Stokes Theorem

Sherlock Dong

July 9, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Intro

Stokes in multivariable calculus

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- differential forms
- Generalized Stokes theorem

Multivariable calculus

$$\oint_C Fdr = \iint_S \nabla \times fdS$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Differential Forms

What is df in a differential equation?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Why do we need it in calculus?

Differential Forms

k-form:
$$\alpha = \sum_{I} f_{I} e_{I}^{*}, I = i_{1}, i_{2}, ..., i_{n}$$

exterior derivative: $f : U \rightarrow R$ is

$$df := \sum_{i} \frac{\partial f}{\partial e_{i}} e_{i}^{*}$$

Topology

- what is manifold: topological space that locally resembles Euclidean space near each point
- diffeomorphism: a map that maps one differentiable manifold to another
- Let n, n₁ be two non-negative integers with n ≤ n₁. An subset U of R^{n₁} is a n-manifold if for every point p ∈ U, there exists a neighborhood V of p in R^{n₁}, an open subset X ⊆ Rⁿ and a diffeomorephism f : X → U ∩ V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Partition of Unity

Pullback, differential form

Suppose $w_1, w_2, ..., w_n$ is a basis of U and $v_1, v_2, ..., v_m$ is a basis of V. Projection principle tells us, for a vector $u \in U, f(u) = f_1(u)w_1 + f_2(u)w_2 + ... + f_n(u)w_n$. A pullback of a k-form α is:

$$f^* \circ \alpha = \sum_{I \subseteq 1,...,m} (f_I \alpha) (D \alpha_{i_1} \wedge D \alpha_{i_2} \wedge ... \wedge D \alpha_{i_k})$$

This is a way to understand the differential k-form.

Manifold

chart: a pair (U, φ) where:

► U is an open subset of M.

• $\varphi: U \to \varphi(U) \subseteq \mathbb{R}^n$ is a homeomorphism, meaning φ is a continuous bijection with a continuous inverse.

integration of forms on manifolds:

$$\sum_{i=1}^{\infty} \int_{X} \rho_i \alpha$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Stokes' Theorem

$$\int_X \mathrm{d}\alpha = \int_{\partial X} \alpha$$

► How to prove?

proof

1. If X is a half space H^n :

$$\int_{H^n} d\alpha = \sum_{i=1}^n (-1)^{i-1} \int_0^\infty \int_{-\infty}^\infty \dots \int_{-\infty}^\infty \frac{\partial \alpha_i}{\partial x_i}(x) dx_1 \dots dx_n$$

Rearrange the order, for $i \neq n$, it equals
$$\sum_{i=1}^n (-1)^{i-1} \int_0^\infty \int_{-\infty}^\infty \dots \int_{-\infty}^\infty \alpha_i(x) |_{x=-\infty}^\infty dx_1 \dots dx_n = 0$$

for $i = n$, $\sum_{i=1}^n (-1)^{i-1} \int_0^\infty \int_{-\infty}^\infty \dots \int_{-\infty}^\infty \frac{\partial \alpha_n}{\partial x_n}(x) dx_n dx_1 \dots dx_{n-1}$
2. For arbitrary $(n-1)$ - manifold, choose a cover of supp α by
finitely many oriented (generalized) coordinate charts (U_i, ϕ_i) ,
and choose a subordinate partition of unity ϕ_i , we have

$$\int_{\partial X} \alpha = \sum_{i} \int_{\partial X} \phi_{i} \alpha$$

$$= \sum_{i} \int_{\partial X} d\phi_{i} \wedge \alpha + \phi_{i} \alpha$$

$$= \int_{X} d(\sum_{i} \phi_{i}) \wedge \alpha + \int_{X} (\sum_{i} \phi_{i}) d\alpha$$

$$= \int_{X} d\alpha$$
(1)

Application

1. Math: Green's Theorem:

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\partial D} P dx Q dy$$

2. Physics: Maxwell-Faraday equation:

$$\nabla \times E = -\frac{\partial B(t)}{\partial t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Thank you!

(ロ)、(型)、(E)、(E)、 E) のQ(()