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1 Introduction

The study of differential topology started in the 20th century. In the following decades,

people succeeded in connecting calculus and topology using a newly developed concept,

differential forms. Mathematicians who study this subject generalize a lot of ideas in calculus,

in order to make them work in higher-dimensional spaces. Though scientists are still working

to try to understand the universe with higher dimensions, theoretical physicists are already

able to use this subject to study the universe.

However, when we are learning differentiation and integration in calculus nowadays, we

still learn the ideas that Issac Newton and Gottfried Leibniz formalizes in the 17th century

first. Though this method can make students easily understand basic calculus, it creates

inconvenience at the same time for those who are going to learn differential topology in the

future; a lot of notions have been redefined over the last century.

This paper intends to discuss the Stokes’ Theorem. To do this, modern ideas in calculus

will also be covered. After proving the Stokes’ Theorem, some applications of the theorem

will also be shown.



2 Differential Form

2.1 Some Linear Algebra

I will start this section by introducing some concepts that will be used in discussing differ-

ential forms.

Definition 2.1. A linear functional on Rn is a linear map A : Rn → R such that A(tv) =

tA(v) and A(v + u) = A(u) + A(v) for all v, u ∈ Rn and t ∈ R.

In other words, a linear functional is a linear map from a vector space to its scalar fields.

Definition 2.2. The dual space of a vector space V, written as V ∗, is the space of all linear

functionals on V.

Example 2.2.1. Let V = P n, the set of all polynomials with rank n. Define a function

f : f(p) = p(1) and suppose the polynomial p1 = x2+2x+1. the map f makes the following

change: f(p1) = p(1) = 4, and it indeed is an element in R. Thus, f is a linear functional on

V, which is also an element in V ∗.

Since we are talking about high-dimensional spaces, here I need to specify the idea of

being tangent or cotangent at a point. In particular, while they still refer to the same ideas,

there can obviously be multiple tangent or cotangent vectors in space, which forms another

space themselves.

Definition 2.3. Let p ∈ Rn, then the tangent space to Rn at p is the set of pairs

TpRn := (p, v)|v ∈ Rn

Cotangent space is associated with tangent space at point p. It is essentially the dual

space of which is defined above.

Definition 2.4. Let p ∈ Rn, then the cotangent space to Rn at p is the space of all linear

functionals that take a tangent vector to R:

T ∗
pRn = TpR → R

Thus, an element of T ∗
pRn is called the cotangent vector to Rn at p.

Theorem 2.1. The projection principle

Let U be an open subset of the vector space V , and let W be an n-dimensional real vector

space with basis w1, w2, ..., wn. Then there is a bijection between the function f : U → W

and n continuous linear functionals f1, f2, ..., fn by projection, which means

f(v) = f1(v)w1 + f2(v)w2 + ...fn(v)wn
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Proof. Because f(v) maps V toW , which has basis w1, w2, ..., wn, and the n−tuplef1, f2, ..., fn
maps the vector v to scalars. When these scalars are multiplied with each wi for 1 ≤ i ≤ n,

they are bound to have a vector in W because of the definition of the vector.

2.2 Wedge product and Forms

To understand the calculation in spaces, we first need to define the wedge product. It is also

called the exterior product.

Definition 2.5. Let V be a vector space and m a positive integer, then the space ∧m(V ) is

the wedge product

v1 ∧ v2 ∧ ... ∧ vm

with the properties of an Abelian group; that is to say,

• ... ∧ (v1 + v2) ∧ ... = (... ∧ v1...) + (... ∧ v2...)

• ... ∧ (cv1) ∧ v2... = ... ∧ v1 ∧ (cv2)...

• ... ∧ v ∧ v ∧ ... = 0

• ... ∧ v ∧ w ∧ ... = −(... ∧ w ∧ v...)

Wedge product acts on tangent vectors; what it does is that it generalizes the cross

product of 3-vectors. Let’s look at an example of the calculation.

