
Stability Analysis in Dynamical Systems

Siddharth K

June 2024

1 Abstract

In this paper, we dive into the fascinating world of stability analysis for linear
and nonlinear dynamical systems, concluding with an application to dynam-
ics and control, namely the cart-pole problem. We explore the techniques
and mechanisms necessary to ensure the system’s stability. The analysis in-
cludes solving linear systems and analyzing their stability using eigenvalues
and eigenvectors, and extending these techniques to nonlinear systems us-
ing linearization and Jacobian matrices. Finally, we highlight the practical
implications of these methods in robotics and control theory, showing how
robust control strategies can keep systems stable.

2 Introduction

The analysis of stability in dynamical systems is a cornerstone of control the-
ory and robotics, and it’s essential to ensure that engineered systems behave
predictably under various conditions. This paper explores the mathematical
foundations and techniques used to analyze the stability of both linear and
nonlinear systems, with a specific focus on the cart-pole problem, which is a
classic example in control theory.

In this paper, we start by establishing the fundamental concepts of sta-
bility for linear systems, using eigenvalues and the characteristic equation to
determine the behavior of these systems over time. We then extend these
concepts to nonlinear systems, introducing linearization as a technique to ap-
proximate and analyze these systems near fixed points. The Jacobian matrix
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plays a crucial role here, helping to determine the local stability of nonlinear
systems by examining the eigenvalues of the linear system.

Then, we explore the field of dynamics and control, focusing on both lin-
ear and nonlinear systems. Control strategies are essential for modifying the
behavior of systems to achieve desired outcomes, and we examine how these
strategies can be applied to ensure stability. The cart-pole problem serves
as a practical example, illustrating the application of control techniques to
maintain the balance of an inverted pendulum on a moving cart. This prob-
lem is not only a classic in control theory education but also has practical
implications for robotics and automation.

Finally, we highlight areas for future work, particularly in the application
of Lyapunov’s direct method, which offers a more comprehensive approach
to stability analysis without the need for linearization.

3 Background

A dynamical system is a model that describes a system that evolves over
time. It consists of a set of equations that govern the behavior of the system’s
variables. The collection of those variables is called the state. For example,
in a mechanical system, the state might include position and velocity. In
a biological system, it could include concentrations of different chemicals.
Understanding the state allows us to predict future behavior and analyze
stability and other properties of the system.

A dynamical system can be described by a set of differential equations:

ẋ(t) = f(x(t), t)

where t is time,

x =
(
x1, . . . , xn

)T
is the state vector as a function of t, and

f =
(
f1, . . . , fn

)T
is a vector of functions (vector field) which defines the system’s dynamics.
The dot in ẋ represents differentiation with respect to t.

2



An important result about the solutions to a differential equations is the
Picard-Lindelöf Theorem [Gut13, NS94].

Theorem 3.1 (Picard-Lindelöf Theorem). Consider the initial value prob-
lem:

ẋ = f(x, t), x(t0) = x0.

If f and ∂f
∂x

are continuous in a region containing (t0, x0), then there exists
some ϵ such that the initial value problem has a unique solution x(t) on the
interval [t0 − ϵ, t0 + ϵ].

A proof of Theorem 3.1 is outside the scope of this paper, but what it
tells us is that if we have a known expression for x(t) that solves the system
of differential equations and satisfies an initial condition x(t0) = y0, no other
solution can satisfy both the system and the initial condition within some
interval where f and ∂f

∂x
are continuous.

Definition 3.1. A fixed point (or equilibrium point) x∗ is a state where
f(x∗, t) = 0.

A fixed point x∗ is called stable if after a slight change, or perturbation,
to x∗, the state remains close to x∗ over time. More formally:

Definition 3.2. A fixed point x∗ is stable if for every ϵ > 0 there exists a
δ > 0 such that if ∥x(0)−x∗∥ < δ, then for all t ≥ 0 we have ∥x(t)−x∗∥ < ϵ.
The fixed point is called unstable otherwise.

