition (Fixed Point)

A fixed point (or equilibrium point), x^* , is a state where $f(x^*, t) = 0$.

Initial condition: $x(0)$.

 299

イロト イ部 トイモト イモト

Initial condition: $x(0)$.

Definition (Stable)

A fixed point x^* is stable if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $\| \textsf{x}(0)-\textsf{x}^* \| < \delta,$ then for all $t \geq 0$ we have $\| \textsf{x}(t)-\textsf{x}^* \| < \epsilon.$ The fixed point is called unstable otherwise.

Initial condition: $x(0)$.

Definition (Stable)

A fixed point x^* is stable if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $\| \textsf{x}(0)-\textsf{x}^* \| < \delta,$ then for all $t \geq 0$ we have $\| \textsf{x}(t)-\textsf{x}^* \| < \epsilon.$ The fixed point is called unstable otherwise.

Definition (Attracting)

A fixed point x^* is attracting if there exists $\delta > 0$ such that if $||x(0) - x^*|| < \delta$ then

$$
\lim_{t\to\infty}x(t)=x^*.
$$

Initial condition: $x(0)$.

Definition (Stable)

A fixed point x^* is stable if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $\| \textsf{x}(0)-\textsf{x}^* \| < \delta,$ then for all $t \geq 0$ we have $\| \textsf{x}(t)-\textsf{x}^* \| < \epsilon.$ The fixed point is called unstable otherwise.

Definition (Attracting)

A fixed point x^* is attracting if there exists $\delta > 0$ such that if $||x(0) - x^*|| < \delta$ then

$$
\lim_{t\to\infty}x(t)=x^*.
$$

Definition (Asymptotically Stable)

A fixed point x^* is asymptotically stable if it is stable and attracting.

イロメ イ部 メイミメ イミメー

Linear Systems

Linear System:

$$
x = Ax
$$

where $A \in \mathbb{R}^{n \times n}$.

Theorem

A fixed point x^* of the linear system $\dot{x} = Ax$ is asymptotically stable if all eigenvalues of A have negative real parts.

Linearization

Given

$$
\dot{x}=f(x)
$$

define perturbation

$$
u = x - x^*
$$

$$
\dot{u} = \dot{x} = f(x) = f(x^* + u)
$$

イロト イ部 トイヨ トイヨト

重

Linearization

Given

$$
\dot{x}=f(x)
$$

define perturbation

$$
u = x - x^*
$$

$$
\dot{u} = \dot{x} = f(x) = f(x^* + u)
$$

Taylor expansion:

$$
\dot{u} = f(x^*) + J(x^*)u + \text{higher order terms}
$$
\n
$$
\text{higher order terms} \approx 0
$$
\n
$$
\dot{u} \approx f(x^*) + J(x^*)u = J(x^*)u
$$
\n
$$
\dot{x} \approx J(x^*)(x - x^*)
$$

4 0 8

É

Linearization

Given

$$
\dot{x}=f(x)
$$

define perturbation

$$
u = x - x^*
$$

$$
\dot{u} = \dot{x} = f(x) = f(x^* + u)
$$

Taylor expansion:

$$
\dot{u} = f(x^*) + J(x^*)u + \text{higher order terms}
$$
\n
$$
\text{higher order terms} \approx 0
$$
\n
$$
\dot{u} \approx f(x^*) + J(x^*)u = J(x^*)u
$$
\n
$$
\dot{x} \approx J(x^*)(x - x^*)
$$

If the eigenvalues of $J(x^*)$ are negative then the fixed point $x = x^*$ is asymptotically stable.

 \triangleright \rightarrow \exists \rightarrow

 \leftarrow \Box

 QQ

э

Control Theory

Dynamics of a controlled system:

$$
\dot{x}=f(x,u)
$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$.

D.

Control Theory

Dynamics of a controlled system:

$$
\dot{x}=f(x,u)
$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$.

Linear system with control:

$$
\dot{x}=Ax+Bu
$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$.

4 0 8

э

Control Theory

Dynamics of a controlled system:

$$
\dot{x}=f(x,u)
$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$.

Linear system with control:

$$
\dot{x}=Ax+Bu
$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$. Feedback control:

$$
u=-Kx
$$

where $K \in \mathbb{R}^{m \times n}$. So

$$
\dot{x} = Ax - BKx = (A - BK)x.
$$

Choos[e](#page-9-0) K such that the ei[g](#page-10-0)env[a](#page-12-0)lues of $A - BK$ [ar](#page-11-0)e [n](#page-13-0)ega[ti](#page-13-0)[ve](#page-0-0)[.](#page-22-0)

G.

 QQ

Spring-Mass-Damper System

Figure: Spring-Mass-Damper

Spring-mass-damper system:

$$
\dot{x} = Ax + Bu
$$

where

$$
A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.
$$

{ n →

 $\leftarrow \equiv +$

Þ

4日下

$$
u=-Kx
$$

where $\mathcal{K}=\begin{pmatrix} k_1 & k_2 \end{pmatrix}$. Evaluating $A - BK$:

$$
A-BK=\begin{pmatrix}0&1\\-2&3\end{pmatrix}-\begin{pmatrix}0\\1\end{pmatrix}\begin{pmatrix}k_1&k_2\end{pmatrix}=\begin{pmatrix}0&1\\-2-k_1&3-k_2\end{pmatrix}.
$$