Example 2.5.1. Suppose V is a vector space and we have two vectors v, w ∈ V such that

there are (v1, v2, v3), (w1, w2, w3) ∈ V ⊆ R3, then the 3-wedge product, written as ∧3(V ),

would be the abelian group generated by elements of the form v ∧ w. According to the

properties of wedge product stated above, we can make some changes to it so that it is easier

to calculate:

v ∧ w = (v1e1 + v2e2 + v3e3) ∧ (w1e1 + w2e2 + w3e3)

= (v1w1)e1 ∧ e1 + (v1w2)e1 ∧ e2 + (v1w2)e1 ∧ e3 + (v2w1)e2

∧ e1 + (v2w2)e2 ∧ e2 + (v2w3)e2 ∧ e3 + (v3w1)e3 ∧ e1 + (v3w2)e3 ∧ e2 + (v3w3)e3 ∧ e3
= (v1w2 − v2w1)e1 ∧ e2 + (v1w3 − v3w1)e1 ∧ e3 + (v2w3 − v3w2)e2 ∧ e3

(1)

What I did just now is that I just used three of the only four properties of the wedge

product to make the calculation easier.

Now, we can start to think about differential forms. Because it is a relatively complicated

notion, I will start from low-dimension spaces. Let’s first take a look at 0−form and 1−form
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First, consider U ⊆ V , where U is an open subset of the vector space V . Then, let us

suppose that there is a function f : U → R, which assigns a certain number to every point

p ∈ U , and that is a 0− form

Definition 2.6. A 0− form α on U is a smooth function: α : U → R.

By analogy, a 1− form assigns each point p to a vector in T ∗
pRn. In other words, let V

be a vector space of dimension n, then a 1-form is a function F : Rn → V ∗.

We will now go through the formal definition of the forms.

Definition 2.7. Let U be an open subset of Rn. A k − form α on U is a function which

assigns to each point p an element αp ∈ ∧k(T ∗
pRn).

Example 2.7.1. Let V= R4 with standard basis e1, e2, e3, e4. Then a 2-form α at point p is

αp = f1(p)e1 ∧ e2 + f2(p)e1 ∧ e3 + f3(p)e1 ∧ e4 + f4(p)e2 ∧ e3 + f5(p)e2 ∧ e4 + f6(p)e3 ∧ e4

Calculating it would be the same as in example 1.

Let’s do another example here without specifying the dimension of the form.

Example 2.7.2. Let α =
∑

I fIdxI be a k - form, and let β =
∑

J gJdxJ be an l− form,

Then their wedge product is the (k + l) form α ∧ β given by

α ∧ β =
∑
I

∑
J

fIgJdxIdxJ

.

From Theorem 2.1, it can be seen that in order to express α, we need to specify a function

on U for each basis elements of ∧k(T ∗
pRn). Therefore, by taking any basis ei ∈ U and the

basis elements would give a more general form of α :

αp =
∑

1≤ii<i2<...<ik≤n

fi1,i2,...in(p)e
∗
i1
∧ e∗i2 ∧ ... ∧ e

∗
ik

If we use I to denote i1, i2, ...in, this would become α =
∑

I fIdeI .

Note that the sum works the same way, as well as the basis elements.

Example 2.7.3. Let α1, α2, ..., αk be one-forms. Then α1 ∧ α2 ∧ ... ∧ αk is a k- form whose

value at a point p ∈ R is the wedge product

(α1)p ∧ ...(αk)p
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2.3 Exterior Differentiation

Before going forward into exterior differentiation, let’s look at the cotangent space again.

Let U be an open subset of Rn. Suppose we have a function f : U → R, then for each p ∈ U

and q = f(p), one has a linear map

dfp : TpRn → TqR

According to the definition of the cotangent spaces, this is essentially sending (q, v) → v,

where v is a vector, an element in TqR. Therefore, this differential is a linear map from TpRn

to R, which is an element of the dual space T ∗
pRn.

Therefore, this way of assigning to p a value obtained from dfp is called a differential

1-form on U, and we denote it as df . It is also called the derivative of f .

We now define the exterior derivative that we always see in calculus.

