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Prerequisites

1 Linear Algebra
2 Group Theory

Definition of a group
Examples of groups, including the cyclic group Zn

Subgroups
Group homomorphisms and isomorphisms
Group actions and conjugacy classes.
Direct sum of groups.
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An Elementary Geometry Theorem

Theorem

Given a point and a line, the shortest distance between them is the length of the segment
connecting the two such that it’s perpendicular to the given line.

Remark

Arguably, we can’t do much with this theorem, at least in this setting.
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Hilbert Spaces

Hilbert Spaces

A Hilbert space is the general setting to talk about lengths and angles.

It’s is an ordinary vector space, V , plus

An inner product on V , commonly denoted by ⟨·, ·⟩ : V × V → F . It’s the generalization of
the dot product on Rn. Just like how the dot product measures the angle or closeness
between two vectors in Rn, the general inner product does the same for vectors in an
arbitrary vector space V .

1 Positive definiteness: For all v ∈ V , we have ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 ⇐⇒ v = 0.
2 Linearity in the first argument: For all v, u, w ∈ V and α, β ∈ F, we have

⟨αv + βu,w⟩ = α⟨v, w⟩ + β⟨u,w⟩.
3 Conjugate symmetry: For all v, w ∈ V , we have ⟨v, w⟩ = ⟨w, v⟩.

Technical condition: The inner product induces a norm on V , given by ∥v∥ =
√

⟨v, v⟩ such
that V is complete with respect to the metric induced by the norm, d(x, y) = ∥x− y∥ for all
x, y ∈ H.

For our purposes here,

A Hilbert Space = An Inner Product Space.
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Hilbert Spaces

Hilbert Spaces: Orthogonality

A Hilbert space is the general setting to talk about lengths and angles.

Definition

Given a Hilbert space H, two vectors x, y ∈ H are said to be orthogonal if ⟨x, y⟩ = 0.

Remark

Note how a property was turned into a definition!

Definition

Given a Hilbert space H and a subspace S, a vector v ∈ H is said to be orthogonal to P if
⟨v, x⟩ = 0 for all x ∈ S.
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Hilbert Spaces

Hilbert Spaces: First Examples

Example

The real euclidean space, Rn, with the dot product as the inner product.

Example

The set of continuous functions f : [a, b] → R with

Addition and scalar multiplication given point wise.

The inner product is given by:

⟨f, g⟩ =
∫ b

a
f(x)g(x) dx for all f, g ∈ H.
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The Best Approximation Theorem

The Best Approximation Theorem
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The Best Approximation Theorem

The Best Approximation Theorem: A Question

Question

Given a (closed) subspace P of a Hilbert space H and a vector v ∈ H, find the vector p ∈ P such
that ∥p− v∥ = minx∈P ∥x− v∥.

Remark

The vector p defined above is called the projection of v onto the subspace P , denoted by
projP (v).

Proposition

The vector p ∈ P exists and is such that ⟨v − p, x⟩ = 0 for all x ∈ P . In other words, the error
vector e = v − p is orthogonal to the subspace P .

Note how close this feels to the elementary theorem!

Remark

Let {ei}ni=1 is a orthogonal basis for P . Then, projP (v) =
∑n

i=1
⟨ei,v⟩
⟨ei,ei⟩

ei.
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The Best Approximation Theorem

The Best Approximation Theorem: A Proof

Proof.

First, we show that p such that v − p ⊥ P is indeed the vector that minimizes the distance
between P and v, that is ∥p− v∥ = minx∈P ∥x− v∥.

Start by noting that x ∈ P means there
exists a y ∈ P such that x = p+ y. Expanding ∥x− v∥2,

∥x− v∥2 = ∥(p+ y)− v∥2 = ∥(p− v) + y∥2.

Next , p− v ⊥ y =⇒ ∥(p− v) + y∥2 = ∥p− v∥2 + ∥y∥2. Thus

∥x− v∥2 = ∥p− v∥2 + ∥y∥2 =⇒ ∥x− v∥2 ≥ ∥p− v∥2.

