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Abstract. In this paper, we begin with the concept of a projection in the familiar vector space
Rn, and then extend it to an arbitrary inner product space. This foundational idea enables us
to compute a line of best fit, approximate functions using polynomials, and decompose a function
into an infinite series of sines and cosines, known as its Fourier series. We then extend the Fourier
series to finite groups using representation and character theory. In the process, we will examine
key results, including Maschke’s theorem and Schur’s orthogonality relations. Lastly, we provide a
reasonably detailed guide to further extend this reasoning to compact groups using the Peter-Weyl
theorem. For the most part, a background in lower-division linear algebra and introductory group
theory will be sufficient, but towards the end, knowledge of measure theory and general topology
will be necessary.
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1. Introduction

In most texts on the subject, the Fourier series of a real-valued periodic function f is derived as
follows. First, one assumes that we can write f as an infinite sum of the simple, the fundamental,
sines and cosines. In symbols, we have that

f(x) = A0 +
∞∑
n=1

An cos(nx) +
∞∑
n=1

Bn sin(nx),

where the Ai and Bi are some constants. Then, quite naturally, the goal is to compute those
constants, which is achieved by some rapid fire integration, as carried out below. They start by
multiplying the whole equation by the expression cos(mx),

f(x) cos(mx) = A0 cos(mx) +

∞∑
n=1

An cos(nx) cos(mx) +

∞∑
n=1

Bn sin(nx) cos(mx),

1
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and then integrating both sides from T to T + 2π,1 where T is any point in the function’s domain,∫ T+2π

T
f(x) cos(mx) dx =

∫ T+2π

T
A0 cos(mx) dx

+

∞∑
n=1

An

(∫ T+2π

T
cos(nx) cos(mx) dx

)

+
∞∑
n=1

Bn

(∫ T+2π

T
sin(nx) cos(mx) dx

)
.

But why did we bother doing this? Oh, that’s because the integral
∫ T+2π
T cos(nx) cos(mx) dx

simplifies down to 0 when m ̸= n; a fact commonly known as the orthogonality relations. Also, the

other two integrals
∫ T+2π
T sin(nx) cos(mx) dx and

∫ T+2π
T cos(mx) dx are always zero! This is good

news for us, since we can extract the An for n ≥ 1,∫ T+2π

T
f(x) cos(nx) dx = An

∫ T+2π

T
cos2(nx) dx.

And since
∫ T+2π
T cos2(nx) dx = π, we get that

An =
1

π

∫ T+2π

T
f(x) cos(nx) dx.

In a similar fashion, we can compute A0 and the Bn to get

A0 =
1

π

∫ T+2π

T
f(x) dx and Bn =

1

π

∫ T+2π

T
f(x) sin(nx) dx.

Now, unarguably this is a quick, no-nonsense way of deriving the Fourier series, but I feel that
quite a bit of the rich structure that underlies this is swept under the rug, making this procedure
seem unmotivated, almost as a bolt from the blue. For example, while this equation∫ T+2π

T
cos(nx) cos(nx) dx = 0 when m ̸= n,

and ∫ T+2π

T
sin(nx) sin(mx) dx = 0 when m ̸= n,

are crucial to this derivation, why are they called the orthogonality relations? Where are the
perpendicular lines?

Moreover, this explanation misses the fact that the idea behind the Fourier series is the exactly
the same as the idea behind computing lines of best fit, and approximating arbitrary functions by
polynomials. We explore this unexpected relationship in section 2 of the paper, and in section 3,
we take this to even greater heights, making an attempt to generalize this analysis of breaking up
a function into simpler parts in the abstract setting of a group. Let’s begin!

2. Fourier Series in the Real Setting

2.1. The cornerstone. Though we threw a flurry of mathematical buzzwords in the abstract,
our journey starts with no more than an elementary theorem, one that could be plucked from any
middle school math textbook.

Theorem 2.1. Given a point P , and a line l, the shortest distance between the two is the length
of the segment m, connecting the two such that it’s perpendicular to l.

1Note that here the period of f is taken to be 2π.
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As it turns out, much of the paper is simply an in-depth version of this rudimentary, apparently
useless, fact. While we do not present a formal proof of the theorem (silly thing to do given it’s
sheer intuitiveness), we do give a couple of proof sketches.

One uses the Pythagorean theorem. Start by drawing an arbitrary line m′ from P to l, which
is the hypotenuse of the right triangle PQQ′ (see Figure 1). Since (PQ)2 + (QQ′)2 = (PQ′)2, we
clearly have that PQ ≤ PQ′.

The other proof is one any calculus student would instantly churn out: first compute an expression
for the length of m′ in terms of the x coordinate of Q′, then compute it’s minimum value by setting
its derivative to zero and solving the resulting equation.

l

P

Q
m

m
′

Q′

Figure 1. Diagram for the first proof of Theorem 2.1

Arguably, Theorem 2.1 isn’t very useful, at least in the Euclidean geometry setting. It truly
comes to life where we can talk about lengths, distances and angles generally, without necessarily
referencing to tangible reality—exactly what a vector space 2 does.

2.2. Projection in Rn. We start by presenting an apparently unrelated problem. Given n points in
the plane, (x1, y1), · · · , (xn, yn), how would one compute a line, y = mx+c, that best approximates
the data? Phrased differently, we want to best solve the system of n equations yi = mxi + c for m
and c, or the matrix-vector equation, Ax = b, for the vector x = (m, c) as given below.

x1 1
x2 1
...

...
xn 1


(
m
c

)
=


y1
y2
...
yn


But then, what do we mean by best solve? One way is that we minimize the length of the error

vector, e := b−Ax. Note that Ax cannot leave 3 a two dimensional linear subspace of Rn, namely
C(A), or the column space of A, which is an alternative way of representing the constraints on
this problem. Hence, our question takes on the form:

Question 2.2. Find the vector p ∈ Rn such that p ∈ C(A) and ∥b− p∥ is minimized.

Now for the moment of insight: C(A) is nothing but a plane, and b, a vector (possibly) sticking
out of it. What’s the shortest distance between the two? Simple, the length of the vector that
connects the two such that it’s perpendicular to the plane! Did you notice what just happened?
You were subconsciously relating back to Theorem 2.1! You were drawing intuition from it, even
though we can’t construct a formal proof of this particular version just using Theorem 2.1.

2Actually a Hilbert space, but we’ll get to that later.
3More precisely, Ax ∈ C(A) for all x ∈ Rn. Note also that C(A) doesn’t always have to be two dimensional. In

fact, it is one dimensional iff xi = 1 for all i.



4 SIDDHARTH KOTHARI

Now, we attempt to formalize this argument by first re-stating our conjecture in it’s general-
ized form, deriving an expression for p, and then proving that our p does indeed minimize the
distance. Before we can proceed though, we must define what we mean when we say ‘the vector is
perpendicular to the plane’.

First, recall that two non-zero vectors x and y are perpendicular, or orthogonal, if and only
if cos θ = 0 where θ is the angle between the two vectors. Note that x · y = ∥x∥∥y∥ cos θ so
cos θ = 0 ⇐⇒ x · y = 0. We frame this as Proposition 2.3.

Proposition 2.3. Two vectors are orthogonal in Rn if and only if their dot product is zero. Note
that the zero vector is orthogonal to any vector in Rn.

At this point, it is logical to say that a vector x ∈ Rn is orthogonal to some linear subspace
S ⊆ Rn if it is orthogonal to every vector in S.

Definition 2.4. Given a subspace S ⊆ Rn, a vector x ∈ Rn is said to be orthogonal to S if x ·a = 0
for all a ∈ S. We denote this by x ⊥ S.

With those preliminaries taken care of, we can state our claim.

Claim 2.5. Given a subspace S ⊆ Rn and a vector b, there exists a vector p so that ∥b − p∥ =
minx∈S∥b− x∥ which is such that b− p ⊥ S.

As mentioned, we now compute an expression for p, again, solely by drawing intuition from
Theorem 2.1. Let’s start by assigning a basis {a1, · · · ,am} for the subspace S (taken to be m ≤ n
dimensional). By the linearity of the dot product b − p ⊥ S ⇐⇒ b − p ⊥ ai for all 1 ≤ i ≤ m,
i.e, p is orthogonal to each of the basis vectors for S. Thus, we have an equation for each i

b− p ⊥ ai ⇐⇒ ai · (b− p) = 0,

which can be re-casted into a single matrix-vector equation

AT (b− p) = 0,

where A is the n by m matrix such that it’s ith column is ai. Observe that p ∈ S =⇒ p ∈
span(a1, · · · ,an), meaning we can find unique scalars x1, · · · , xm such that p = a1x1+· · ·+amxm =
Ax where x ∈ Rm is such that it’s ith component is xi. On substituting this into our previous
equation we get

AT (b−Ax) = 0 ⇐⇒ ATAx = ATb.

To solve for x, the coefficient vector, we can simply multiply both sides by (ATA)−1 (which is
indeed invertible for all matrices A whose columns are linearly independent; see the appendix for
proof) which yields

(2.1) x = (ATA)−1ATb.

Lastly, remembering that p = Ax, we get our sought after expression for p

(2.2) p = A(ATA)−1ATb.

Remark 2.6. Equation 2.2 is known in the literature as the projection formula: the analogy here
is that p is like the shadow of b on S, commonly pictured as a plane. The vector p is called the
projection of b onto the subspace S, denoted by p = projS(b).

Remark 2.7. Notice that we have a linear operator P : Rn → S given by P = A(ATA)−1AT . This
is called the projection operator onto the subspace S. Note that projS(b) = Pb.
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Remark 2.8. It is of extreme importance that we show that P is independent of the choice of basis
for S—which is certainly not apparent from Equation 2.2. To see this, consider two bases {ai} and
{bi} with corresponding matrices A = [a1,a2, . . . ,am] and B = [b1,b2, . . . ,bm]. Note that there
exists an invertible matrix C such that B = AC, called the change of basis matrix. The projection
matrix using the first basis {ai} is PA = A(ATA)−1AT , and similarly, using the second basis {bi}
is PB = B(BTB)−1BT . Next, substituting B = AC into the expression for PB, we get

PB = B(BTB)−1BT = (AC)
(
(AC)T (AC)

)−1
(AC)T = AC(CTATAC)−1CTAT

= AC
(
C−1(ATA)−1(CT )−1

)
CTAT = A(CC−1)(ATA)−1(CT )−1CT )AT

= A(ATA)−1AT = PA.

Thus, PA = PB, which shows that the Equation 2.2 is indeed independent of the choice of basis.
Quite a relief!

Remark 2.9. In fact, if the basis {a1, · · · ,am} for S is an orthogonal one, then Equation 2.2
simplifies tremendously: ATA becomes a diagonal matrix whose ith diagonal entry is ∥ai∥2, meaning
we have

p = A


∥a1∥−2 0 · · · 0

0 ∥a2∥−2 · · · 0
...

...
. . .

...
0 0 · · · ∥an∥−2

ATb =
n∑

i=1

1

∥ai∥2
aia

T
i b =

n∑
i=1

ai · b
ai · ai

ai =
n∑

i=1

projspan{ai}(b).

Essentially, in this case, projecting the vector b onto S boils down to the projecting b onto each
of the individual one-dimensional linear subspaces spanned by each of the basis vectors, and then
adding the results up. Keep this in mind!

Example. Before moving on, let’s get our hands dirty and actually compute the line of best fit for a
set of points, say S = {(1, 2), (2, 3), (3, 5), (4, 2), (5, 6), (6, 9), (7, 11), (8, 7), (9, 10), (10, 4)}, which
is also shown in Figure 2. The corresponding matrix vector equation for S is given by



1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1



(
m
c

)
=



2
3
5
2
6
9
11
7
10
4


whereA =



1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1


and b =



2
3
5
2
6
9
11
7
10
4


.
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x

y

Figure 2. The points in S plotted on the xy plane.

Plugging our A and b into Equation 2.1 and simplifying

x =

(
385 55
55 10

)−1(
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1

)
b =

(
2

165
−1
15−1

15
7
15

)(
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1

)
b

=

(
− 3

55 − 7
165 − 1

33 − 1
55 − 1

165
1

165
1
55

1
33

7
165

3
55

2
5

1
3

4
15

1
5

2
15

1
15 0 − 1

15 − 2
15 −1

5

)
b =

(
118
165
7
3

)
.