Definition 2.8. The exterior derivative of a function f : U → Ris

df :=
∑
i

∂f

∂ei
e∗i

Here, people in history also decided to make some changes to the notations. Instead of

e∗i , people adapted (dei)p to replace it. Similar to dfp in Example 2.4, people omitted the

point p to make it more general. Thus, the modern way of writing this exterior derivative

becomes

df :=
∑
i

∂f

∂ei
dei

Example 2.8.1. Suppose f(x, y, z) = 2x. If we want to take the derivative of this function

using the definition of the exterior derivatives:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

= 2xdx

.

Thus, the exterior derivative: df
dx

= 2x.

In this example, we took partial derivatives of the function f with respect to its three

different bases. Note that here, 2x is also its total derivative. Now, let’s do a more interesting

one.

Example 2.8.2. Let f(x, y, z) = x2+xyz+z3. The exterior derivative is just (2x+yz)dx+
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xzdy + (3z2 + xy)dz. Computing d(df) will be

d2f = ((2dx+ ydz)) ∧ dx+ (xdz + zdx) ∧ dy + (6zdz + xdy + ydx) ∧ dz

= ydz ∧ dx+ zdy ∧ dx+ xdz ∧ dy + zdx ∧ dy + xdy ∧ dz + ydx ∧ dz

= 0

From this example, we see how we can use the properties of the wedge product in the

calculation for higher order derivatives. Interestingly, there is a theorem on this type of

problem.

Theorem 2.2. Suppose U is an open subset of Rn. Let α be any k-form, then d2α = 0.

Proof. An easy approach is by induction. For the base case, we notice that for a function

f(x), if k = 1, d(dα) = f1(x)dx ∧ dx = 0 for any f ∈ C∞(U)(i.e. smooth functions).

For the induction step, assume we know the result of k − 1 functions while we now have

f1, f2, f3, ..., fk ∈ C∞(U), and let ω = df2 ∧ df3 ∧ ... ∧ dfk. By the induction hypothesis as

well as the properties of the wedge product, we see that

d(df1 ∧ df2 ∧ ... ∧ dfk) = d(df1 ∧ ω)

= d(df1) ∧ ω − df1 ∧ ω

= 0

.

For k-forms, the exterior derivatives work the same way. The exterior differentiation of

a k-form is called a differential k-form.

Definition 2.9. Let α =
∑

I fIdeI , then we define the exterior derivative as dα :=
∑

I dfI ∧
deI =

∑
I

∑
j
∂fI
∂ej
dej ∧ deI

Definition 2.10. A k-form α is closed if dα = 0.

A k-form α is exact if for some k−1 -form β, dβ = α. Note that if k = 0, α is only exact

when α = 0.

Theorem 2.3. Exact forms are closed.

Proof. For a k-form α, if it is an exact form, then there is another differential k-1 form β,

such that dβ = α. From theorem 2.3, we know that d(dβ) = 0, implying that dα = 0.

Therefore, Exact forms are closed.
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2.4 Pullback operation

Before going into integration, I will talk about one more important concept regarding the

differential forms.

Let U be an open subset of Rn, V be an open subset of Rm, (m and n can be the same)

and f ∈ C∞ : U → V . For a point in U , the derivative of f at p

dfp : TpRn → Tf (p)Rm

is a linear map. More specifically, this is a map from a set of tangent vectors at point p to

the tangent vectors at point f(p). What we get from a pullback map is the opposite

df ∗p := (dfp)
∗ : ∧k(T ∗

f (p)Rm → ∧k(T ∗
pRn)

For differential forms, let α be a k-form on V , then at f(p) ∈ V , the value of α at point f(p)

is an element in the set ∧k(T ∗
q Rm).

Therefore, an operation for a differential k-form α also gives an element

df ∗
pαf (p) ∈ ∧k(T ∗

pRn)

More generally, for every point p, we can assign a value to it in the same method:

p→ (dfp)
∗αf (p)

which is the very definition for differential k-forms. We denote this operation by f ∗α, and

we call it the pullback along the map f .