Clearly, we have equality if and only if y = 0 ⇐⇒ x = p. ■
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The Best Approximation Theorem

The Best Approximation Theorem: A Proof

Proof.

Then, it’s just a matter of algebraic manipulation to show e = v −
∑n

i=1
⟨ei,v⟩
⟨ei,ei⟩

ei is indeed

orthogonal to P . Start by expanding the expression for ⟨v − p, x⟩,〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, x

〉
=

〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei,
n∑

j=1

ajej

〉
=

n∑
j=1

aj

〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, ej

〉
.

Now, note that〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, ej

〉
= ⟨v, ej⟩ −

〈
n∑

i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, ej

〉

= ⟨v, ej⟩ −
n∑

i=1

⟨ei, v⟩
⟨ei, ei⟩

⟨ei, ej⟩ = ⟨v, ej⟩ − ⟨v, ej⟩

= 0.

Hence ⟨v − p, x⟩ = 0 for all x ∈ P . ■
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The Best Approximation Theorem

The Best Approximation Theorem: An Example

Let’s take H = L([−π, π]) to be the Hilbert space of continuous real valued functions
defined on [−π, π], with the inner product we defined earlier.

Next take P to be the infinite dimensional subspace generated by orthonormal set

C =

{
1

√
π
cos(nx) : n ∈ N

}
∪
{

1
√
2π

}
⊂ H.

For simplicity, let’s start with v = x2,

projspan(C)(x
2) =

〈
x2,

1
√
2π

〉
+

∞∑
i=1

〈
x2,

1
√
π
cos(ix)

〉 1
√
π
cos(ix)

=
1

π

∞∑
i=0

∫ π

−π
x2 cos(ix) dx cos(ix)

=
π2

3
+

∞∑
i=1

4

i2
(−1)i cos(ix).

Which you might recognize as the Fourier series of x2 from −π to π!

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 12 / 34



The Best Approximation Theorem

The Best Approximation Theorem: An Example

Let’s take H = L([−π, π]) to be the Hilbert space of continuous real valued functions
defined on [−π, π], with the inner product we defined earlier.

Next take P to be the infinite dimensional subspace generated by orthonormal set

C =

{
1

√
π
cos(nx) : n ∈ N

}
∪
{

1
√
2π

}
⊂ H.

For simplicity, let’s start with v = x2,

projspan(C)(x
2) =

〈
x2,

1
√
2π

〉
+

∞∑
i=1

〈
x2,

1
√
π
cos(ix)

〉 1
√
π
cos(ix)

=
1

π

∞∑
i=0

∫ π

−π
x2 cos(ix) dx cos(ix)

=
π2

3
+

∞∑
i=1

4

i2
(−1)i cos(ix).

Which you might recognize as the Fourier series of x2 from −π to π!

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 12 / 34



The Best Approximation Theorem

The Best Approximation Theorem: An Example

Let’s take H = L([−π, π]) to be the Hilbert space of continuous real valued functions
defined on [−π, π], with the inner product we defined earlier.

Next take P to be the infinite dimensional subspace generated by orthonormal set

C =

{
1

√
π
cos(nx) : n ∈ N

}
∪
{

1
√
2π

}
⊂ H.

For simplicity, let’s start with v = x2,

projspan(C)(x
2) =

〈
x2,

1
√
2π

〉
+

∞∑
i=1

〈
x2,

1
√
π
cos(ix)

〉 1
√
π
cos(ix)

=
1

π

∞∑
i=0

∫ π

−π
x2 cos(ix) dx cos(ix)

=
π2

3
+

∞∑
i=1

4

i2
(−1)i cos(ix).

Which you might recognize as the Fourier series of x2 from −π to π!

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 12 / 34



The Best Approximation Theorem

The Best Approximation Theorem: An Example

Let’s take H = L([−π, π]) to be the Hilbert space of continuous real valued functions
defined on [−π, π], with the inner product we defined earlier.

Next take P to be the infinite dimensional subspace generated by orthonormal set

C =

{
1

√
π
cos(nx) : n ∈ N

}
∪
{

1
√
2π

}
⊂ H.