Another version of stability is asymptotic stability:

Definition 3.3. A fixed point x∗ is attracting if there exists δ > 0 such
that if ∥x(0)− x∗∥ < δ then

lim
t→∞

x(t) = x∗.

The point x∗ is asymptotically stable if it is stable and attracting.

A lot of analyzing stability of dynamical systems involves finding eigen-
values of a matrix. Given a matrix A, its eigenvectors are all vectors v such
that

Av = λv
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for some scalar λ, which is the corresponding eigenvalue.

To find v, we can replace λ with λI (where I is the identity matrix)
because v = Iv. So

Av = λIv or (A− λI)v = 0.

This is true when det(A− λI) = 0.

For a 2× 2 matrix, we can say A =

(
a b
c d

)
and λI =

(
λ 0
0 λ

)
, so

det(A− λI) = det

(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc

= λ2 − (a+ d)λ+ (ad− bc) = λ2 − τλ+∆ = 0

where τ = tr(A) and ∆ = det(A).

So, for a 2× 2 matrix, the eigenvalues λ can be found by solving

λ2 − τλ+∆ = 0.

The equation det(A− λI) = 0 is called the characteristic equation of A.

Another thing we’ll be doing to analyze stability is finding the Jacobian
matrix of a function, which is the matrix of the partial derivatives of each
function in f with each variable in x. It is given by:

J(x) =
∂f

∂x
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xm

 .

where x ∈ Rm and f : Rm → Rn.

4 Solving Linear Systems

A linear system of differential equations is given by ẋ = Ax where A is a
square matrix. For a 2-dimensional system, for example, the system looks
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like

ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2

where x =

(
x1

x2

)
and A =

(
a b
c d

)
.

In a 1-dimensional system, integration reveals that the solution is given
by x(t) = eλt for some growth rate λ. So we propose that a solution to the
system is

x(t) = eλtv

for some growth rate λ and vector v.

To show this, we start by calculating ẋ(t), which gives us

d

dt
(eλtv) = λeλtv.

Substituting x(t) = eλtv into ẋ = Ax, we have λeλtv = eλtAv, and because
eλt is nonzero, we get Av = λv.

This tells us that the desired solutions exist if Av = λv, which means v
is an eigenvector of A with a corresponding eigenvalue λ.

Proposition 4.1. A linear combination of solutions to a linear system is
also a solution.

Proof. Let’s say x1(t) and x2(t) are solutions to ẋ = Ax, so ẋ1 = Ax1 and
ẋ2 = Ax2. Consider a linear combination of the solutions:

x(t) = c1x1(t) + c2x2(t)

where c1 and c2 are constants. If we differentiate x(t), we have

d

dt
x(t) =

d

dt
(c1x1(t) + c2x2(t)),

or
ẋ(t) = c1ẋ1(t) + c2ẋ2(t).
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Substituting ẋ1 = Ax1 and ẋ2 = Ax2, we have

ẋ(t) = c1Ax1(t) + c2Ax2(t) = A(c1x1(t) + c2x2(t)).

Recall that x(t) = c1x1(t) + c2x2(t), so

ẋ(t) = Ax(t).

Since x(t) is a linear combination of two solutions and it is a solution
as well, by induction, a linear combination of any number of solutions to a
linear system is also a solution. ■

Let’s say A is an n× n matrix. If we assume it has distinct eigenvalues,
then by Proposition 4.1, x(t) can be written as a linear combination of all
eλitvi because each one of them is a solution to the system. This gives us the
general solution to ẋ = Ax:

x(t) =
n∑

i=1

cie
λitvi

where λi is the i’th eigenvalue and vi is the corresponding eigenvector.

Given the initial condition x(0) = x0, we can write x0 as a linear combi-
nation of all the eigenvectors of A, so

x0 =
n∑

i=1

divi

for constants di. Letting ci = di in the expression for x(t) ensures that

x(0) =
n∑

i=1

civi = x0.