Another way of understanding the pullback operation is by projection. Suppose w1, w2, ..., wn

is a basis of U and v1, v2, ..., vm is a basis of V . Then, by Theorem 2.1, for a vector

u ∈ U, f(u) = f1(u)w1 + f2(u)w2 + ... + fn(u)wn. Then, from the definition of a k-form

α, which is α =
∑

I⊆1,...,n fIwI , we define the pullback operation ω as following:

f ∗ ◦ α =
∑

I⊆1,...,m

(fIω)(Dωi1 ∧Dωi2 ∧ ... ∧Dωik)

Note the subscripts here, I is the set i1, i2, ..., in

There are some important properties of the pullback operation that can be useful in later

calculation.

Let U be an open subset of Rn and V be an open subset of Rm. Let f : U → V a C∞

map.Let ω, α, andβ be a differential k-form.

Let ω be a 0 form. Then,

1. f ∗ω(p) = ω(f(p))
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2. f ∗(α + β) = f ∗(α) + f ∗(β)

3. f ∗(α ∧ β) = (f ∗α) ∧ (f ∗β)

4. Linearity: f ∗(cα + β) = cf ∗α + f ∗β

5. Naturality: f ∗d(α) = d(f ∗α)

Proof. 1. Because ω is a 0 form,

∧0(T ∗
p ) = ∧0(T ∗

f(p)) = R

the pullback map in this case would just be an identity map. Thus for 0 forms, the

property stands.

2. Because df is a linear map, we see that (dfp)
∗(α+β)f (p) = (dfp)

∗(α)f(p)+(dfp)
∗(β)f(p).

From this, we can have property 2.

3. From the properties of the wedge product, we can see that df ∗
p (α)f (p) ∧ (β)f (p) =

df ∗
p (α)f (p) ∧ df ∗

p (β)f (p)

4. Linearity can be proved using property 1.

5. Naturality will be proved in section 4.3, differential forms on manifolds.

Example 2.10.1. Let V = R2 with basis e1, e2, V
′ = R3 with basis w1, w2, w3, a, b being

two constants, and suppose f : V → V ′ is

f1(ae1 + be2) = (a2)w1 + (ab)w3

f2(ae1 + be2) = (b2)w2

If I define a form α at pointp αp = f1(p)w1 ∧ w3 + f2(p)w2, so the pullback operationω on

this form at point is

(ω∗α)p = f1(ω(p))(3ae
∗
1 + be∗2) ∧ f2(ω(p))(2be∗2)

= f1(ω(p))f2(ω(p))6abe
∗
1 ∧ e∗2

This falls in the form as we define this operation, which can be further calculated given

the functions and the values of a, b.
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2.5 Applications of Differential Forms

In physics, differential forms is very useful. For example, it is the language for Maxwell’s

equations, which makes it being written fairly compactly. For energy, differential forms

offer a clear view of the energy function. From which, we can see that it does not change

along the integral curve of the vector, which means that energy does not change with respect

to time [1]. But that is not the focus of this paper. Now, I will move on to talk about how

to integrate them, the normal thing to do after learning how to differentiate functions.

3 Integrating Differential Forms

3.1 Integration

In multivariable calculus, line integrals are defined, while we integrate over curves, spaces,

etc. Integrating a differential form is the same thing, where we add up all the values of the

differential k-form α along a curve c.

Definition 3.1. Suppose c is a curve and α is a differential k-form. An integral of α over

[a, b] is ∫
c

α :=

∫
[a,b]

αc(t)c
′(t)dt

Note that here, c′(t) stands for the tangent vector along the curve at point t. I can also

use the pullback operation in exterior differentiation to define this integration∫
c

α =

∫
[a,b]

c∗α

3.2 Cells

In order to make the discussion of integration more general, I need to define two notions

here.

Definition 3.2. A k− cell is a smooth function : c : [a1, b1]× [a2, b2]× ...× [ak, bk] → V

Example 3.2.1. Let’s look at some examples on cells.

• A 0 - cell is just a single point that is assigned a value.

• A 1-cell, in analogy, is a curve.