For simplicity, let’s start with v = x2,

projspan(C)(x
2) =

〈
x2,

1
√
2π

〉
+

∞∑
i=1

〈
x2,

1
√
π
cos(ix)

〉 1
√
π
cos(ix)

=
1

π

∞∑
i=0

∫ π

−π
x2 cos(ix) dx cos(ix)

=
π2

3
+

∞∑
i=1

4

i2
(−1)i cos(ix).

Which you might recognize as the Fourier series of x2 from −π to π!
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The Best Approximation Theorem

The Failure of the Cosine Basis

Example

Next we use C to approximate f(x) = x, meaning we compute

projspan(C)(x) =
〈
x,

1
√
2π

〉
+

1

2π

∞∑
n=1

〈
x, cos(nx)

〉
cos(nx).

Before diving right in to bash out the integral
∫ π
−π x cos(nx) dx, note that x cos(nx) is an

odd function and the domain of integration is symmetric about the origin. Hence the
positive and negative areas on either side of the y−axis will completely cancel, meaning
⟨x, cos(nx)⟩ = 0 for all n ∈ N.

Reasoning identically, ⟨x, 1√
2π

⟩ =
∫+π
−π

x√
2π

dx = 0 which means projspan(C)(x) = 0! C has

failed!
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The Best Approximation Theorem

The Best Approximation Theorem & Fourier Series

As you might have guessed, we’ll need the sines as well to approximate any function.

Once we do
rope them in, we’re left with the basis

T = S ∪ C =

{
1

√
2π

,
1

√
π
sin(nx),

1
√
π
cos(nx) : n ∈ N

}
.

Projecting functions onto the span of this new basis gives us

A0 +
∞∑

n=1

[An cosnx+Bn sinnx]

where

An = 1√
π
cos(nx)⟨f, 1√

π
cosnx⟩ = 1

π

∫ π
−π f(x) cos(nx) dx for all n ∈ N.

Bn = 1√
π
sin(nx)⟨f, 1√

π
sinnx⟩ = 1

π

∫ π
−π f(x) sin(nx) dx for all n ∈ N.

A0 = 1√
2π

⟨f, 1√
2π

⟩ = 1
2π

∫ π
−π f(x) dx,

which is the Fourier series of a function f defined on the compact interval [−π,+π].
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The Best Approximation Theorem

The Trigonometric Basis

Remark

As we saw, the Fourier series of a function boils down to computing it’s projection onto the span
of T , which consists of all linear combinations of the trigonometric polynomials.

Question

How can we be sure that we can approximate any function f using T?
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How Can We Take This Further?
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How Can We Take This Further?

How Can We Take This Further?

Question

How would one go about computing the Fourier series of a function f : G → C, where G is an
arbitrary group? Is it even possible to construct such an analogue?
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How Can We Take This Further?

The Group Algebra C[G]

The setting here would be the vector space of functions f : G → C, denoted by C[G].

Operations: Addition and scalar multiplication are given pointwise as usual.

Inner product: We equip it with the most ‘natural’ inner product defined by

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g) for all f1, f2 ∈ C[G].

Recall the inner products on Cn and L([a, b]),

⟨v, w⟩ =
n∑

i=1

viwi, ⟨f, g⟩ =
∫ b

a
f(x)g(x) dx.

Warning: the inner product on C[G] completely breaks down when |G| = ∞!

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 18 / 34



How Can We Take This Further?

The Group Algebra C[G]

The setting here would be the vector space of functions f : G → C, denoted by C[G].

Operations: Addition and scalar multiplication are given pointwise as usual.

Inner product: We equip it with the most ‘natural’ inner product defined by

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g) for all f1, f2 ∈ C[G].

Recall the inner products on Cn and L([a, b]),

⟨v, w⟩ =
n∑

i=1

viwi, ⟨f, g⟩ =
∫ b

a
f(x)g(x) dx.

Warning: the inner product on C[G] completely breaks down when |G| = ∞!

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 18 / 34



How Can We Take This Further?

The Group Algebra C[G]

The setting here would be the vector space of functions f : G → C, denoted by C[G].

Operations: Addition and scalar multiplication are given pointwise as usual.