Thus, our line should have a slope of 118
165 and a y−intercept of 7

3 . Let’s draw it!

x

y

Figure 3. The points in S plotted on the xy plane along with the line of best fit.

There we have it—a pretty decent approximating line! Try experimenting with other data points!

2.3. The Best Approximation Theorem. To unlock the maximum potential of Theorem 2.1,
we have to move away from Rn to an arbitrary vector space, V . However, as you might have
guessed, V can’t be any vector space, but one with additional structure—one that allows us to talk
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about closeness, lengths and angles. Recall that an inner product space is the perfect setting. As
a quick recap, we state the only definitions that will be important to us.

Definition 2.10. Given a vector space V over a field F, an inner product on V is a map ⟨·, ·⟩ :
V × V → F that satisfies the following axioms:

• Positive definiteness: For all v ∈ V , we have ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 ⇐⇒ v = 0.
• Linearity in the first argument: For all v, u, w ∈ V and α, β ∈ F, we have ⟨αv+βu,w⟩ =
α⟨v, w⟩+ β⟨u,w⟩.

• Conjugate symmetry: For all v, w ∈ V , we have ⟨v, w⟩ = ⟨w, v⟩.

Definition 2.11. An inner product space is an ordered pair (V, ⟨·, ·⟩) where V is a vector space
and ⟨·, ·⟩ and inner product on V .

Remark 2.12. It’s helpful to view the inner product as the generalization of the dot product on Rn

—all the important properties that made the dot product the dot product find themselves in the
definition of the inner product.

Taking inspiration from the fact that the length of v ∈ Rn is equal to
√
v · v, we define the norm

of a vector in an inner product space V .

Definition 2.13. Given an inner product space (V, ⟨·, ·⟩), the map from ∥ · ∥ : V → F given by

∥v∥ =
√
⟨v, v⟩ is called the norm on V .

Remark 2.14. The norm on V induces a metric d : V × V → R≥0 given by d(x, y) = ∥x− y∥ for all
x, y ∈ V .

Definition 2.15. Let V be an inner product space, x, y ∈ V and A,B ⊆ V Then, we say that

• x and y are orthogonal if ⟨x, y⟩ = 0 and is denoted by x ⊥ y,
• x and A are orthogonal if ⟨x, a⟩ = 0 for all a ∈ A and is denoted by x ⊥ A,
• A and B are orthogonal if ⟨a, b⟩ = 0 for all a ∈ A and b ∈ B and is denoted by A ⊥ B.

The concept of a Hilbert space ties the chain

inner product → norm → metric

together into a single structure.

Definition 2.16. An inner product space (V, ⟨·, ·⟩) is said to be a Hilbert space if the corresponding
norm induces a metric d such that V is complete with respect to d. That is, every Cauchy sequence
(xn)n∈N in V converges to a point x ∈ V .

We now give a few examples of inner product spaces—some might already be familiar.

Example. The usual real euclidean space Rn with the dot product as the inner product.

Example. The complex version of euclidean space, Cn = {(z1, · · · , zn) : zi ∈ C} with vector addition
and scalar multiplication given component wise, along with the complex version of the dot product,

⟨v, w⟩ =
n∑

i=1

viwi for all v, w ∈ Cn.

Think about why we added the complex conjugate!

Example. The set L2([a, b]) comprising of the real-valued integrable functions f : [a, b] → R. Here,
vector addition and scalar multiplication are point-wise, and the inner product is given by

⟨f, g⟩L2 =

∫ b

a
f(x)g(x) dx for all f, g ∈ L2([a, b]).
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The norm induced by the inner product is

∥f∥L2 =

(∫ b

a
[f(x)]2 dx

) 1
2

for all f ∈ L2([a, b]).

To ensure that the norm of any function is finite, we restrict L2([a, b]) to functions such that

∥f∥L2 =
(∫ b

a [f(x)]
2 dx

) 1
2
< ∞. In symbols,

L2([a, b]) =

{
f : [a, b] → R | f is integrable and

∫ b

a
|f(x)|2 dx < ∞

}
.

Note that elements of L2([a, b]) are called square integrable functions.

All the three examples above are also Hilbert spaces. Try proving it! After this quick setup, we
can state the generalized version of Claim 2.5.

Theorem 2.17. Given a finite dimensional subspace S of an inner product space V , and a vector
v ∈ V , there exists a vector p ∈ S such that ∥v − p∥ = minx∈S∥v − x∥. Furthermore, p is unique,
and is such that v − p ⊥ S.

Given our earlier reasoning about Claim 2.5 and Remark 2.9, we would expect that

(2.3) p =
n∑

i=1

⟨ei, v⟩
⟨ei, ei⟩

ei,

where {ei}ni=1 is an orthogonal basis for S—compare this with
∑n

i=1
ai·b
ai·ai

ai we had earlier. With
this in mind, we dive into the proof.

Proof. This proof is spilt into two parts: first, we will show that if p ∈ S is such that v−p ⊥ S, then
∥v− p∥ = minx∈S ∥v− x∥, that is ∥v− x∥ ≥ ∥v− p∥; and then the expression e = v−

∑n
i=1

⟨ei,v⟩
⟨ei,ei⟩ei

is orthogonal to S.
First, by the positive definiteness of the norm, ∥v − x∥ ≥ 0 and ∥v − p∥ ≥ 0, and so we have

∥v − x∥ ≥ ∥v − p∥ ⇐⇒ ∥v − x∥2 ≥ ∥v − p∥2.

Thus, it suffices to show ∥v − x∥2 ≥ ∥v − p∥2 for all x ∈ S. This expression, with the square, is
easier to expand!

Start by considering an arbitrary x ∈ S. We can write x = p + (x − p), and since S is closed
under vector addition, x− p ∈ S and so x = p+ y for y ∈ S. Expanding ∥v − x∥2:

∥v − x∥2 = ∥v − (p+ y)∥2 = ∥(v − p)− y∥2.

Since v − p ⊥ y,

∥(v − p)− y∥2 = ∥v − p∥2 + ∥y∥2,
by the Pythagorean theorem. As ∥y∥2 ≥ 0:

∥v − x∥2 = ∥v − p∥2 + ∥y∥2 =⇒ ∥v − x∥2 ≥ ∥v − p∥2.

For the uniqueness part, we have to show that ∥v − x∥ = ∥v − p∥ ⇐⇒ x = p. Again, since
∥v − x∥ ≥ 0 and ∥v − p∥ ≥ 0, we have

∥v − x∥ = ∥v − p∥ ⇐⇒ ∥v − x∥2 = ∥v − p∥2.

Thus, it suffices to show ∥v − x∥2 = ∥v − p∥2 ⇐⇒ x = p, as done below

∥v − x∥2 = ∥v − p∥2 ⇐⇒ ∥v − p∥2 + ∥y∥2 = ∥v − p∥2 ⇐⇒ ∥y∥2 = 0 ⇐⇒ y = 0 ⇐⇒ x = p.
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Second, to show v −
∑n

i=1
⟨ei,v⟩
⟨ei,ei⟩ei ⊥ S, we expand ⟨v − p, x⟩: note that x ∈ S =⇒ x =

∑m
i=1 aiei,

for some scalars ai. Thus,

⟨v − p, x⟩ =

〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, x

〉
=

〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei,
n∑

j=1

ajej

〉
=

n∑
j=1

aj

〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, ej

〉
.

Now, see that〈
v −

n∑
i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, ej

〉
= ⟨v, ej⟩ −

〈
n∑

i=1

⟨ei, v⟩
⟨ei, ei⟩

ei, ej

〉

= ⟨v, ej⟩ −
n∑

i=1

⟨ei, v⟩
⟨ei, ei⟩

⟨ei, ej⟩

= ⟨v, ej⟩ −
n∑

i=1

⟨ei, v⟩
⟨ei, ei⟩

δij⟨ei, ej⟩ = ⟨v, ej⟩ − ⟨v, ej⟩ = 0.

Hence ⟨v − p, x⟩ = 0 for all x ∈ S, which completes the proof. ■

As a follow-up, we look at two examples that highlight one of the central themes in math: with
generalization through abstraction comes power. In fact, the second example sets the stage for the
main content of this paper.

Example. Consider the inner product space L2([−1, 1]) as defined above. We’ll attempt to ap-
proximate arbitrary functions using polynomials: first we’ll project a f ∈ L2([−1, 1]) onto P1 =
span(1, x), the set of degree one polynomials, then onto P2 = span(1, x, x2), the degree two polyno-
mials, and P3 = span(1, x, x2, x3), continuing on, using polynomials with an ever increasing degree
to build a sequence of polynomials—somehow, perhaps intuitively, one feels that the projection
of f onto P∞ will be f itself. Before we get started though, note that Equation 2.3 requires an
orthogonal basis for the Pn. Here, we use the Gram-Schmidt algorithm to orthogonalize the already
existing basis {1, x, · · · , xn}, which is carried out in Table 1 for n = 10.

Original Basis Element Orthogonal Basis Element
x0 1
x1 x

x2 x2 − 1
3

x3 x3 − 3
5x

x4 x4 − 3
7x

2 + 3
35

x5 x5 − 5
9x

3 + 10
63x

x6 x6 − 15
11x

4 + 15
77x

2 − 5
231

x7 x7 − 7
13x

5 + 35
143x

3 − 21
715x

x8 x8 − 4
9x

6 + 12
143x

4 − 12
715x

2 + 1
429

x9 x9 − 9
17x

7 + 84
323x

5 − 126
2431x

3 + 9
46189x

x10 x10 − 5
11x

8 + 15
187x

6 − 45
2431x

4 + 25
46189x

2 − 5
969969

Table 1. Orthogonal Polynomials using Gram-Schmidt Process on
{1, x, x2, . . . , x10}

These polynomials are known as the Legendre polynomials, and we use Pn to denote Legendre poly-
nomial of degree n. With that out of the way, let’s take f(x) = ex, and get projecting! Invoking
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Equation 2.3 we have,

pn(x) = projPn
(ex) =

n∑
i=1

∫ 1
−1 Pi(x)e

x dx∫ 1
−1 Pi(x)Pi(x) dx

Pi(x).

The graphs of the resulting approximations from n = 0 to n = 3 are shown below.

−1 1

1

2

x

yex

p0

Figure 2. Approximation of ex with n = 0.

−1

1

2

x

yex

p1

Figure 3. Approximation of ex with n = 1.
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−1

1

2

x

yex

p2

Figure 4. Approximation of ex with n = 2.

Compare this with the corresponding Taylor series approximation for ex, T2(x) = 1 + x+ x2

2 , as

shown below.4

−1

1

2

x

yex

Taylor Approx.

Figure 5. Degree 2 Taylor approximation of ex.

4To make this more precise, one way would be to compare
∫ 1

−1
(ex − p2(x)) dx and

∫ 1

−1
(ex − T2(x)) dx, the total

area between the ex and it’s approximation.
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In fact, by the time we get to projP3
(ex), one can’t even tell the difference between the two

graphs!

−1

1

2

x

yex

p3

Figure 6. Approximation of ex with n = 3.

Example. Let’s turn the tables by approximating a polynomial, like f(x) = x2, using non-polynomial
functions—say using the fundamental cosines: 1, cosx, cos 2x, · · · . Before we dive into it, note that∫ +π

−π
cos(nx) cos(mx) dx = πδmn

for all m,n ∈ N, so {1, cosnx : n ∈ N} is already an orthogonal set in L2([−π, π]). Throwing in

the appropriate normalizing factors, we get C =
{

1√
2π
, 1√

π
cosnx : n ∈ N

}
is an orthonormal set in

L([−π, π]). Now, we’ll project x2 onto span(Cn) where

Cn =

{
1√
2π

,
1√
π
cosmx : 1 ≤ m ≤ n

}
to get the nth order approximation of x2, which we denote by cn. Again, we expect that as n → ∞,
we have cn → x2. Using our projection formula,

cn = projspan(Cn) =
〈
x2,

1√
2π

〉 1√
2π

+
n∑

k=1

〈
x2,

1√
π
cos kx

〉 1√
π
cos kx

=
1

2π

∫ π

−π
x2 dx+

1

π

n∑
k=1

∫ π

−π
x2 cos(kx) dx cos kx.