• A 3-cell is a 3-dimensional figure. For example, suppose c : [0, 2π]× [0, r1]× [0, h] → V

by c : (r, θ, z) → (r cos θ, r sin θ, z) can be thought to be a cylinder with radius r1
2
and

height h.
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Now we know how to use cells, and we can generalize the previous definition on integral

for differential forms, since we don’t have to limit it to curves, but we can use cells to denote

higher dimensional functions.

Definition 3.3. Suppose α is a k-form and c is a k-cell c : [a, b]k → V . Then integrating it

over c can be defined as ∫
c

α :=

∫
[a,b]k

c∗α

Of course the cell c does not have to have the same interval for all of its dimensions, but

they are dealt with in the same way.

Example 3.3.1. Let us take a look again at the cylinder in example 3.1. Take the three-form

α that gives e∗1 ∧ e∗2 ∧ e∗3 at every point on c. Then,

c∗α = (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ) ∧ dz

= rdrdθdz

Integrate it, ∫
c

α =

∫ h

0

∫ 2π

0

∫ r1

0

rdr ∧ dθ ∧ dz

In multivariable calculus people omit the wedge product sign, and the result is πh(r1)
2,

which is the volume for a cylinder.

3.3 Stokes’ Theorem on cells

First, I introduce a notion that enables us to consider multiple cells at once.

Definition 3.4. A k-chain U is a formal linear combination of k-cells over U. It can be

expressed as:

c = a1c1 + a2c2 + ...+ akck

where each ai ∈ R, and ci is a k-cell. Therefore, the integral can be alternatively defined as:∫
c
α =

∑
i ai

∫
ci

Second, we need to talk about the intervals, or the boundary. Previously, when I define

a cell: c : [a, b] → V , the boundary is actually a 0 chain c(b) − c(a). Let’s see the formal

definition.

Definition 3.5. Suppose c : [a1, b1]∧ [a2, b2]∧ ...∧ [ak, bk] → U is a k-cell, then the boundary

of c, denoted as ∂c : [a1, b1] ∧ [a2, b2] ∧ ... ∧ [ak−1, bk−1] → U , is the (k-1) chain defined as

follow: For each i = 1, ..., k, define k − 1- chain by

cstarti : (t1, ..., tk−1) 7→ c(t1, ...ti− 1, ai, ti, ..., tk)
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cendi : (t1, ..., tk−1) 7→ c(t1, ...ti− 1, bi, ti, ..., tk)

Then,

∂c :=
k∑

i=1

(−1)i+1(cstopi − cstarti )

The boundary of a chain, on the other hand, is the sum of the boundaries of each cell:

∂(
∑
aici) =

∑
ai∂ci

Now we have enough materials to prove the Stokes’ Theorem for cells.

Theorem 3.1. Let U be an open subset of the vector space V, let c : [a1, b1]∧ [a2, b2]∧ ...∧
[ak, bk] be a k-cell, and let α : U → ∧k−1(T ∗

pRn) be a (k-1) form. Then,∫
c

dα =

∫
∂c

α

The proof will be given later, as this is a preliminary version of the theorem.

Example 3.5.1. Suppose k = 1, and c is a cell that has an interval [a, b], so then ∂c = b−a.
Apply Stokes’ Theorem, ∫

c

dα = αb − αa

This is the fundamental theorem of calculus.

Though compare to Stokes’ theorem in multivariable calculus, this form is more general.

But it is not generalized enough. Specifically, this is the Stokes’ Theorem for cells.

4 Manifolds and Forms

4.1 Some topology

In order to discuss differential forms on manifolds, we first need to understand manifolds.

In fact, the Earth that mankind lives on is a manifold. For a long time in history, people

believe that the Earth is flat, as it is observed by everyone on Earth [2], while in fact, the

Earth is a 3-dimensional sphere. The space that locally looks like Rn is a n-manifold.

Before giving the formal definition of a n-manifold, I will talk a little about some impor-

tant topological concepts.

Definition 4.1. Let X be a topological space and x ∈ X, a neighborhood of x is a set U

which contains an open set V containing x.