Since the solution satisfies x(0) = x0, by Theorem 3.1, it is the only solution.

5 Stability of Linear Systems

Having derived the general solution to ẋ = Ax, we can now turn our attention
to a theorem that establishes the stability of fixed points:
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Theorem 5.1. A fixed point x∗ of the linear system ẋ = Ax is asymptotically
stable if all eigenvalues of A have negative real parts.

Proof. We can transform the system ẋ = Ax into one where the fixed point
is at the origin. Since Ax∗ = 0, we can say that

ẋ = Ax− Ax∗ = A(x− x∗).

Define a new variable y = x− x∗. Then the system becomes

ẏ = Ay.

Now, we can analyze the stability of the fixed point y∗ = 0. We need to show
that it is stable and attracting.

Assume that A has eigenvectors vi and corresponding eigenvalues λi with
negative real parts. The solution for y(t) is

y(t) =
n∑

i=1

cie
λitvi

where ci are constants determined by y(0) = x(0)− x∗ =
∑n

i=1 civi.

Let αi and βi be the real and imaginary parts of λi respectively, and let
α = maxi(αi). We have that

eλit = e(αi+iβi)t = eαiteiβit.

Note that |eiβit| = 1 because it lies on the unit circle, so

|eλit| = |eαit||eβit| = |eαit| = eαit.

Since all αi < 0, we have that α < 0. Also, notice that

∥y(0)∥ =

∥∥∥∥∥
n∑

i=1

civi

∥∥∥∥∥
So we can bound ∥y(t)∥:

∥y(t)∥ =

∥∥∥∥∥
n∑

i=1

cie
λitvi

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

cie
αtvi

∥∥∥∥∥ = eαt

∥∥∥∥∥
n∑

i=1

civi

∥∥∥∥∥ = eαt∥y(0)∥.
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To prove that the fixed point y∗ = 0 is stable, we need to show that for every
ϵ > 0 there exists δ > 0 such that if ∥y(0)∥ < δ then ∥y(t)∥ < ϵ.

Since α < 0, eαt ≤ 1 for t ≥ 0. So

∥y(t)∥ ≤ eαt

∥∥∥∥∥
n∑

i=1

civi

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

civi

∥∥∥∥∥ = ∥y(0)∥.

Letting δ = ϵ gives us

∥y(0)∥ < ϵ =⇒ ∥y(t)∥ < ϵ.

By Definition 3.2, the fixed point y = 0 is stable, and therefore x = x∗ is too.

Now, we show that y∗ is attracting.

Since α < 0, limt→∞ eαt = 0, so

lim
t→∞

∥y(t)∥ ≤ lim
t→∞

eαt∥y(0)∥ = 0.

Therefore,
lim
t→∞

y(t) = 0

which implies that

lim
t→∞

(x(t)− x∗) = 0 or lim
t→∞

x(t) = x∗.

By Definition 3.3, the fixed point x = x∗ is attracting.

Finally, since the fixed point x = x∗ is both stable and attracting, it is
asymptotically stable. ■

Now that we’ve covered the fundamentals of linear stability analysis, we
can start looking at the more complex realm of nonlinear dynamical systems.

6 Stability of Nonlinear Systems

Unlike linear systems where stability can be directly inferred from the eigen-
values of the coefficient matrix, nonlinear systems require different tech-
niques. A powerful method for analyzing stability of nonlinear systems is
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through linearization, where we approximate the nonlinear system around a
fixed point.

Consider a nonlinear system given by

ẋ = f(x)

where x is the state vector and f is the vector field describing the dynamics.

Say that x∗ is a fixed point of the system, so f(x∗) = 0. Let u = x −
x∗ denote a small perturbation from the fixed point. Differentiating the
expression for u, we get

u̇ = ẋ = f(x) = f(x∗ + u).

Using a Taylor series expansion around x∗, we have

u̇ = f(x∗ + u) = f(x∗) + J(x∗)u+ · · ·

where J(x∗) is the Jacobian matrix of f evaluated at x∗.