Integrating by parts,
∫
x2 cos(kx) dx = x2

k sin(kx) + 2x
k2

cos(kx) − 2
k3

sin(kx) + C. Computing the

definite integral,
∫ π
−π x

2 cos(kx) dx = 4π
k2
(−1)k. Picking off,

cn =
π2

3
+

1

π

n∑
k=1

4π

k2
(−1)k cos kx =

π2

3
+ 4

n∑
k=1

1

k2
(−1)k cos kx.

Now for the burning question: do these cn’s approximate x2 better as n → ∞? Have a look at
the graphs below.
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−1 −0.5 0.5 1

−0.5

0.5

1

x

y
x2

c1

Figure 7. Approximation of x2 with n = 1

−1 −0.5 0.5 1

−0.5

0.5

1

x

y
x2

c2

Figure 8. Approximation of x2 with n = 2

−1 −0.5 0.5 1

−0.5

0.5

1

x

y
x2

c3

Figure 9. Approximation of x2 with n = 3
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−1 −0.5 0.5 1

−0.5

0.5

1

x

y
x2

c4

Figure 10. Approximation of x2 with n = 4

−1 −0.5 0.5 1

−0.5

0.5

1

x

y
x2

c5

Figure 11. Approximation of x2 with n = 5

−1 −0.5 0.5 1

−0.5

0.5

1

x

y
x2

c10

Figure 12. Approximation of x2 with n = 10

Again, by the time we get to c10, you can’t tell the difference between x2 and the approximating
function! In fact, you may have recognized the expression for c∞ as the Fourier series of x2 from
−π to π!

Let’s try approximating another function using C, say f(x) = x. In this case, the nth order
approximation would be given by

cn =
〈
x,

1√
2π

〉
+
1

π

n∑
k=1

〈
x, cos(kx)

〉
cos(kx) =

1√
2π

∫ π

−π
x dx+

1

π

n∑
k=1

∫ π

−π
x cos(kx) dx cos(kx).
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Before diving right in to bash out the integral
∫ π
−π x cos(kx) dx, note that x cos(kx) is an odd

function and the domain of integration is symmetric about the origin. Hence the positive and
negative areas on either side of the y−axis will completely cancel, meaning ⟨x, cos(kx)⟩ = 0 for all
n ∈ N. Reasoning identically,

∫ π
−π x dx = 0 which means projspan(Cn)(x) = 0 for all n ∈ N—that’s

definitely not what we wanted! C has failed!
This shows us that using C alone, it is not possible to approximate an arbitrary function. To

approximate any function, we’ll need the other trigonometric function, the sine.

Example. Just like the cosines, define

S =

{
1√
2π

,
1√
π
sin(nx) : n ∈ N

}
which forms an orthonormal set in L2([−π, π]). Again, we’ll project x onto Sn =

{
1√
2π
, 1√

π
sin(mx) : 1 ≤ m ≤ n

}
to get sn, the nth order approximation of x.

projspan(Sn)(x) = sn =
〈
x,

1√
2π

〉 1√
2π

+
n∑

k=1

〈
x,

1√
π
sin kx

〉 1√
π
sin kx

=
1

2π

∫ π

−π
x dx+

1

π

n∑
k=1

∫ π

−π
x sin(kx) dx sin kx.

Integrating by parts,
∫ π
−π x sin(kx) dx = [−x

k cos(kx) +
1
k2

sin(kx)]+π
−π = −π

k cos(kπ) + 2
k2

sin(kπ) =

−2π(−1)k

k . Thus,

sn =
n∑

k=1

−2(−1)k

k
sin kx = 2

n∑
k=1

(−1)k+1

k
sin kx.

Use a graphing software to see what happens to sn as n → ∞!

Thus, the example of f(x) = x tells us that we definitely require at least both the sines and
cosines to approximate any function in L2([−π, π]). To this end, define the orthornormal set
T ⊆ L2([−π, π]) as follows

T := S ∪ C =

{
1√
2π

,
1√
π
cos(nx),

1√
π
sin(nx) : n ∈ N

}
and

TN =

{
1√
2π

,
1√
π
cos(nx),

1√
π
sin(nx) : 1 ≤ n ≤ N

}
.

The elements of T are called the trigonometric polynomials. Why?
That’s all well, but the question still remains: how can we be sure that we can approximate any

function using linear combinations of elements of T ?
This is a perfectly valid question, but it does turn out that any function can be approximated

by T to an arbitrary degree of precision. That is, we have

Theorem 2.18. The set of finite linear combinations of elements of T is dense in L2([−π, π]) with
respect to the metric induced by the norm ∥ · ∥L2 .

Remark 2.19. The proof of this theorem requires considerably more functional analysis back-
grounds, so we omit it here. Moreover, it’ll simply serve as a hurdle to the flow of this paper.

Recall that this is precisely the definition of a Hilbert basis, as defined below.

Definition 2.20. Let H be a Hilbert space. A Hilbert basis is a set {ek}k∈K ⊂ H such that

• {ek}k∈K is an orthonormal system. That is, ⟨ei, ej⟩ = δij for all i, j ∈ K.
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• {ek}k∈K is complete. That is, the set of finite linear combinations of elements of {ek}k∈K
is dense in H. In symbols, for every v ∈ H and ε > 0, there exists a finite subset I ⊆ K
and scalars αi such that ∥∥∥∥∥v −∑

i∈I
αiei

∥∥∥∥∥ < ε.

At any rate, we would like to show that given that T is a Hilbert basis for L2([−π, π]), the
corresponding sequence of projections SN , given by

SN = projspan(TN )(f) = A0 +
N∑

n=1

An cosnx+Bn sinnx

where

• A0 =
1√
2π

〈
f, 1√

2π

〉
= 1

2π

∫ π
−π f(x) dx,

• An = 1√
π
cos(nx)

〈
f, 1√

π
cosnx

〉
= 1

π

∫ π
−π f(x) cos(nx) dx for all n ∈ N,

• Bn = 1√
π
sin(nx)

〈
f, 1√

π
sinnx

〉
= 1

π

∫ π
−π f(x) sin(nx) dx for all n ∈ N,

converges to f in L2([−π, π]). In general setting, this would take on the form of Proposition 2.21,
which is what we prove.

Proposition 2.21. Let {ek}∞k=1 be a countable Hilbert basis for the Hilbert space H, and v ∈ H.
Then, the sequence vn = projspan({e1,··· ,en})(v) =

∑n
i=1⟨v, ei⟩ei converges with respect to the norm

on H to v.

Proof. We show that the sequence Sn = ∥v −
∑n

i=1⟨v, ei ⟩ei∥ → 0 as n → ∞. Since {ek}k∈K
is complete in H, given an ε > 0, there exists an n ∈ N and scalars a1, · · · , an such that
∥v −

∑n
i=1 aiei∥

2 < ε. Now, if we can show that ∥v −
∑n

i=1 aiei∥
2 ≥ ∥v −

∑n
i=1⟨v, ei⟩ei∥

2 then we

would have ε > ∥v −
∑n

i=1⟨v, ei⟩ei∥
2, meaning S2

n → 0 as n → ∞ and since each Sn is non-negative,

we must have that Sn → 0 as n → ∞. Thus, we show that ∥v −
∑n

i=1 aiei∥
2 ≥ ∥v −

∑n
i=1⟨v, ei⟩ei∥

2.
First, ∥∥∥∥∥v −

n∑
i=1

aiei

∥∥∥∥∥
2

= ⟨v, v⟩ −

〈
v,

n∑
i=1

aiei

〉
−

〈
n∑

i=1

aiei, v

〉
+

〈
n∑

i=1

aiei,
n∑

i=1

aiei

〉

= ∥v∥2 −
n∑

i=1

ai⟨v, ei⟩ −
n∑

i=1

ai⟨v, ei⟩+
n∑

i=1

|ai|2.

Next,∥∥∥∥∥v −
n∑

i=1

⟨v, ei⟩ei

∥∥∥∥∥
2

= ⟨v, v⟩ −

〈
v,

n∑
i=1

⟨v, ei⟩ei

〉
−

〈
n∑

i=1

⟨v, ei⟩ei, v

〉
+

〈
n∑

i=1

⟨v, ei⟩ei,
n∑

i=1

⟨v, ei⟩ei

〉

= ∥v∥2 −
n∑

i=1

⟨v, ei⟩⟨v, ei⟩ −
n∑

i=1

⟨v, ei⟩⟨ei, v⟩+
n∑

i=1

|⟨v, ei⟩|2

= ∥v∥2 −
n∑

i=1

⟨v, ei⟩⟨v, ei⟩ −
n∑

i=1

⟨v, ei⟩⟨v, ei⟩+
n∑

i=1

|⟨v, ei⟩|2

= ∥v∥2 −
n∑

i=1

⟨v, ei⟩⟨v, ei⟩.
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Finally, putting the two together,∥∥∥∥∥v −
n∑

i=1

aiei

∥∥∥∥∥
2

−

∥∥∥∥∥v −
n∑

i=1

⟨v, ei⟩ei

∥∥∥∥∥
2

=
n∑

i=1

|⟨v, ei⟩|2 −
n∑

i=1

ai⟨v, ei⟩ −
n∑

i=1

ai⟨v, ei⟩+
n∑

i=1

|ai|2

=
n∑

i=1

⟨v, ei⟩⟨v, ei⟩ − ai⟨v, ei⟩ − ai⟨v, ei⟩+ aiai

=
n∑

i=1

⟨v, ei⟩
(
⟨v, ei⟩ − ai

)
−ai

(
⟨v, ei⟩ − ai

)
=

n∑
i=1

|⟨v, ei⟩ − ai|2 ≥ 0.

■

Corollary 2.22. Given a f ∈ L2([−π, π]), the sequence of functions (Sn)n∈N converges to f in the
L2 sense. That is,

lim
n→∞

∫ π

−π
[Sn(x)− f(x)]2 dx = 0.

Remark 2.23. Proposition 2.21 justifies the use of the word basis for what we call a Hilbert ba-
sis—we can write any v ∈ H as

∑∞
k=1⟨ek, v⟩ek, which is exactly how what we would do with a

normal orthonormal basis. In fact, another way to view the Fourier series is as a change of basis
transformation in L2([−π, π]). When we define a function f ∈ L2([−π, π]) in the standard sense,
we’re actually writing down its coordinates with respect to the useless basis B = {φi}i∈[−π,π],
where φi(x) = δix for all x ∈ [−π, π]. Then, computing its Fourier series amounts to computing
the coordinates of f with respect to the basis T ⊂ L2([−π, π]).

Explicitly,

{f(i)}i∈[−π,π] → {⟨f, ei⟩}ei∈T .

While the value f(i) tells us the contribution of φi to f , which is practically useless in this context,
⟨f, ei⟩ quantifies the contribution of the periodic function ei to f . This is nontrivial information,
as it essentially decomposes the function f into its simplest frequency components. Note that the
fact the Fourier series converges to f allows us to reconstruct the function f from it’s simplest
frequency components, ⟨f, ei⟩, simply by summing them up after suitable multiplication.

Remark 2.24. This decomposing business makes more sense if we consider a 2π−periodic function
f : R → R. In this special case, it’s Fourier series on [−π, π] is capable of describing f completely
throughout all of R: the Fourier series of f on any interval of the form [nπ, nπ + 2π] where n ∈ Z
is exactly the same as it’s Fourier series over [−π, π]! Then, it makes sense to say that sin(nx)
and cos(nx) are indeed the simplest type of 2π−periodic functions (try graphing them!), and hence
we’re decomposing an arbitrary 2π−periodic function into a linear combination of the cos(nx)’s
and sin(nx)’s! However, as already shown, we can extend our analysis to any f ∈ L2[−π, π].

Remark 2.25. Before we wrap up our analysis in this setting, I would like to transform the expression
for the Fourier series of a function in a form that is more commonplace and compact.