Inner product: We equip it with the most ‘natural’ inner product defined by

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g) for all f1, f2 ∈ C[G].

Recall the inner products on Cn and L([a, b]),

⟨v, w⟩ =
n∑

i=1

viwi, ⟨f, g⟩ =
∫ b

a
f(x)g(x) dx.

Warning: the inner product on C[G] completely breaks down when |G| = ∞!

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 18 / 34



How Can We Take This Further?

The Group Algebra C[G]

The setting here would be the vector space of functions f : G → C, denoted by C[G].

Operations: Addition and scalar multiplication are given pointwise as usual.

Inner product: We equip it with the most ‘natural’ inner product defined by

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g) for all f1, f2 ∈ C[G].

Recall the inner products on Cn and L([a, b]),

⟨v, w⟩ =
n∑

i=1

viwi, ⟨f, g⟩ =
∫ b

a
f(x)g(x) dx.

Warning: the inner product on C[G] completely breaks down when |G| = ∞!

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 18 / 34



An Algebraic Interlude: Representation Theory
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An Algebraic Interlude: Representation Theory

What is Representation Theory?

Roughly speaking, representation theory lies at the intersection of the two cornerstones of
modern algebra: group theory, the study of symmetry and linear algebra, the study of maps that
deform vector spaces in a certain, clean way.
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An Algebraic Interlude: Representation Theory

What is Representation Theory?

Definition

A representation of a group G is an ordered pair (ρ, V ), where V is a vector space and
ρ : G → GL(V ) is a homomorphism of groups.

Remark

Note that GL(V ) is the general linear group of V , the set of invertible dimV by dimV
matrices which forms a group under the usual matrix multiplication.

Remember from linear algebra that these matrices describe invertible linear maps from V to
itself, so here we are viewing a g ∈ G as acting on a vector space via an invertible linear
map, namely, ρ(g).
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An Algebraic Interlude: Representation Theory

What is Representation Theory?

Definition

A representation of a group G is an ordered pair (ρ, V ), where V is a vector space and
ρ : G → GL(V ) is a homomorphism of groups.

Example

Consider G = Zn, the cyclic group of order n. We could interpret the generator as a rotation by
2π/n about the origin, meaning G consists of the rotational symmetries of an n−gon, so it’s
reasonable to let V = R2, the plane, and

ρ(k) =

[
cos 2πk

n
− sin 2πk

n
sin 2πk

n
cos 2πk

n

]
for all k ∈ Zn, which is the matrix corresponding to the rotation.
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An Algebraic Interlude: Representation Theory

Sub-representations

Just like in linear algebra we have subspaces and in group theory subgroups, we also have such a
sub-structure for representations, called a subrepresentation.

For the purposes of this talk, a subrepresentation of a representation (ρ, V ) is both a

representation in it’s own right and,

sits inside the given representation (ρ, V ).
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An Algebraic Interlude: Representation Theory

Irreducible Representations

With subrepresentations, the concepts of reducible and irreducible representations naturally come
up.

Definition

A representation (ρ, V ) of a group G is said to be irreducible if its only subrepresentations are the
trivial representation W = {0}, and itself. A representation is said to be reducible if it is not
irreducible.
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An Algebraic Interlude: Representation Theory

The Character of a Representation

Definition

Let (ρ, V ) be a representation of a group G. The character of the representation (ρ, V ) is a
function χV : G → C defined by χV (g) = Tr

(
ρ(g)

)
for all g ∈ G. A character of an irreducible

representation is said to be an irreducible character.
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The Great Theorem

The Great Theorem
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The Great Theorem

The Great Theorem on Orthogonality

Now we come to the central result of my presentation!

Theorem

Let G be a finite group and CG the vector space of complex-valued class functions defined on G.
Then the set of irreducible characters of G forms an orthonormal basis for CG.

Remark

A class function f : G → C is a function that is constant on a conjugacy class. For finite ableian
groups, like Zn, the notion of a class function and an ordinary function in C[G] are the same.

Due to time constraints, we won’t prove this here. More importantly, we discuss why this theorem
is a significant leap.