The remainder of the Taylor series expansion is made of higher order
terms, which if u is sufficiently small, are negligible. Therefore, we can make
the approximation

u̇ ≈ f(x∗) + J(x∗)u = J(x∗)u

because f(x∗) = 0.

Now that we wrote u̇ as a matrix times u, we can treat this as a linear
system! But how do we know that this approximation is representative of the
actual nonlinear system? That is, if all eigenvalues of the Jacobian matrix
evaluated at x∗ are negative, does it mean the fixed point of the nonlinear
system is actually stable?

It turns out, the answer is yes. This is because of the Hartman-Grobman
Theorem. The precise statement and proof are very technical and beyond
the scope of this paper, but it allows us to assert that if the eigenvalues of
J(x∗) are negative then the fixed point x = x∗ of the nonlinear system is
stable.
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If you are interested, you are encouraged to look at advanced texts in
dynamical systems or the Hartman-Grobman theorem for a fuller under-
standing. A recommended reference is: [Den].

7 Dynamics and Control

Control theory deals with making a dynamical system behave in a desired
manner by applying some inputs. For example, imagine you are trying to
balance a pencil on your finger. It will try to topple over, so you move your
hand in that direction to keep it upright. In this scenario, the position of the
pencil is the state and the position of your hand is the control.

The dynamics of a controlled system can be modeled by:

ẋ(t) = f(x(t), u(x, t))

where x is the state vector, f defines the system’s dynamics, and u is the
control input.

7.1 Linear Dynamics and Control

A dynamical system with control is linear when f is linear. So it comes in
the form:

ẋ = Ax+Bu

where x ∈ Rn is the state vector, u ∈ Rm is the control input, A ∈ Rn×n is
the system matrix, and B ∈ Rn×m is the input matrix.

The goal of control theory is choosing u such that the dynamical system
behaves as desired. The expression for u is called the feedback control law.

A common form of feedback control law is where the the control input is
a linear function of the state vector:

u = −Kx

where K ∈ Rm×n is the feedback gain matrix, which is what we want to
find. The negative sign indicates that the control input is applied in such a
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way that counteracts how the dynamical system would normally behave.

Substituting the expression for u, we get

ẋ = Ax−BKx = (A−BK)x.

Ideally, we want the dynamical system with control to be stable. We know
that the fixed point x = x∗ is stable when the eigenvalues of A−BK are all
negative. So we can choose K so that it satisfies this constraint.

There are several methods to design K. One method involves choosing
the desired eigenvalues of the system (negative to ensure stability) and find-
ing K such that A−BK has those eigenvalues.

Another method is using a Linear-Quadratic Regulator (LQR). If instead
of just ensuring that the system is stable, we wanted to ensure that the sys-
tem is always as close to the fixed point as possible, we could use an LQR. It
minimizes a cost function that balances the deviations from the fixed point
and control effort. [Ted23]

Now, let’s look at an example. Let’s say we have the system ẋ = Ax+Bu
where

A =

(
0 1
−2 3

)
, B =

(
0
1

)
.

This system models the spring-mass-damper system, where a mass is at-
tached to a spring, which is attached to the wall (horizontally so that gravity
doesn’t interfere).

The position and velocity of the object are the components of x. The
end of the spring oscillates back and forth according to the mass, m, and
the spring constant, k. The oscillation slows down according to the damping
coefficient, b. Figure 1 illustrates the system.

In our case, m = 1, k = 2, and b = −3. Since the damping coefficient is
negative, the oscillation increases in amplitude over time, making the system
unstable. This necessitates a control input.
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Figure 1: Spring-Mass-Damper.

Letting u = −Kx, this becomes

ẋ = (A−BK)x

where K ∈ R1×2, so we can write K =
(
k1 k2

)
. Evaluating A−BK, we get

A−BK =

(
0 1
−2 3

)
−
(
0
1

)(
k1 k2

)
=

(
0 1
−2 3

)
−
(
0 0
k1 k2

)
=

(
0 1

−2− k1 3− k2

)
.