First, using Euler’s formula, we can rewrite cos(nx) = einx+e−inx

2 and sin(nx) = einx−e−inx

2i .
Substituting this into the expression for SN , we get

SN (x) = A0+

N∑
n=1

(
An

einx + e−inx

2
+Bn

einx − e−inx

2i

)
= A0+

N∑
n=1

(
An

2
+

Bn

2i

)
einx+

(
An

2
− Bn

2i

)
e−inx.
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Now, we define Cn as

Cn =
An

2
+

Bn

2i
=

1

2

(
An − iBn

)
,

and so

C−n =
An

2
− Bn

2i
=

1

2

(
An + iBn

)
.

Hence, SN can be written as

SN (x) = A0 +

N∑
n=1

Cne
inx + C−ne

−inx =

N∑
n=−N

Cne
inx

where

Cn =
1

2
(An − iBn) =

1

2

(
1

π

∫ π

−π
f(x) cos(nx) dx− i

1

π

∫ π

−π
f(x) sin(nx) dx

)
=

1

2π

∫ π

−π
f(x)e−inxdx.

Proposition 2.26. Let f ∈ L2([−π, π]). Then the Fourier series to N terms of f can also be
defined as

SN (x) =
N∑

n=−N

f̂(n)einx where f̂(n) = Cn =
1

2π

∫ π

−π
f(x)e−inx dx for all n ∈ Z.

Remark 2.27. It is easy to generalize the formula mentioned above to compute the Fourier series
of a function defined over any an arbitrary interval [−a, a]. First squeeze (or stretch!) the function
to fit it in [−π, π]. Then, find the Fourier series of the modified function, and stretch (or squeeze)
the Fourier series to fit it back into [−a,+a]. This is carried out explicitly below:

• The transformed function g : [−π, π] → R is given by g(x) = f(xaπ ). Note that g(π) = f(a)
and g(−π) = f(−a), so the it makes sense.

• Then computing the Fourier coefficients Cn of g:

Cn =
1

2π

∫ π

−π
g(x)e−inx dx

=
1

2π

∫ π

−π
f
(xa
π

)
e−inx dx

=
1

2π

∫ a

−a
f(u)e−

iπnx
a

π

a
du

=
1

2a

∫ a

−a
f(u)e−

iπnx
a du.

Where in the second line we made the substitution u = x a
π to clear things up a bit. The

Fourier series of g becomes: S′
N (x) =

∑N
n=−N Cne

−inx where Cn = 1
2a

∫ a
−a f(u)e

−iπnx
a du.

• Finally, we de-transform (that is, squeeze or stretch) the Fourier series of g by replacing the
x with an π

ax to get SN , to get the Fourier series of f over [−a, a]:

SN (x) =

N∑
n=−N

f̂(n)e
iπnx

a where f̂(n) =
1

2a

∫ a

−a
f(x)e−

iπnx
a dx for all n ∈ Z.

Remark 2.28. Proposition 2.26 hints that E =
{

1√
2π
einx : n ∈ Z

}
is a Hilbert basis for the complex

version of L2([−π, π]) —which can be precisely described as the Hilbert space of complex valued
integrable functions f : [−π, π] → C such that

∫ π
−π |f(x)|

2 dx < ∞ with the inner product

⟨f, g⟩ =
∫ π

−π
f(x)g(x) dx.
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Again, this is true, but proving the completeness of E requires much more machinery.

3. Generalizing Fourier Series to Groups

After looking at the Fourier series of a function f : [−π, π] → F where F is either R or C, we
turn to the central question of this paper.

Question 3.1. Is it possible to construct an analogue of the Fourier series of a function f : G → C
where G is any arbitrary group?

Note that G could be anything: right from the humble Z/nZ, to U(n), the group of n by n
unitary matrices with complex entries, or even S4, the symmetric group of order n. Essentially, we
would like to break down an f , which might be dauntingly complicated at the moment, into simpler,
more manageable parts, just as we decomposed a (periodic) function into a series of trigonometric
polynomials, which represented the simplest type of periodic functions.

Before we begin, I’m sorry to disappoint you, but I must mention that we’ll only be considering
finite groups G in this paper. Even then, we require a good deal of representation theory, which
we’ll cover here. First, we’ll start by defining where the functions f : G → C live.

3.1. The Group Algebra. The set of all functions f : G → C forms a vector space with addition
and scalar multiplication given point-wise as usual. Taking inspiration from the inner products on
Cn and L([−π, π]),

⟨v, v′⟩ =
n∑

i=1

viv′i for all v, v′ ∈ Cn ⟨f1, f2⟩ =
∫ π

−π
f1(x)f2 dx for all f1, f2 ∈ L2([−π, π]),

we define for all f1, f2 : G → C,

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g).

We threw in a factor of 1
|G| because results in some neat cancellations, and so formula simplifications,

as we’ll see later.

Definition 3.2. The inner product space of functions f : G → C as defined above is called the
group algebra of G and is denoted by C[G].

Remark 3.3. The previous definition raises the question: why did we refer C[G] as the group
algebra? Answering this requires a short detour, which we’ll take as it will be important to us
later.

In general, an algebra is a structure that is both a ring and a vector space at the same time.
Stated more precisely,

Definition 3.4. A k−algebra is set equipped with operations + : A × A → A, × : A × A → A
and · : k × A → such that (A,+, ·) forms a k−vector space and (A,+,×) a ring. Also, the two
multiplications, · and ×, must be compatible with each other, that is, α(ab) = (αa)b = a(αb) for
all α ∈ k and a, b ∈ A.

Algebras are all over the place: C is an R−algebra, F[x] a F−algebra, End(V ) where V is an
F−vector space an F−algebra. To create an algebra from a group G, observe that one can ‘encode’,
or map, a function f : G → C as the summation

∑
g∈G f(g)g. Where does this summation live?

Observe that it looks like a linear combination of elements of G, so it’s an element of the vector
space V over the field C with basis G. In symbols,

V =

∑
g∈G

agg : ag ∈ C

 .
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The operations are defined as you would expect,

• Vector addition:
∑

g∈G agg +
∑

g∈G bgg =
∑

g∈G(ag + bg)g,

• Scalar multiplication: α ·
(∑

g∈G ag

)
=
∑

g∈G(αag)g for all α ∈ C.

Constructed like this, it isn’t too hard to define a multiplication operation on V—just use the
distributive property;(∑

g∈G
agg

)(∑
h∈G

bhh

)
=
∑
g∈G

∑
h∈G

agbhgh =
∑

(g,h)∈G×G

agbhgh =
∑
g′∈G

 ∑
(x,y)∈G×G

xy=g′

axbyg
′

 ,

meaning we have ourselves C−algebra, called the group algebra over C.

Now, we’ll cover the required representation theory.

3.2. An Algebraic Interlude: Representation Theory.

3.2.1. What is representation theory? Roughly speaking, representation theory lies at the intersec-
tion of the two cornerstones of modern algebra: group theory, the study of symmetry and linear
algebra, the study of maps that deform (vector) spaces in a certain, ‘clean way’. More precisely,
given a group, we hope to understand it better by studying it’s interaction with a vector space.

Definition 3.5. A representation of a group G is an ordered pair (ρ, V ), where V is a vector space
and ρ : G → GL(V ) is a homomorphism of groups.

First, we scrutinize this definition, as is virtually the foundation for all the theory that follows.
GL(V ) is the general linear group of V , the set of invertible dimV by dimV matrices which forms
a group under the usual matrix multiplication. Remember from linear algebra that these matrices
describe invertible linear maps from V to itself (like a rotation of the plane), so here we are viewing
a g ∈ G as acting on a vector space via an invertible linear map, namely, ρ(g).

With that out of the way, let us jump into some examples!

Example. Consider G = Zn, the cyclic group of order n. We could interpret the generator as a
rotation by 2π/n about the origin, meaning G consists of the rotational symmetries of an n−gon,
so it’s reasonable to let V = R2, the plane, and

ρ(k) =

[
cos 2πk

n − sin 2πk
n

sin 2πk
n cos 2πk

n

]
for all k ∈ Zn, which is the matrix corresponding to the rotation.

Example. But who restricted us to rotations? There are many other ways to interpret the generator
of Zn, like a representing reflection by a line tilted 2π/n from the positive x−axis. Then, V = R2

and

ρ(k) =

[
cos 4πk

n sin 4πk
n

sin 4πk
n − cos 4πk

n

]
for all k ∈ Zn.

Example. Stepping away form Zn, let G = S3, the symmetric group on three elements. Representing
this is quite straightforward: simply use the three by three permutation matrices! For concreteness,
we have V = R3 and

ρ
(
(1)(2)(3)

)
=

1 0 0
0 1 0
0 0 1

 ρ
(
(1)(23)

)
=

1 0 0
0 0 1
0 1 0

 ρ
(
(13)(2)

)
=

0 0 1
0 1 0
1 0 0


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ρ
(
(12)(3)

)
=

0 1 0
1 0 0
0 0 1

 ρ
(
(123)

)
=

0 1 0
0 0 1
1 0 0

 ρ
(
(132)

)
=

0 0 1
1 0 0
0 1 0

 .

Notation. Note that ρ(g) is used to denote the linear map ρ(g) : V → V and ρ(g)(v) to the image
of v ∈ V under the map ρ(g). Somewhat annoyingly, we will use only ρ or only V to denote the
representation (ρ, V ), whenever the other is clear from context.

Just like we can take the direct sum of two vector spaces and even groups, we can also do the
same for representations.

Definition 3.6. Let (ρ1, V1) and (ρ2, V2) be representations of a group G. The direct sum of the
two representations, denoted by (ρ1 ⊕ ρ2, V1 ⊕ V2) is defined to be (ρ1 ⊕ ρ2)(g) =

(
ρ1(g), ρ2(g)

)
∈

GL(V1 ⊕ V2) for all g ∈ G.

Remark 3.7. The matrix representation of the linear map (ρ1 ⊕ ρ2)(g) for a g ∈ G is given by the
block-diagonal matrix [

ρ1(g) 0
0 ρ2(g)

]
.

A notion that will be extremely useful in what follows is the dimension of a representation.

Definition 3.8. The dimension of a representation ρ : G → GL(V ), is the dimension of the
underlying vector space V .

3.2.2. Decomposing Representations. In this section, we study the structure of a representation
in the hope to break it into simpler, more manageable parts. Just like in linear algebra we have
subspaces and in group theory subgroups, we also have such a sub-structure for representations,
called a subrepresentation (surprise, surprise!).

How would it look like? It should be a representation of a group G in its own right, while built
out of a given representation (ρ, V ). Thus, we can simply restrict the domain of ρ(g) : V → V for
all g ∈ G to some fixed vector subspace W of V . But are we guaranteed that ρ(g)|W ∈ GL(W ) for
all g ∈ G? We are if and only if W is G−invariant—vectors in W should not be thrown out of it
by ρ(g).

Definition 3.9. Let (ρ, V ) be a representation of a group G. A linear subspace W of V is said to
be G−invariant if ρ(g)(w) ∈ W for all g ∈ G and w ∈ W .

Now we are ready to define the subrepresentation.

Definition 3.10. A subrepresentation of a representation (ρ, V ) of a group G, is a G−invariant
subspace W ⊆ V , along with the homomorphism obtained by restricting the domain of ρ(g) to W
for all g ∈ G.

With this, the concepts of reducible and irreducible representations naturally come up.

Definition 3.11. A representation (ρ, V ) of a group G is said to be irreducible if its only subrep-
resentations are the trivial representation W = {0}, and itself. A subrepresentation is said to be
reducible if it is not irreducible.

The first thing that comes to mind when one reads Definition 3.11 are prime numbers! In fact,
we have Theorem 3.12 that tells us these irreducibles are indeed the building blocks, the atoms of
representation theory 5.

5These type of theorems crop up a lot in different areas of algebra! For example in group theory, we have that
any finite abelian group is isomorphic to a direct product of cyclic groups of prime power order (the ‘atoms’), albeit
this version is easier to prove.
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Theorem 3.12. Let V be a representation of a group G. Then either V is irreducible, or a direct
sum of irreducible representations of G.

How do we go about proving this? Recall again from linear algebra that given a subspace W
of an inner product space V , we can construct it’s orthogonal complement W⊥ which is such
that V = W ⊕ W⊥—a sort of decomposition of V . Now, if we can show that if W ⊆ V is a
subrepresentation of V then so is W⊥, we should be able to complete the proof (with a dash of
induction). To do so, we start with a definition.