It turns out the basis {χα}α∈A of irreducible representations plays the same role as T that
we had earlier for L([−π, π]).
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The Great Theorem

The Fourier Series on a General Group!

Finally, after all this theory, we can define the Fourier series of a class function f ∈ CG!

Definition

Let f ∈ CG. Then, we define the Fourier series of f as follows

f(g) =
∑

χ∈Irr(G)

〈
f, χ

〉
χ(g) for all g ∈ G,

where Irr(G) denotes the set of irreducible characters of the group G.

Remark

Notice the similarity with the Fourier series of a real function—again, this is just a change of
basis formula!

{f(gk)}nk=1 → {
〈
f, χi

〉
}ni=1.
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The Great Theorem

The Fourier Series on a General Group! An Example

Example

Let’s apply this to a finite Abelian group, say Z/NZ.

First, we’ll have exactly N irreducible characters, and since ZN is abelian, they’ll be
functions χ : ZN → C such that χ(x+ y) = χ(x)χ(y) for all x and y in ZN .

This naturally hints at the exponential function: we literally have ea+b = eaeb for real a
and b, as we were taught so long ago.

Hopefully then, it shouldn’t be too surprising that χk(x) = e2πikx/N for k = 0, · · · , N − 1
are the irreducible characters for ZN—this matches up with our experience in R!
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The Great Theorem

The Fourier Series on a General Group! An Example

Example

Let’s apply this to a finite abelian group, say Z/NZ.
As before, the Fourier series of f will be given by

f(x) =
∑

χ∈Irr(G)

⟨f, χ⟩χ(x),

which, in this case, becomes

f(x) =

N−1∑
k=0

⟨f, e2πikx/N ⟩e2πikx/N =

N−1∑
k=0

Xke
2πikx/N ,

where

Xk =
1

|G|
∑

x∈ZN

f(x)χk(x) =
1

N

N−1∑
n=0

f(n)e−2πikn/N .

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 30 / 34



The Great Theorem

The Fourier Series on a General Group! An Example

Example

Let’s apply this to a finite abelian group, say Z/NZ.
As before, the Fourier series of f will be given by

f(x) =
∑

χ∈Irr(G)

⟨f, χ⟩χ(x),

which, in this case, becomes

f(x) =

N−1∑
k=0

⟨f, e2πikx/N ⟩e2πikx/N =

N−1∑
k=0

Xke
2πikx/N ,

where

Xk =
1

|G|
∑

x∈ZN

f(x)χk(x) =
1

N

N−1∑
n=0

f(n)e−2πikn/N .

Siddharth Kothari Generalizing Fourier Series to Groups 12th July 2024 30 / 34



The Great Theorem

The Discrete Fourier Transform

Remark

Again, another way to think about it is simply as a change of basis linear transformation
F : CN → CN given by

F(x) = F
(
(x0, · · · , xN−1)

)
= (X0, · · · , XN−1) whereXk =

1

N

N−1∑
n=0

xne
−2πink/N .

This is the Discrete Fourier Transform!
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What Next?

Further Steps

At the moment, this works only for class functions, not an arbitrary function in C[G].
Schur’s first orthogonality relation: consider the matrix coefficients of irreducible representations.

ρ(g) =


ρ11(g) ρ12(g) · · · ρ1n(g)
ρ21(g) ρ22(g) · · · ρ2n(g)

.

.

.
.
.
.

. . .
.
.
.

ρn1(g) ρn2(g) · · · ρnn(g)


This theory only works for finite groups G.

Remember the inner product on C[G] : ⟨f1, f2⟩ = 1
|G|

∑
g∈G f1(g)f2(g) for all f1, f2 ∈ C[G].

The Haar measure, which is a measure on the group G, that allows us to re-define the inner product
suitably for infinite groups,

⟨f1, f2⟩ =

∫
G

f1(x)f2(x)dµ(x).

The Peter-Weyl theorem generalizes this to all compact (topological) groups, which includes
R/Z ∼= S1, the circle group.

Feel free to see my paper for more!
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Thank You for Your Attention!

Thank You for Your Attention!
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