Evaluating the eigenvalues, we see that they satisfy the characteristic equa-
tion det(λI − (A−BK)) = 0, or

λ2 + (k2 − 3)λ+ (k1 + 2) = 0.

Now, we arbitrarily choose the (negative) eigenvalues, say −2,−5. They
would satisfy (λ+2)(λ+5) = λ2 +7λ+10 = 0. We want the eigenvalues to
match, so the coefficients must match too, and we have:

k1 + 2 = 10 =⇒ k1 = 8

k2 − 3 = 7 =⇒ k2 = 10

so K =
(
8 10

)
, and u =

(
8 10

)
x makes the system stable.

7.2 Nonlinear Dynamics and Control

Similar to how we linearize systems without a control, we can approximate
nonlinear systems with a control as a linear system.
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Consider a general nonlinear dynamical system with control inputs:

ẋ = f(x, u).

A fixed point (x∗, u∗) satisfies f(x∗, u∗) = 0.

Define small perturbations around the fixed point:

∆x = x− x∗, ∆u = u− u∗.

Then, we can approximate ∆ẋ = f(x, u) using a Taylor expansion around
(x∗, u∗):

f(x, u) ≈ f(x∗, u∗) + A∆x+B∆u

where

A =
∂f

∂x

∣∣∣∣
(x∗,u∗)

, B =
∂f

∂u

∣∣∣∣
(x∗,u∗)

are the Jacobian matrices of f with respect to the state vector x and control
vector u. Since f(x∗, u∗) = 0, this simplifies to

∆ẋ ≈ A∆x+B∆u

which we can then use linear methods to analyze stability on.

Again, we can assume that if the eigenvalues of the system matrix are
negative then the fixed point of the nonlinear system is stable.

Let’s look at an example to illustrate the process. Consider the nonlinear
system with control described by:

ẋ1 = x2
1 + x2 + u

ẋ2 = x1 + sin(x2).

Suppose the fixed point is (x∗
1, x

∗
2, u

∗) = (0, 0, 0). We can write f as

f(x, u) =

(
x2
1 + x2 + u

x1 + sin(x2)

)
.

The Jacobian matrices are

A =
∂f

∂x

∣∣∣∣
(0,0,0)

=

(
∂(x2

1+x2+u)

∂x1

∂(x2
1+x2+u)

∂x2
∂(x1+sin(x2))

∂x1

∂(x1+sin(x2))
∂x2

)
=

(
0 1
1 cos(0)

)
=

(
0 1
1 1

)
,
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B =
∂f

∂u

∣∣∣∣
(0,0,0)

=

(
∂(x2

1+x2+u)

∂u
∂(x1+sin(x2))

∂u

)
=

(
1
0

)
.

So the final linearized system is

∆ẋ =

(
0 1
1 1

)
∆x+

(
1
0

)
∆u.

The stability of this system can now be analyzed using the standard tech-
niques for linear systems with control that we just covered.

8 Cart-Pole Problem

One classic problem in control theory is the cart-pole problem. It is a system
where a cart can travel in the x direction and it needs to balance a pole
attached to it with a pin joint.

Figure 2 shows a simplified model of the Cart-Pole problem. The variables
are:

• x: Position of the cart

• θ: Angle of the pole (upright position is θ = 0)

• u : Control force applied to the cart

• M : Mass of the cart

• m : Mass of the pole

• l : Length of the pole

• g : Acceleration due to gravity

Using mechanics (namely Newton’s second law of motion and Lagrangian
mechanics), we can derive the equations: [Che18]

(M +m)ẍ+mlθ̈ cos(θ)−mlθ̇2 sin(θ) = u

lθ̈ + g sin(θ) = ẍ cos(θ).

14



Figure 2: The cart-pole problem.