Definition 3.13. Let V be a representation of a group G. An inner product ⟨·, ·⟩ on V is said to
be unitary if for all g ∈ G and v1, v2 ∈ V we have ⟨v1, v2⟩ =

〈
ρ(g)(v1), ρ(g)(v2)

〉
.

This terminology is borrowed from linear algebra. A unitary linear map from a vector space to
itself, say A, is one that preserves distances and angles (comprising only of rotations, both proper
and improper), meaning the generalized dot product of two vectors doesn’t change, which can be
written as ⟨x, y⟩ = ⟨Ax,Ay⟩ for all x and y in V .

Proposition 3.14. Let W be a sub-representation of a representation V equipped with a unitary
inner product ⟨·, ·⟩ of a group G. Then W⊥ is also a sub-representation of V .

Proof. Assuming that W is G−invariant we must show that W⊥ is also G−invariant. Start by
considering ⟨ρ(g)(w′), w⟩ for any g ∈ G, w′ ∈ W⊥ and w ∈ W . Since the inner product is unitary
we have that ⟨ρ(g)(w′), w⟩ = ρ(g−1)⟨ρ(g)(w′), w⟩ = ⟨w′, ρ(g−1)w⟩ = 0, where the last equality
follows since ρ(g−1)w ∈ W . Thus, by the very definition of the orthogonal complement of a
subspace, ⟨ρ(g)(w′), w⟩ = 0 and w ∈ W together imply that ρ(g)(w′) ∈ W⊥ which means that W⊥

is G−invariant. Hence the restriction of ρ to W⊥ is a sub-representation. ■

But hey—this only works out if the inner product is unitary! What if its not? Luckily for us, it
turns out there is nothing exclusive about the gang of vector spaces that posses an unitary inner
product. We can always build one up from a completely ‘normal’ inner product.

Proposition 3.15. Let V be a representation of a group G. Given an arbitrary inner product ⟨·, ·⟩
on V , it is possible to construct a unitary inner product on V , commonly denoted ⟨·, ·⟩G.
Proof. Consider the inner product given by

⟨v1, v2⟩G =
1

|G|
∑
g∈G

〈
ρ(g)(v1), ρ(g)(v2)

〉
.

It seems to be the ‘averaged out’ version of the original inner product. Checking that it is indeed
an inner product is easy, and will just be a waste of space here, so we omit it. Next, we show that
it’s unitary, the important part〈

ρ(h)(v1), ρ(h)(v2)
〉
G
=

1

|G|
∑
g∈G

〈
ρ(h)

(
ρ(g)(v1)

)
, ρ(h)

(
ρ(g)(v2)

)〉
=

1

|G|
∑
g∈G

〈
ρ(hg)(v1), ρ(hg)(v2)

〉
.

Note that g 7→ gh is a bijection on G, so we can safely rewrite the expression as

1

|G|
∑
g′∈G

〈
ρ(g′)(v1), ρ(g

′)(v2)
〉

which is, by definition, equal to ⟨v1, v2⟩G, completing the proof. ■

Now comes the time when we can compile all these small lemma’s into the proof of Theorem 3.12,
the main result of this section which is the analogue of the fundamental theorem of arithmetic for
representations, as stated below.
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Proof. As mentioned earlier, we induct on dim V .

• Base case: If dim V = 1, then there can’t exist a proper subspace of V , implying V is
irreducible.

• Induction hypothesis: Next, assume that the hypothesis holds for representations W
such that dim W < k where k ∈ N. We have to prove the hypothesis for V such that
dim V = k.

• Inductive step: Assume that V isn’t irreducible, otherwise we’d be done. Then, there
exists a sub-representation V ′, meaning we can apply Proposition 3.14 which says we have
a sub-representation W ′ such that V = W ⊕W ′. By the induction hypothesis both W and
W ′ can be written as a direct product of irreducible representations (both their dimensions
are less than k), which completes the proof.

■

Remark 3.16. Warning! About the proof of Theorem 3.12! We implicitly assumed that we can
always equip a vector space with an inner product—though all of the vector spaces we’ll encounter
in this paper will be so as to say, ‘productizable’.

Note that one might feel that an irreducible representation for a group is always one-dimensional,
as they are the simplest of representations, but Example 3.2.2 tells us otherwise.

Example. Consider G = S3. Recall the permutation representation of S3 and note that V1 =
span{(1, 1, 1)} ⊂ R3 is a G−invariant subspace under the permutation representation. In fact, the
permutation representation restricts to the identity on V1, and hence is called the trivial repre-
sentation. Maschke’s theorem tells us that V2 = V ⊥

1 = span{(1,−1, 0), (1, 0,−1)}, which is two
dimensional, must also be a G−invariant subspace and hence also a sub-representation, called the
standard representation, of the permutation representation. It is left to the reader as an excersie
to show that V2 is indeed irreducible.

However, when G is abelian, we do indeed have that irreducible represtations are always one-
dimensional. We defer it’s proof to the next section, once we have the necessary tools.

3.2.3. Maps Between Representations. This part of the paper is best understood as a ‘helper’
section. We present theorems related to maps between representation spaces in quick succession,
which while they might seem unmotivated or ‘useless’ at first, are of utmost importance. We begin
with a definition of the type of maps we’ll be interested in studying.

Definition 3.17. Let (ρV , V ) and (ρW ,W ) be irreducible representations for a finite group G. A
linear map, φ : V → W , is said to be a G−equivariant map if for all g ∈ G and v ∈ V , we have
that φ

(
ρV (g)(v)

)
= ρW (g)(φ(v)). We denote the set of G−equivariant maps by HomG(V,W ).

The definition for an equivariant6 map makes sense—the order of application of φ and ρ ought
not to matter. In other words, it shouldn’t matter what path you take to get to the bottom right
W starting from the top left V , we say that the following diagram commutes:

V
φ
//

ρV (g)
��

W

ρW (g)
��

V φ
// W

6We have a category! The objects are the representations of a fixed group G over a field F, and the morphisms
are the G−equivariant maps. Identity and composition are defined as usual. This category is denoted by RepF(G).
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Why the notation Hom? That’s because a vector space homomorphism is just a linear map
between the two spaces. It might not be much of a surprise, but HomG(V1, V2) forms a vector space
(with addition and multiplication given pointwise), so we can talk about it’s bases and dimension.
The definition of a G−equivariant map lets us talk about isomorphic representations.

Definition 3.18. Two representations (ρ1, V1) and (ρ2, V2) are said to be isomorphic if there exists
a bijective G−equivariant map between the two.

Now, we straightaway state the result that will be important to us later, which is actually a
corollary of Schur’s lemma.

Proposition 3.19. Let V1 and V2 be irreducible representations for a group G. Then,

• If V1 ̸∼= V2, then dimF HomG(V1, V2) = 0.
• If V1

∼= V2, then dimF HomG(V1, V2) = 1.

Thus, one check the isomorphism of representations and the level of their underlying vector
spaces. As mentioned, to prove Proposition 3.19 we will require Schur’s lemma, which is split
between the next couple of propositions.

Proposition 3.20 (Schur’s Lemma Part 1). Given φ ∈ HomG(V,W ), either φ = 0 or φ = a vector
space isomorphism.

Proof. Assume that φ ̸= 0. Then ker(φ) is a proper subset of V . Note that ker(φ) is a G−invariant
subspace (exercise!), so the irreducilibilty of V implies that ker(φ) = 0, which shows that φ is
injective. Next, using a similar argument, im(φ) cannot be the null set (otherwise φ = 0) and as
im(φ) is a G−invariant subspace the irreducibility of W implies that im(φ) = W , which shows φ
is surjective. ■

Proposition 3.21 (Schur’s Lemma Part 2). Given φ ∈ HomG(V, V ), we have φ = λI, a scalar
multiple of the identity map.

Proof. By Proposition 3.20, we have that φ ∈ AutG(V, V ), that is, φ is an invertible, G-equivariant,
linear map from V to itself. This, and the fact I used a ‘λ’ in the proposition statement should get
you thinking about eigenvalues! In particular, since F is an algebraically closed field, φ will have at
least one eigenvalue, say λ. The corresponding eigenspace is the subspaceW = {v ∈ V : φ(v) = λv},
which is G-invariant (a good exercise to verify!). Since this cannot be {0}, the only way for it to
exist without contradicting the irreducibility of V is for W = V , which instantly completes the
proof. ■

Notice how much of these proofs hinge on irreducibility of the representation space! Now we are
ready to prove Proposition 3.19.

Proof. We prove the two parts as mentioned in the proposition.

• The first claim follows directly from Proposition 3.20: since V1 is not isomorphic to V2, the
only homomorphism that can exist between the two is the 0 map.

• For the second part, consider two non-zero elements ϕ1 and ϕ2 of HomG(V1, V2). Note
that ϕ−1

2 ϕ1 is an element of HomG(V1, V1) by a proposition. Hence, by Proposition 3.21,

ϕ−1
2 ϕ1 = λI where I denotes the identity map from V1 to itself and λ ∈ F. Rearranging,

we get ϕ1 = ϕ2λ, meaning all elements of HomG(V1, V2) are multiples of each other, which
completes the proof.

■

Now, as promised, we return to the proof that an irreducible representation of an abelian group
is always one-dimensional.
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Proposition 3.22. Let (ρ, V ) be an irreducible representation of an abelian group G. Then
dimV = 1.

Proof. Since gh = hg for all g, h ∈ G, we have ρ(gh) = ρ(hg) =⇒ ρ(g)ρ(h) = ρ(h)ρ(g). Written
differently, ρ(g)

(
ρ(h)(v)

)
= ρ(h)

(
ρ(g)(v)

)
for all v ∈ V and g, h ∈ G. Does this ring a bell? Indeed,

we have that ρ(g) is a G−equivariant map! By Proposition 3.21 there exists a λ for all g ∈ G,
such that ρ(g) = λI. This implies that any subspace W of V is G−invariant, and so is a sub-
representation. At this stage, the irreducibility of V forces dimV = 1. ■

3.3. Character Theory. After embarking on a seemingly pointless, rambling journey in repre-
sentation theory, we return to answer Question 3.1. First, a slight caveat: instead of considering
an arbitrary f ∈ C[G], we will deal with class functions, for now, as defined below.

Definition 3.23. An function f ∈ C[G] is said to be a class function if f(g) = f(hgh−1) for all
h, g ∈ G. The set of class functions is denoted by CG.

Remark 3.24. Essentially, a class function is one that is constant over a conjugacy class —it does
not discriminate between members of the same conjugacy class.

Remark 3.25. If G is an abelian group, say Z/nZ, the conjugacy classes are simply the singletons,
so C[G] = CG.

Definition 3.26. Let (ρ, V ) be a representation of a group G. The character of the representation
(ρ, V ) is a function χV : G → F defined by χV (g) = Tr

(
ρ(g)

)
for all g ∈ G. A character of an

irreducible representation is said to be an irreducible character.

Proposition 3.27. A character χ of a group G is a class function.

Proof. Consider a representation (ρ, V ) of a group G and let χV denote it’s character. Then,
χV (h

−1gh) = Tr
(
ρ(h−1gh)

)
= Tr

(
ρ(h−1)ρ(g)ρ(h))

)
. Since the trace is invariant under cyclical

shifts, we get Tr
(
ρ(h−1)ρ(g)ρ(h))

)
= Tr

(
ρ(g)ρ(h))ρ(h−1)

)
= Tr

(
ρ(g)ρ(hh−1))

)
= Tr(ρ(g)) = χV (g),

which completes the proof. ■

Now we present the central result of this whole paper! The one that allows us to generalize
Fourier analysis beyond the realm of R.

Theorem 3.28. Let G be a finite group and CG the vector space of complex-valued class functions
defined on G. Then, the set of irreducible characters of G, denoted by A = {χα}α∈A forms an
orthonormal basis for CG.

But why is this result so important? As we shall see, these irreducible characters play the same

role for C[G] as the exponential basis E =
{

1√
2π
einx : n ∈ Z

}
does for L2([−π, π]). Just like the

density of E in L2([−π, π]) allows us to decompose an f : [−π, π] → C into a series of sines and
cosines, the fact that A, the set of irreducible characters of G, forms a basis for C[G] allows us
to rewrite f in a simpler, more manageable way. To this end, we define the Fourier series of an
f ∈ C[G].