イロト イ押 トイヨ トイヨ トー

目

$$
u=-Kx
$$

where $\mathcal{K}=\begin{pmatrix} k_1 & k_2 \end{pmatrix}$. Evaluating $A - BK$:

$$
A-BK=\begin{pmatrix}0&1\\-2&3\end{pmatrix}-\begin{pmatrix}0\\1\end{pmatrix}\begin{pmatrix}k_1&k_2\end{pmatrix}=\begin{pmatrix}0&1\\-2-k_1&3-k_2\end{pmatrix}.
$$

Let eigenvalues be λ . We have that

$$
\lambda^2 + (k_2 - 3)\lambda + (k_1 + 2) = 0.
$$

 \leftarrow \Box

э

$$
u=-Kx
$$

where $\mathcal{K}=\begin{pmatrix} k_1 & k_2 \end{pmatrix}$. Evaluating $A - BK$:

$$
A-BK=\begin{pmatrix}0&1\\-2&3\end{pmatrix}-\begin{pmatrix}0\\1\end{pmatrix}\begin{pmatrix}k_1&k_2\end{pmatrix}=\begin{pmatrix}0&1\\-2-k_1&3-k_2\end{pmatrix}.
$$

Let eigenvalues be λ . We have that

$$
\lambda^2 + (k_2 - 3)\lambda + (k_1 + 2) = 0.
$$

Arbitrarily choose $\lambda = -2, -5$. They satisfy

$$
(\lambda + 2)(\lambda + 5) = \lambda^2 + 7\lambda + 10 = 0.
$$

目

 QQQ

イ母 ト イヨ ト イヨ トー

4 **E** F

$$
u=-Kx
$$

where $\mathcal{K}=\begin{pmatrix} k_1 & k_2 \end{pmatrix}$. Evaluating $A - BK$:

$$
A-BK=\begin{pmatrix}0&1\\-2&3\end{pmatrix}-\begin{pmatrix}0\\1\end{pmatrix}\begin{pmatrix}k_1&k_2\end{pmatrix}=\begin{pmatrix}0&1\\-2-k_1&3-k_2\end{pmatrix}.
$$

Let eigenvalues be λ . We have that

$$
\lambda^2 + (k_2 - 3)\lambda + (k_1 + 2) = 0.
$$

Arbitrarily choose $\lambda = -2, -5$. They satisfy

$$
(\lambda + 2)(\lambda + 5) = \lambda^2 + 7\lambda + 10 = 0.
$$

$$
k_1 + 2 = 10 \implies k_1 = 8,
$$

$$
k_2 - 3 = 7 \implies k_2 = 10.
$$

So $K = (8 \ 10)$.

Nonlinear Dynamics and Control

Given

$$
\dot{x} = f(x, u), \quad f(x^*, u^*) = 0,
$$

define perturbations

$$
\Delta x = x - x^*, \quad \Delta u = u - u^*.
$$

Approximate using Taylor expansion:

$$
\Delta \dot{x} = \dot{x} = f(x, u) \approx f(x^*, u^*) + A\Delta x + B\Delta u,
$$

$$
A = \frac{\partial f}{\partial x}\Big|_{(x^*, u^*)}, \quad B = \frac{\partial f}{\partial u}\Big|_{(x^*, u^*)}
$$

$$
\Delta \dot{x} \approx A\Delta x + B\Delta u
$$

 \rightarrow \equiv \rightarrow

э

4日下

Cart-Pole Problem

Dynamics of the cart-pole problem:

 $(M+m)\ddot{x}+m l \ddot{\theta} \cos(\theta)-m l \dot{\theta}^2 \sin(\theta)=u$ $l\ddot{\theta} + g \sin(\theta) = \ddot{x} \cos(\theta).$

The variables are:

- x: Position of the cart
- \bullet θ : Angle of the pole (upright is $\theta = 0$)
- \bullet u : Control force applied to the cart
- \bullet M : Mass of the cart
- \bullet m : Mass of the pole
- \bullet *l* : Length of the pole
- \bullet g : Acceleration due to gravity

 Ω

Cart-Pole Problem (cont.)

State vector:

$$
\mathbf{x} = (x, \dot{x}, \theta, \dot{\theta})^T \approx (0, 0, 0, 0)^T.
$$

We can make the approximations

$$
\sin(\theta) \approx \theta,
$$

\n
$$
\cos(\theta) \approx 1,
$$

\n
$$
\dot{\theta}^2 \approx 0.
$$

Substituting gives us

$$
(M+m)\ddot{x} + ml\ddot{\theta} \approx u
$$

$$
l\ddot{\theta} + g\theta \approx \ddot{x}.
$$

 \rightarrow \equiv \rightarrow

目

 $\left\{ \left. \left(\left. \left(\mathbb{R} \right) \right| \times \left(\left. \mathbb{R} \right) \right| \right) \right\}$

4日下

Cart-Pole Problem (cont.)

$$
(M+m)\ddot{x} + ml\ddot{\theta} \approx u
$$

$$
l\ddot{\theta} + g\theta \approx \ddot{x}.
$$

Linearization gives us

$$
\dot{\mathbf{x}} \approx A\mathbf{x} + Bu
$$

where

Let

$$
A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{mg}{M+2m} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{Mg+mg}{I(M+2m)} & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ \frac{1}{M+2m} \\ 0 \\ \frac{1}{I(M+2m)} \end{pmatrix}.
$$

 $u = -Kx$

and find eigenvalues of $A - BK$ (requires numerical methods).

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A} \times \mathbf{A}$

 \sim

 \leftarrow \Box

 \Rightarrow

Thank You

Thank you for listening!

イロト イ部 トイヨ トイヨト

重