The first equation models the horizontal force of the cart and the second one
models the rotational force of the pole. The fixed point is where the pole
is vertical, so θ = 0. Now, we linearize the equations of motion around the
fixed point.

The state vector is x =


x1

x2

x3

x4

 =


x
ẋ
θ

θ̇

. We can make the approximations

sin(θ) ≈ θ

cos(θ) ≈ 1

for θ sufficiently close to 0. Substituting those into the original equations,
we have

(M +m)ẍ+mlθ̈ −mlθ̇2θ ≈ u

lθ̈ + gθ ≈ ẍ.
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Since we are linearizing the system around x = 0, we can assume θ and θ̇ are
close to 0 and neglect higher order terms like θ̇2θ, which gives us

(M +m)ẍ+mlθ̈ ≈ u (1)

lθ̈ + gθ ≈ ẍ. (2)

We want to write this in the form

ẋ =


ẋ
ẍ

θ̇

θ̈

 ≈


ẋ1

ẋ2

ẋ3

ẋ4

 = f(x, u).

We can start by finding an expression for ẋ1 in terms of the other compo-
nents. We see that ẋ1 = ẋ = x2.

Now, we can find an expression for the second component. Using (2), we
have

ẋ2 = ẍ = lθ̈ + gθ.

Moving onto the third component, we have that ẋ3 = θ̇ = x4.
Finally, isolating θ̈ in (2) gives us

ẋ4 = θ̈ =
ẍ− gθ

l
.

We have that ẍ = lθ̈ + gθ and isolating ẍ in (1) gives us ẍ = u−mlθ̈
M+m

. Solving

this for θ̈, we have

θ̈ =
u−Mgθ −mgθ

l(M + 2m)

and substituting into ẍ = lθ̈ + gθ and simplifying gives us

ẍ =
u+mgθ

M + 2m
.

So we have that

ẋ2 = ẍ =
u+mgθ

M + 2m
=

u+mgx3

M + 2m

and

ẋ4 = θ̈ =
u−Mgθ −mgθ

l(M + 2m)
=

u−Mgx3 −mgx3

l(M + 2m)
.
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This gives us

f(x, u) =


x2

u+mgx3

M + 2m
x4

u−Mgx3 −mgx3

l(M + 2m)

 .

This function gives us an expression for the rates of change of each compo-
nent in the state vector.

Now, we need to find the Jacobian matrices of f with respect to x and
u. We find that

A =
∂f

∂x
=


0 1 0 0
0 0 mg

M+2m
0

0 0 0 1

0 0 − Mg+mg
l(M+2m)

0


and

B =
∂f

∂u
=


0
1

M+2m

0
1

l(M+2m)

 .

This gives us
ẋ ≈ Ax+Bu

where A and B are as derived above.

Now, let
u = −Kx.

This gives us
ẋ ≈ (A−BK)x.

Since K ∈ R1×4, letting

K =
(
k1 k2 k3 k4

)
and solving the characteristic equation

det(A−BK) = 0
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will reveal which matrices K keep the system stable.

Unfortunately, evaluating the determinant of a 4× 4 matrix is extremely
tedious to do by hand, and solving the resulting polynomial would most
likely require numerical methods. When working with nonlinear systems,
complete solutions often require computational approaches. Some examples
are the QR algorithm [Van23] and the power method [Aus].

Taking a step back, we see that what we have done allows us to make
the cart move in a way that depends only on the position of the cart, the
angle of the pole, and the rates of change of both, while guaranteeing that
the pole will be kept upright. This example highlights the importance of
stability analysis in robotics and control theory.

9 Future Work - Lyapunov’s Direct Method

In this paper, we mainly dealt with nonlinear systems by linearizing them
and then using linear methods to analyze those systems. However, there is
another, more powerful method to analyze stability that doesn’t require lin-
earization. This is called Lyapunov’s direct method. It involves constructing
a function that can provide insights, not only into the stability of a fixed
point, but also the properties of the nonlinear system. Here are some sources
if you want to explore further: [Daha, Dahb].
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