Definition 3.29. Let {χα}α∈A denote the set irreducible representations for a finite group G. The
Fourier coefficient of f ∈ CG corresponding to an irreducible character χα is defined by

⟨f, χα⟩ =
1

|G|
∑
g∈G

f(g)χα(g).

The Fourier series of f is defined by ∑
α∈A

⟨f, χ⟩χα(x).
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Remark 3.30. Again, this is nothing but a change of basis transformation. Specifying an f ∈ CG
means writing down it’s coordinates with respect to the ‘trivial’ basis B = {fOi ∈ CG : i ∈ I} where
{Oi}i∈I denotes the set of conjugacy classes of G, and fOi(g) = 1 if g ∈ Oi and fOi(g) = 0 if g ̸∈ Oi

for all i ∈ I, whereas {⟨f, χα⟩}α∈A are the coordinates of f with respect to A, the ‘character basis’.
Each ⟨f, χα⟩ quantifies the contribution of χα to f , which effectively decomposes f into pieces. On
the other hand, the Fourier series can be viewed as a synthesis formula, reconstructing f from it’s
Fourier coefficients.

Remark 3.31. Note that since B as defined above forms a basis for CG, Theorem 3.28 says that
|A| = |B|, or the number of distinct irreducible characters is equal to the number of conjugacy
classes of G, which is finite for finite G.

That’s great, but actually computing all the irreducible representations and then the correspond-
ing characters looks daunting, at least at first glance. Luckily for us, if we restrict our attention to
abelian groups, the irreducible characters can be completely described fairly easily.

Proposition 3.32. An irreducible character of an abelian group G is a group homomorphism from
G to F×, the multiplicative group of the field F.

Proof. This proof relies heavily on Proposition 3.22: an irreducible representation (ρ, V ), of an
abelian group G is one-dimensional—ρ(g) is nothing but a 1 by 1 matrix—essentially a scalar.
Thus, quite obviously Tr

(
ρ(g)

)
= ρ(g) for all g ∈ G , which allows us to simplify χρ(g1g2):

χρ(g1g2) = Tr
(
ρ(g1g2)

)
= ρ(g1g2)

= ρ(g1)ρ(g2)

= Tr
(
ρ(g1)

)
Tr
(
ρ(g2)

)
= χρ(g1)χρ(g2).

Hence, each irreducible character is simply a group homomorphism to F×—something that seems
more manageable. ■

Note that we can go the other way round as well: each group homomorphism ϕ : G → F× is
an irreducible representation of G. To see this, simply note F× ∼= Aut(F), where F forms a one
dimensional vector space over itself (essentially, linear maps from a field to itself can be represented
by single numbers, which have the effect of squeezing/stretching the F number line). Hence, there
is a one-to-one relationship between the two sets, so to talk of one is to talk of the other. With
that out of the way, let’s jump into an example!

Example. First, we’ll have exactly N irreducible characters, and since Z/NZ is a abelian, they’ll
be functions χ : Z/NZ → C such that χ(x + y) = χ(x)χ(y) for all x and y in Z/NZ—which
naturally hints at the exponential function: we literally have ea+b = eaeb for real a and b, as we
were taught so long ago. Hopefully then, it shouldn’t be too surprising that χk(x) = e2πikx/N for
k = 0, · · · , N − 1 are the irreducible characters for Z/NZ—this matches up with our experience in
R!

As before, the Fourier series of f will be given by∑
α∈A

⟨f, χ⟩χα(x),

which, in this case, becomes

N−1∑
k=0

⟨f, e2πikx/N ⟩e2πikx/N =

N−1∑
k=0

Xie
2πikx/N
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where

Xk =
1

|G|
∑
x∈ZN

f(x)χk(x) =
1

N

N−1∑
n=0

f(n)e−2πikn/N .

Again, another way to think about it is simply as a change of basis linear transformation F : CN →
CN given by

F(x) = F
(
(x0, · · · , xN−1)

)
= (X0, · · · , XN−1) whereXk =

1

N

N−1∑
n=0

xne
−2πink/N .

This, as you might already have recognized, is the Discrete Fourier Transform7 of x —just one of
the many, somewhat identical, offsprings of Definition 3.29!

Remark 3.33. Even though we can’t apply this machinery when G = R/Z (as |G| = ∞) to re-derrive
the Fourier series of a f ∈ L2([−1, 1]), we can be cheeky and use the above analysis as N → ∞.
More precisely, the idea is to pick an N ∈ N and sample the function f at N points: xk = 2k

N−1 − 1

where k ranges from 0 to N − 1. Thus, for each N ∈ N, we have a function, fN : Z/NZ → C
defined by fN (k) = f(xk) for all k ∈ Z/NZ. It’s quite clear that as N → ∞, fN approximates f
better and better. Next, the Fourier series of fN will be given by

N−1∑
k=0

⟨fN , e2πikx/N ⟩e2πikx/N where ⟨fN , e2πikx/N ⟩ = 1

N

N−1∑
n=0

f

(
2n

N − 1
− 1

)
e−2πikn/N .

Try seeing what happens now when N → ∞ !

3.4. Proof of Theorem 3.28. As the title suggests, in this section, we prove Theorem 3.28.
Ordinarily, it’s proof would be broken into two parts: proving the orthogonality of the irreducible
characters, and then showing that the number of irreducible characters is equal to the number of
conjugacy classes of G, which would show that A forms a basis for CG, as B already does. While
we do provide two distinct proofs for the first part, we do not show the second part, as it is beyond
the scope of this paper.

3.4.1. The First Proof. For the first proof, observe that we have a 1 and a 0 in Theorem 3.28, which
are hidden in the δij in ⟨χi, χj⟩ = δij , and we also have a 1 and a 0 in Theorem 3.19—and since it
can be easily shown that isomorphic representations induce the same character, it suffices to show
that ⟨χV , χW ⟩ = dimF HomG(W,V ) for irreducible representations V and W of G!

Theorem 3.34. Let V and W be irreducible representations of a group G. Then ⟨χV , χW ⟩ =
dimF HomG(W,V ).

Proving this, however, requires a few preliminaries: namely, the dual and the tensor product
of a representation, both of which might be familiar from linear algebra, where they’re used to
construct new vector spaces from old ones.

Definition 3.35 (Dual of a Representation). Let (ρ, V ) be a representation of a group G. The
dual representation ρ is the representation (ρ∗, V ∗) where V ∗ is the dual of the vector space V and
ρ∗ : G → GL(V ∗) defined by ρ∗(g)(ϕ)(v) = ϕ(ρ(g−1)(v)) for all g ∈ G and v ∈ V .

Definition 3.36 (Tensor Product of Representations). Let (ρ1, V1) and (ρ2, V2) be representations
of a group G. Then, their tensor product representation is the representation (ρ1⊗ρ2, V1⊗V2) where
V1 ⊗ V2 is the usual tensor product of V1 and V2 and (ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = ρ1(g)(v1)⊗ ρ2(g)(v2)
for all g ∈ G, v1 ∈ V1 and v2 ∈ V2.

7Well, almost. In the actual discrete Fourier transform, that ‘pesky’ factor of 1/N is not present.
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Remark 3.37. While this is only defined for elementary tensors, which are elements of V ⊗W of
the form v ⊗ w where v ∈ V and w ∈ W , ρV⊗W ∗ automatically extends to all tensors since any
element of V ⊗W can be expressed as the sum of elementary tensors,

∑
i vi ⊗ wi.

The existence of the following proposition is the very reason we talked about these two construc-
tions in the first place; try expanding the expression for ⟨χV , χW ⟩ to see why.

Proposition 3.38. Let (ρ, V ), (ρ1, V1) and (ρ2, V2) be representations of a group G. Then, χV ∗ =
χV and χV1⊗V2 = χV1χV2.

Proof. To prove the first claim, recall that ρ∗(g) =
(
ρ(g−1)

)T
, where ρ∗ : V → GL(V ∗) is the dual

representation of ρ : V → GL(V ). Hence, χV ∗ = Tr
(
ρV ∗(g)

)
= Tr

((
ρV (g

−1)
)T )

= Tr
(
ρ(g)

)−1
, since

flipping a matrix about it’s diagonal doesn’t change the diagonal entries. Now, if A = ρ(g) has
eigenvalues λi, then

Tr(A−1) =
∑
i

1

λi
as the trace of a matrix is the sum of it’s eigenvalues

=
∑
i

λi = Tr(A) = χV (g)

where the second equality follows from the fact that all the eigenvalues of A are roots of unity: the
finiteness of G means that for any g ∈ G there exists an m ∈ Z such that gm = 1 =⇒ ρ(gm) =
I =⇒ Am = I, so the eigenvalues of A must be such that when raised to the mth power they equal
the eigenvalues of I, the identity matrix, whose only eigenvalue is 1. The second claim, follows
from the fact that the trace of the tensor product of two matrices is the product of the traces of
the individual matrices. ■

Definition 3.39. Let (ρ, V ) be a representation for a group G. Define the set V G := {v ∈ G :
ρ(g)(v) = v for all g ∈ G}. In other words, V G consists of the invariant elements of V .

As you might expect, V G is a subspace.

Proposition 3.40. V G as defined above is a linear subspace of V .

Proof. The proof is quote straightforward. Let v1 ∈ V G =⇒ ρ(g)(v1) = v1 and v2 ∈ V G =⇒
ρ(g)(v2) = v2 for all g ∈ G. Thus, ρ(g)(v1 + v2) = ρ(g)(v2) + ρ(g)(v2) = v1 + v2, so V G is closed
under vector addition. The proof for closure under scalar multiplication is virtually identical, so
we omit it. ■

Thus, the dimension of V G is well-defined. With those preliminaries out of the way, we’re on
track to show Theorem 3.34.
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Proof. We begin by expanding and simplifying the expression for the inner product of χV and χW ,

⟨χV , χW ⟩ =
∑
g∈G

χV (g)χW (g) by the definition of ⟨·, ·⟩

=
∑
g∈G

χV (g)χW ∗(g) by Proposition 3.38

=
∑
g∈G

χV⊗W ∗(g) again by Proposition 3.38

=
∑
g∈G

Tr
(
ρV⊗W ∗(g)

)
definition of the character

= Tr

[
1

|G|
∑
g∈G

ρV⊗W ∗(g)

]
= dim

[
(V ⊗W ∗)G

]
,

where the last equality follows from the fact that 1
|G|
∑

g∈G ρV⊗W ∗(g)(·) : V ⊗ W ∗ → V ⊗ W ∗ is

a projection operator onto the subspace (V ⊗W ∗)G, and the trace of a projection operator is the
dimension of the subspace it projects onto.

At this point we if can manage to show that (V ⊗ W ∗)G and HomG(W,V ) are isomorphic as
vector spaces over F, we’re done, since isomorphic vector spaces have the same dimension. ■

Thus, it all boils down to establishing (V ⊗W ∗)G ∼= HomG(W,V ), which is not very difficult, but
requires some careful constructions and A LOT of algebraic manipulation. We split this proof into
two lemmas: in the first one we show that V ⊗W ∗ ∼= Hom(W,V ), and then extend the argument
to show (V ⊗W ∗)G ∼= HomG(W,V ). Here goes.

Lemma 3.41. Let V and W be finite dimensional vector spaces over the same field. Then

Hom(W,V ) ∼= V ⊗W ∗

as vector spaces.

Recall another equivalent condition for two vector spaces V and W to be isomorphic: the ex-
istence of linear maps f : V → W and g : W → V such that f ◦ g : W → W = idW and
g ◦ f : V → V idV , in other words, f and g are inverses of one another.

Proof. First, define α : V ⊗W ∗ → Hom(W,V ) by α(v⊗φ) = Tv,φ for all v ∈ V and φ ∈ W ∗, where
Tv,φ : W → V is such that Tv,φ(w) = φ(w)v for all w ∈ W , and extend linearly 8. That is, for all
vi ∈ V and wi ∈ W ,

α
(∑

i

vi ⊗ φi

)
=
∑
i

α(vi ⊗ φi) =
∑
i

Tviφi .