Definition 4.2. Suppose f is a smooth function. If f is a bijection and f and f−1 are both

smooth maps, then f is a diffeomorphism.
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Definition 4.3. Let n, n1 be two non-negative integers with n ≤ n2. An subset U of Rn1 is

a n-manifold if for every point p ∈ U , there exists a neighborhood V of p in Rn1 , an open

subset X ⊆ Rn and a diffeomorephism f : X → U ∩ V .

In other words, U is a n-manifold if near every point p, it looks like an open subset of

Rn. Let’s look at some examples.

Example 4.3.1. Let U be an open subset of Rn and f : U → Ra smooth function. The

graph of this function

Γf = (x, f(x)) ∈ Rn+1|x ∈ U

is an n-manifold in Rn+1. The reason is that, the map from U to Rn+1, which maps x

to (x, f(x)) has some hidden properties. It is bijection and the inverse of it is also smooth.

Thus, this map is diffeomorphism, indicating that Γf is an n-manifold.

Example 4.3.2. Suppose there are two submanifolds X1, X2 ofRN1 and RN2 , each has

dimension n1, n2. Taking the direct product,

X1 ×X2 = (x1, x2)|x1,2 ∈ X1,2

is an (n1 + n2) dimensional submanifold of RN1+N2 = RN1 × RN2

Note that a submanifold is a subset of a manifold while conserving all of the properties

and structures,

Why?

For point pi ∈ Xi for i = 1, 2, there exists a neighborhood at each point in RNim an open

set Ui ∈ Rni . We also note that there should also exist a diffeomorephism f : Ui → Xi ∩ Vi.
Let U = U1 × U2, V = V1 × V2, X = X1 ×X2.

Another way of considering this problem is start by analyzing the manifold locally. If

we have take the direct product of two manifolds, from the definition and the properties

of direct product, the dimensions here are additive, which means the result would have the

sum of the dimensions of the previous two manifolds. Therefore, the result makes sense,

that X1 ×X2 is n1 + n2 dimensional.

Definition 4.4. A topological covering of a n − manifold X is another space X0 with a

continuous map π : X0 → X such that X0 is a union of subsets of X whose union is all of

X. We call X0 the covering (cover) to X.

Definition 4.5. A n-dimensional half spaceHn is a portion of a n-dimensional space obtained

by removing the part lying on one side of an− 1 dimensional half plane. In other words, it

is literally half of a n-dimensional space.

Definition 4.6. Let X be an n − manifold. A partition of unity is a set of continuous

functions from X to the unit interval [0, 1] such that for every point p ∈ X,
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• There exists neiborhoods of X, but a finite number of functions in the set are 0.

• The sum of all functions in the set is 1.

We say this partition of unity subordinates to X.

4.2 Regular Values

Let’s turn our attention to yet another way of viewing manifolds: by viewing them as

solutions of systems of equations [1]. To do this, we need to discuss regular values.

Definition 4.7. A point a ∈ Rn is a regular value of a smooth function f if for every point

p ∈ f−1(a), the map f is a submersion at p.

Here, if f is said to be a submersion at p, the differential Df(p) : RN → Rn is and only

is surjective, which means n ≤ N . There would be no regular values if n > N .

Theorem 4.1. Let k = N − n. if a is a regular value of f , the set X := f−1(a) is an k

manifold.

Proof. This proof was inspired by [3].

Example 4.7.1. Let f : Rn → R be a map such that x1, x2, ..., xn+1 → x21+x
2
2+...+x

2
n+1−1.

If we take the total derivative of f(x), we get

D(f(x)) = 2(x1, x2, ..., xn+1)

the dimensions of the two sides are equal, so it is a submersion atx. In fact, it is a submersion

at all points on the n − sphere. From Theorem 4.1, we see that an n − sphere is an

n−manifold ∈ Rn+1.

4.3 Differential Forms on Manifolds

It often occurs to us that some easy ideas can be generalized to become fairly complicated.

Now, let’s introduce two more of those.

Definition 4.8. Let X be a manifold. A vector field on X is a function v which assigns to

each point p ∈ U an element v(p) of TpX.

Definition 4.9. Let X be a manifold. A k form is a function w which assigns to each point

p ∈ X an element wp ∈ ∧k(T ∗
pX).