Recall that any element in V ⊗W ∗ can be expressed as
∑

i vi⊗φi with vi ∈ V and φi ∈ W ∗, so α
is defined for all elements in V ⊗W ∗. Note that Tv,φ(w1+w2) = φ(w1+w2)v =

(
φ(w1)+φ(w2)

)
v =

φ(w1)v+φ(w2)v = Tv,φ(w1) + Tv,φ(w2), so Tv,φ is linear and one can similarly prove homogeneity,
meaning we indeed have Tv,φ ∈ Hom(V,W ).

In the opposite direction, define β : Hom(W,V ) → V ⊗W ∗ by

β(L) =
∑
i∈I

L(wi)⊗ w∗
i

for all L ∈ Hom(W,V ) where {wi : i ∈ I} is a basis for W and {w∗
i : i ∈ I} is the corresponding

dual basis for W ∗. This time we clearly have β(L) ∈ V ⊗W ∗. Next, we show that β is linear

8Hence α is linear by definition.
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β(L1 + L2) =
∑
i∈I

(L1 + L2)(wi)⊗ w∗
i definition of β

=
∑
i∈I

(
L1(wi) + L2(wi)

)
⊗w∗

i by linearity of L

=
∑
i∈I

L1(wi)⊗ w∗
i + L2(wi)⊗ w∗

i by linearity of ⊗

=
∑
i∈I

L1(wi)⊗ w∗
i +

∑
i∈I

L2(wi)⊗ w∗
i

= β(L1) + β(L2) definition of β.

Again, the proof that β is homogeneous is essentially identical. Since α and β are both linear, all
that is left is to show is that they are inverses of each other. First, we show that α

(
β(L)

)
(w) = L(w).

α
(
β(L)

)
(w) = α

(∑
i∈I

L(wi)⊗ w∗
i

)
(w) =

∑
i∈I

α
(
L(wi)⊗ w∗

i

)
(w) =

∑
i∈I

w∗
i (w)L(wi).

Now, write w as
∑

i∈I ciwi. Then, w
∗
i (w) = ci (by the definition of the dual basis). Picking off,

∑
i∈I

w∗
i (w)L(wi) =

∑
i∈I

ciL(wi) = L
(∑

i∈I
ciwi

)
= L(w).

Second, we show that β
(
α(v ⊗ φ)

)
= v ⊗ φ

β(α(v ⊗ φ)) = β(Tv,φ) =
∑
i∈I

Tv,φ(wi)⊗ w∗
i =

∑
i∈I

φ(wi)v ⊗ w∗
i = v ⊗

∑
i∈I

φ(wi)w
∗
i .

To see what is
∑

i∈I φ(wi)w
∗
i ∈ W ∗, we evaluate it at a an arbitrary w ∈ W

(∑
i∈I

φ(wi)w
∗
i

)
(w) =

∑
i

φ(wi)w
∗
i (w) =

∑
i

φ(wi)ci = φ
(∑

i∈I
ciwi

)
= φ(w).

Hence,
∑

i∈I φ(wi)w
∗
i = φ. Substituting this into our previous equations yields β(α(v⊗φ)) = v⊗φ,

completing the proof. ■

Remark 3.42. Even though it might not be apparent, the β used above is independent of the choice
of basis for W ; a fact that will be important to us while proving Lemma 3.43. To see why, consider
a ‘new’ basis for W , namely {w′

i}i∈I such that w′
i = L(wi), where L : W → W is an invertible linear

transformation. Explicitly, there exists a sqaure matrix A that describes L with respect to the ‘old’
basis {wi}i∈I , i.e, w′

i =
∑

j∈I Aijwj where Aij is the (i, j) entry in the matrix A. Since β also has

the dual basis involved, one has to compute an expression for {w′∗
i }i∈I , the unique basis dual to

{w′
i}i∈I in terms of the {w∗

i }i∈I , the older dual basis. Obviously we must have w′∗
i (w

′
j) = δij , and

it can be shown without breaking sweat that w′∗
i =

∑
k∈I(A

−1)kiw
∗
k. Now, we can substitute these
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transformed bases into β

∑
i∈I

T (w′
i)⊗ w′∗

i =
∑
i∈I

(
T
(∑
j∈I

Aijwj

)
⊗
∑
k∈I

(A−1)kiw
∗
k

)
=
∑
i∈I

∑
j∈I

(
AijT (wj)⊗

∑
k∈I

(A−1)kiw
∗
k

)
=
∑
i∈I

∑
j∈I

∑
k∈I

AijT (wj)⊗ (A−1)kiw
∗
k =

∑
k∈I

∑
j∈I

(∑
i∈I

(
T (wj)⊗ (Aij)(A

−1)kiw
∗
k

))

=
∑
k∈I

∑
j∈I

(
T (wj)⊗ w∗

k

∑
i∈I

(Aij)(A
−1)ki

)
Note that

∑
i∈I

(Aij)(A
−1)ki = δjk

=
∑
k∈I

∑
j∈I

(
T (wj)⊗ w∗

kδjk

)
=
∑
j∈I

(
T (wj)⊗

∑
k∈I

w∗
kδjk

)
=
∑
j∈I

T (wj)⊗ w∗
j .

Voilà! After shunting the summations around countless times, we got back our original expression
for β(T ), in terms of the ‘old’ basis {wi}i∈I ! Thus, β is indeed independent of the basis used. Keep
this in mind!

Lemma 3.43. Let V and W be representations for a finite group G. Then

HomG(W,V ) ∼= (V ⊗W ∗)G

as vector spaces.

Note that HomG(W,V ) is a linear subspace of Hom(W,V ) and similarly (V ⊗W ∗)G is a subspace
of V ⊗W ∗. Thus, it suffices to show that the image of α, which is a linear map, when restricted to
the domain (V ⊗W ∗)G lies in HomG(W,V ) and vice versa for β.

Proof. As mentioned, the proof is broken into two parts.
Stage one. First, it is required to show that if x =

∑
i vi ⊗ φi ∈ (V ⊗W ∗)G, we have α(x) =∑

i φi(·)vi ∈ HomG(W,V ) ⇐⇒ α(x)
(
ρW (g−1)(w)

)
= ρV (g

−1)
(
α(x)(w)

)
for all g ∈ G and w ∈ W ,

by the definition of a G−equivariant map, which is equivalent to proving

α(x)(w) = ρV (g)
(
α(x)

(
ρW (g−1)(w)

))
.

Expanding the left-hand side

α(x)(w) = α
(
ρV⊗W ∗(g)(x)

)
(w) since x is invariant under ρV⊗W ∗

= α
(∑

i

ρV (g)(vi)⊗ ρW∗(g)(φi)
)
(w) linearity of ρV⊗W ∗

=
∑
i

ρW∗(g)(φi)(w)× ρV (g)(vi) linearity and definition of α

=
∑
i

φi

(
ρW (g−1)(w)

)
×ρV (g)(vi) definition of dual representation.
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One the other hand,

ρV (g)
(
α(x)

(
ρW (g−1)(w)

))
= ρV (g)

(∑
i

φi

(
ρW (g−1)(w)

)
×vi

)
=
∑
i

ρV (g)
(
φi

(
ρW (g−1)(w)

)
×vi

)
=
∑
i

φi

(
ρW (g−1)(w)

)
×ρV (g)(vi)

= α(x)(w).

Thus, we have x ∈ (V ⊗W ∗)G =⇒ α(x) ∈ HomG(W,V ), which completes this part of the proof.
Stage two. Next, we show that L ∈ HomG(W,V ) =⇒ β(L) ∈ (V ⊗W ∗)G. Start by applying

ρV⊗W ∗(g) to our expression for β (in terms of the basis {wi}i∈I):

ρV⊗W ∗(g)
(
β(L)

)
= ρV⊗W ∗(g)

(∑
i∈I

L(wi)⊗ w∗
i

)
=
∑
i∈I

ρV⊗W ∗(g)(L(wi)⊗ w∗
i )

=
∑
i∈I

ρV (g)
(
L(wi)

)
⊗ρW ∗(g)(w∗

i ) definition of the tensor representation

=
∑
i∈I

L
(
ρW (g)(wi)

)
⊗ρW ∗(g)(w∗

i ) by equivariance of L

=
∑
i∈I

L
(
ρW (g)(wi)

)
⊗w∗

i ρW (g−1) definition of the dual of a representation.

Now for the moment of cancellation: we are transforming the basis wi 7→ ρW (g)(wi) and one can
check that the corresponding dual basis transformation induced by it is w∗

i 7→ w∗
i ρW (g−1)—exactly

what is seen in the equation above. Since we already know that β is independent of the choice of
basis,

∑
i∈I L

(
ρW (g)(wi)

)
⊗w∗

i ρW (g−1) = β(L), which completes the proof. ■

Ah! The monstrous proof is all but done! As discussed before even beginning the proof, the
following corollary follows directly from Theorem 3.34.

Corollary 3.44. Let {χα}α∈A denote the set of distinct irreducible representations of a group G.
Then, ⟨χα, χβ⟩ = δαβ.

Even though this proof might have seemed lengthy, at every stage we knew precisely what
to do: right from the very beginning, where it didn’t take a genius to recognize characters are
being complex conjugated (so we have duals) and multiplied (so tensor products). At any rate, as
promised, I will be presenting another proof, which, in my opinion, isn’t the best to simply prove
the first part of Theorem 3.28, but rather opens the gate for a deeper dive.

3.4.2. The Second Proof. We start with the result that will get us on our way.

Theorem 3.45 (Schur’s First Orthogonality Relation). Let G be a finite group, Γ(i) : G → GL(Vi)

and Γ(j) : G → GL(Vj) irreducible representations of G. Then,

⟨Γ(i)
αβ,Γ

(j)
µν ⟩ =

1

|G|
∑
g∈G

Γ
(i)
αβ(g)Γ

(j)
µν (g) =

1

dim(Γ(i))
δijδαµδβν

This is quite the mouthful, so let’s thoroughly unpack it for better understanding, and why it’s
related to Theorem 3.28. First, we have new notation: Γαβ(g) denotes the (α, β) entry in the matrix
Γ(g), where Γ : G → GL(V ) is a representation of a group G—really then, Γαβ(·) is a function
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from G, to the underlying base field F. What we’re trying to establish is an orthogonality relation
between certain elements (called the matrix coefficient functions) of C[G] , the set of all functions
form G to F—not just the class functions. The relation is as one would expect: distinct matrix
coefficient functions are orthogonal, and for the inner product of two such functions to be non-zero,
all the three parameters: the representation (i = j), the row and column in the matrix (α = µ and
β = ν) must be the same, i.e, the functions themselves must be identical. It makes logical to say
that this theorem is a generalization of Theorem 3.28, as we’re expanding to all functions now, as
opposed to just class functions. We break the proof of Theorem 3.45 into two pieces varying one
parameter i/j, α/µ, β/ν at a time.

Proposition 3.46. Let Γ(i) : G → GL(Vi) and Γ(j) : G → GL(Vj) be distinct unitary irreducible
representations for a finite group G, then

⟨Γ(i)
αβ,Γ

(j)
µν ⟩ =

1

|G|
∑
g∈G

Γ
(i)
αβ(g)Γ

(j)
µν (g) = 0

for all α, β, µ and ν.

Remark 3.47. Note that due to Proposition 3.15, we can assume without loss of generality that
given a representation (ρ, V ), ρ(g) is unitary for all g ∈ G.

Proof. Let T be any linear map from Vj to Vi. First, we start by constructing a G−equivariant

map T ′ : Vj → Vi from T , defined by T ′ =
∑

g∈G Γ(i)(g) ◦ T ◦Γ(j)(g−1). Note that to verify that T ′

is G−equivariant, we must show that Γ(i)(h) ◦ T ′ = T ′ ◦ Γ(j)(h), for all h ∈ G, as we do below

Γ(i)(h) ◦ T ′ = Γ(i)(h) ◦ 1

|G|
∑
g∈G

Γ(i)(g) ◦ T ◦ Γ(j)(g−1) definition of T ′

=
1

|G|
∑
g∈G

Γ(i)(hg) ◦ T ◦ Γ(j)(g−1) as Γ(i) is a homomorphism

=
1

|G|
∑
g∈G

Γ(i)(hg) ◦ T ◦ Γ(j)((hg)−1h) re-writing g−1 as (gh)−1h

=
1

|G|
∑
g′∈G

Γ(i)(g′) ◦ T ◦ Γ(j)((g′)−1h) note that g 7→ gh = g′ is a bijection on G

=
1

|G|
∑
g′∈G

Γ(i)(g′) ◦ T ◦ Γ(j)((g′)−1) ◦ Γ(j)(h) as Γ(i) is a homomorphism

=
1

|G|

(∑
g′∈G

Γ(i)(g′) ◦ T ◦ Γ(j)((g′)−1)
)
◦Γ(j)(h) additivity of ◦

= T ′ ◦ Γ(j)(h) definition of T ′.

This shows that T ′ is a G−equivariant map, or T ′ ∈ HomG(Vj , Vi), and since we’ve assumed that
Vj ̸∼= Vi, Schur’s lemma tells us that T ′ = 0. Remember that T can be any linear map, and here
define it to be such that it has zeros everywhere except for the (β, ν) entry. On the one hand we
know that T ′

mn = 0 for all m and n, but on the other hand
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T ′
αµ =

1

|G|
∑
g∈G

(
Γ(i)(g) ◦ T ◦ Γ(j)(g−1)

)
αµ

as for matrices A and B, (A+B)αβ = Aαβ +Bαβ

=
1

|G|
∑
g∈G

∑
a

∑
b

Γ(i)
αa(g)TabΓ

(j)
bµ (g

−1) as (ABC)ij =
∑
k

∑
l

AilBlkCkj

=
1

|G|
∑
g∈G

Γ
(i)
αβ(g)Γ

(j)
νµ

(g−1) as Tab = 1 iff a = β and b = ν

=
1

|G|
∑
g∈G

Γ
(i)
αβ(g)Γ

(j)
µν (g) as Γ(j)(g) is unitary

= ⟨Γ(i)
αβ(g),Γ

(j)
µν (g)⟩.

Putting the two equalities together, we get ⟨Γ(i)
αβ,Γ

(j)
µν ⟩ = 0, for all α, β, µ and ν, which completes

the proof. ■

Next, we progress onto varying the other two parameters (at the same time!): α/µ and β/ν.

Proposition 3.48. Let Γ : G → GL(V ) be an irreducible representation for a group G. Then,
⟨Γαβ,Γµν⟩ ≠ 0 ⇐⇒ α = µ and β = ν.

Proof. This proof is quite similar to the previous one—we consider any linear map T : V → V , and
build a G−equivariant map T ′ : V → T out of T , T ′ = 1

|G|
∑

h∈G Γ(g) ◦ T ◦ Γ(g−1). Just like last

time, we set T to be the matrix such that it’s zero everywhere except at (β, ν), when it’s 1. This
leads us to

T ′
αµ =

1

|G|
∑
g∈G

Γ
(i)
αβ(g)Γ

(j)
µν (g) = ⟨Γαβ,Γµν⟩.

Since T ′ ∈ HomG(V, V ), we can apply Schur’s lemma, but this time we have that T ′ = λI. Note
that ⟨Γαβ,Γµν⟩ ≠ 0 ⇐⇒ Tαµ ̸= 0 ⇐⇒ λ ̸= 0 and α = µ. Next, λ ̸= 0 ⇐⇒ Tr(T ′) ̸= 0 ⇐⇒
Tr(T ) ̸= 0 ⇐⇒ β = ν where Tr(T ′) = Tr(T ) as the trace is linear and Tr(AB) = Tr(BA). This
completes the proof. ■

Putting Proposition 3.46 and Proposition 3.48, we get that

⟨Γ(i)
αβ,Γ

(j)
µν ⟩ =

{
0 if i ̸= j or α ̸= µ or β ̸= ν,

̸= 0 if i = j and α = µ and β = ν.

All the remains to be shown that in the second case, the non-zero value the inner product takes
on is 1

dim(Γ(i))
= 1

dim(Γ(j))
. However, the derivation is dry, devoid of any insight, so we omit it here.

Nevertheless, assuming that it is true, we will show that the irreducible characters of a group are
orthonormal.



THE ALGEBRAIC STRUCTURE UNDERLYING FOURIER ANALYSIS 35

Proof. We have to show that ⟨χi, χj⟩ = δij , where {χα}αinA denotes the set of distinct irreducible
characters of G.

⟨χi, χj⟩ =
1

|G|
∑
g∈G

χi(g)χj(g)

=
1

|G|
∑
g∈G

(∑
α

Γ(i)
αα(g)

)(∑
β

Γ
(j)
ββ(g)

)
=

1

|G|
∑
g∈G

∑
α,β

Γ(i)
αα(g)Γ

(j)
ββ(g)

=
∑
α,β

1

|G|
Γ(i)
αα(g)Γ

(j)
ββ(g)

=
∑
α,β

⟨Γ(i)
αα(g),Γ

(j)
ββ(g)⟩

Now, assuming that i ̸= j we have that ⟨Γ(i)
αα(g),Γ

(j)
ββ(g)⟩ = 0 for all α and β, so ⟨χi, χj⟩ = 0. If

i = j, then
∑

α,β⟨Γ
(i)
αα(g),Γ

(j)
ββ(g)⟩ =

∑
α⟨Γ

(i)
αα(g),Γ

(i)
αα(g)⟩ =

∑dim(Vi)
i=1

1
dim(Vi)

= 1, completing the

proof. ■

Now, as soon as you learnt that the the matrix coefficients of irreducible representations are
orthogonal, you must have guessed that they form a basis for C[G]. This is true, and for the sake of
completeness, we provide a proof. Since we already have a basis B = {ϕg}g∈G where ϕg(h) = δgh,
which is the version of the useless basis for C[G], all we have to show is that the number of
irreducible matrix coefficients, which is

∑
α∈A dim(Vi) is equal to |B| = |G|.

Proposition 3.49. Let G be a group and {Vα}α∈A be the set of distinct irreducible representations
of G. Then,

∑
α∈A(dim Vα)

2 = |G|.

Proof. Remember the group algebra C[G]? We’re going to define a representation of G, ρR : G →
C[G], called the left regular representation. It’s defined quite simply: ρR(g)(h) = gh for all g ∈ G
and h ∈ G ⊂ C[G], and extend linearly to all elements of C[G]. That is,

ρR(g)

(∑
h∈G

agh

)
=
∑
h∈G

agρR(g)(h) =
∑
h∈G

aggh = g
∑
h∈G

agh.

Note that

χR(g) =

{
|G| if g = e

0 if g ̸= e
.

This is because if g is not the identity, then ρR(g) doesn’t have any eigenvectors. Otherwise, if g is
the identity, then ρR(g) would be the |G| by |G| identity matrix, whose trace is clearly |G|.

Now, Maschke’s theorem tells us that C[G] ∼=
⊕

α∈A V ⊕nα
α =⇒ χR =

∑
α∈A nαχα for some

nα ∈ N, and where {χα}α∈A denotes the set of distinct irreducible characters of G as usual. To
determine those nα’s, consider

⟨χR, χβ⟩ =

〈∑
α∈A

nαχα, χβ

〉
=
∑
α∈A

nα⟨χα, χβ⟩ = nβ.

On the other hand,

⟨χR, χβ⟩ =
1

|G|
∑
g∈G

χR(g)χβ(g) =
1

|G|
(χR(e)χβ(e)) = dim(Vβ).
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Putting the two together gives us

C[G] ∼=
⊕
α∈A

V ⊕dim(Vα)
α .

Taking the dimension of both the sides gives the desired result. ■

The following corollary summarizes the main result of this section.

Corollary 3.50. Let G be a finite group and {(ρα, Vα)}α∈A the set of distinct irreducible represen-

tations of G, and Γ
(i)
µν(g) be the (µ, ν) matrix entry of ρi(g). Then, the set

{Γ(i)
µν : i ∈ A and 1 ≤ µ, ν ≤ dim(Vi)}

is an orthogonal basis for C[G].

4. Conclusion

That’s great, but as mentioned earlier, this machinery that we have developed to compute the
Fourier series of a function f ∈ C[G] only works when G is finite; and, arguably, the most interesting
groups out there such as R/Z, and SO(n) aren’t finite. For starters, the inner product that we had
defined on C[G]:

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g),

completely breaks down when |G| = ∞. This question, of summing infinitely many numbers, is
a quintessential example of developing the integral over any set, as answered by measure theory.
Almost instinctively, one would set

⟨f1, f2⟩ =
∫
G
f1(x)f2(x) dµ(x),

but that raises another question: what is the measure µ here? What’s the σ−algebra? Is it even
guaranteed that a measure µ always exists on a group G?

To answer this question, we equip G with additional structure: specifically, we put a topology on
G to turn it into a topological group—a structure that’s simultaneously a group and a topological
space. However, as a techincal side, note that the topology must be such that it’s compatible with
the pre-existing group structure, that is, the inversion map g 7→ g−1 and the multiplication map
(g, h) 7→ gh must be continuous with respect to the topology on G, and the product topology on
G × G respectively. Then, the sigma algebra is simply the one generated by the open sets of G,
called the Borel sigma algebra.

It was proved by the revolutionary french mathematician André Weil, that if G is a locally
compact topological group, that is, if there exists a compact neighbourhood for each point in G,
then there exists a unique measure µ on G 9, that apart from satisfying a few technical conditions,
is invariant, that is, translating a Borel set S of G around by a g ∈ G doesn’t affect the measure
of S 10, exactly how we have λ(B) = λ(a+B) = λ({a+ b : b ∈ B}) where λ denotes the Lebesgue
measure on R, which can be viewed as a (locally compact) topological group under addition. This
measure is called the Haar measure, named after the Hungarian mathematician Alfréd Haar, who
first studied it in connection with Hilbert’s fifth problem on Lie groups, which are special types of
topological groups.

Equipped the Haar measure, we can now generalize Schur’s orthogonality relations to a compact
group, a series of results known as the Peter-Weyl theorem. Essentially, one version gives us an

9Note that the measure is unique up to multiplication by a scalar. Note also that we have two types of invariance
of measures: a left invariant measure µ is such that µ(S) = µ(gS) = µ({gs : s ∈ S}) and a right invariant measure ν
is such that ν(S) = ν(Sg) = ν({sg : g ∈ G}) for all g ∈ G and open sets S.

10Throwing a ball up doesn’t make it shrink spontaneously.
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explicit formula for a basis for L2(G), the set of functions f : G → C that are square-integrable
with respect to the Haar measure 11. We have:

Theorem 4.1. The set of finite linear combinations of all matrix coefficients of all finite-dimensional
irreducible unitary representations of a compact group G is dense in L2(G).

Here as usual, the norm on L2(G) is the L2 norm, the one induced by the inner product. That
is,

∥f∥L2 :=

√∫
G
|f(x)|2 dµ(x).

Note that a matrix coefficient is formally defined to be a function from G to F that is of the form
L◦ρ where ρ : G → GL(V ) is a representation of G, and L is any linear map from GL(V ) to F, that
is, L ∈ (GL(V ))∗. This definition single handily incorporates the trace and the individual matrix
entry functions that we talked about earlier.

Since most of the familiar groups such as R/Z, SO(n) and SU(n) are all compact, we can directly
apply the Peter-Weyl theorem in these contexts! Applying it to R/Z gives us the usual Fourier
series for periodic functions f : R → C. On the other hand, computing the matrix coefficients
of the irreducible unitary representations of SO(2), allows us to essentially decompose functions
defined on the sphere S2 ⊂ R3, as it can be easily shown that SO(2) is homeomorphic to S2! These
functions are known as spherical harmonics, and they’re littered all over the place in physics,
especially in quantum mechanics, where they can be used to describe the angular part of the wave
functions of elementary particles. In fact, they even appear in the celebrated Schrödinger equation
for the hydrogen atom! More concretely, just as we use the ordinary Fourier series to solve ordinary
differential equations defined on R/Z, the unit circle, one could use spherical harmonics to solve
differential equations defined on the sphere! Examples of such differential equations include the
Helmholtz equation, which has numerous applications in science including in the wave equation,
modelling diffusion and even optics. Yet more fancifully, one could extend this to SO(n), which
can be visualized as a n+ 1 dimensional sphere!

At the end of the day, all these methods of analysing a complex function by decomposing it into
it’s constituent parts boils down on one single theorem: The Peter-Weyl theorem!
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