Does it look familiar? Yes, it was a set of elements of the image of a pullback operation,

except that here, I changed Rn to a manifold X.
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Definition 4.10. Let X be an n − manifold and U an open subset of X. Then the set

U is a parametrizable open set if there exists an open set U0 ∈ Rn and a diffeomorphism

f : U0 → U .

Note that here, the diffeomorphism is a parametrization of U . Therefore, we can also say

that U is parametrizable if there exists a parametrization of it having U itself as its image.

Now, I need to restate the smoothness of a k − form and a vector field v on manifolds

as well.

Definition 4.11. Let X be a manifold. A k − formω is smooth if locally at every point

p ∈ X, ω is smooth on a neighborhood of p. Similarly, a vector field v is smooth if for every

point p ∈ X, v is smooth on a neighborhood of p.

They are basically the same ideas for smoothness on Rn, except here, we need to consider

one more thing: the generalized idea of ”neighborhood”.

Theorem 4.2. Let X, Y be two n−manifolds and f : X → Y a smooth map. Then for a

differential k − form α , we have f ∗(dα) = d(f ∗α)

Proof. For every point p ∈ X, we can check how this works in its neighborhood. Let q = f(p)

and let U, V be parametrizable neighborhoods of p, q. Let ϕ : U0 → U and ψ : V0 → V be the

parametrizations, we obtain a parametrization map g : U0 → V0, g = ψ−1 ◦ f ◦ ϕ; therefore,

ϕ∗d(f ∗α) = dϕ∗f ∗α

= d(f ◦ ϕ)∗α
= d(ψ ◦ g)∗α
= dg∗(ψ∗α)

= g∗dϕ∗α

= g∗ψ∗dα

= ϕ∗f ∗dα

(2)

Thus the equation stands.

4.4 Orientations

We finally come to the stage where we can talk about integral calculus of forms on manifolds.

Before talking about Stokes’ Theorem, there is another thing that we need to know.

Definition 4.12. Let X be an n −manifold. An orientation of X is a rule for assigning

each point p ∈ X an orientation of TpX.

In fact, this is putting a label (i.e. a plus or a minus ) on points p ∈ X.

14



The reason for having an orientation is that, in a space, we need to pick a direction for

the tangent vectors that we are taking of the points. Let’s look at a definite integral for an

example.

Example 4.12.1. As we know, ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

We can easily find out the orientation for such integrals as it is two-dimensional. In

space, however, it would be much harder and we need orientations to help us to find out. In

fact, there are some manifolds that are not ”orientable”.

Definition 4.13. A smooth n−manifold is orientable if there exists a differential n−formω
on X such that for every point p ∈ X, ωp ̸= 0.

In particular, we know that ωp is an element of ∧n(T ∗
pX); in this case, ω is called a

volume form of M .

Example 4.13.1. Let’s take a look at Möbius strip. It is obtained from a rectangle which

has its both ends glued together. It is not orientable, because the vector does not switch

sides when moving along the strip, while it actually has moved all the way.

Definition 4.14. Let M,N be two manifolds. Suppose f : M → N is a local diffeomor-

phism. f is orientation-preserving if for each point p ∈ M , dfp takes the oriented bases

of TpM to the oriented bases of Tf(p)N .

In other words, a diffeomorphism is orientation-preserving if the isomorphism dfp does

not change the directions of the two bases. For instance, a parametrization f : U0 → U is

orientation-preserving.

Definition 4.15. Let D be a smooth domain, and ψ being a parametrization ψ : U0 → U .

We call U a D-adapted parametrizable open set if

ψ−1(U ∩D) = Hn ∩ U0

ψ is the a D-adapted parametrization.

5 Stokes’ Theorem

5.1 Boundary

Definition 5.1. Let α be a k − form on an oriented n−manifold X. The support of α

is

supp(v) := p ∈ X|αp ̸= 0
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We say α is compactly supported if supp(v) is compact as a topological space.

Recall the definition of manifold. It does not include the points on the edge. Amanifold

with boundary is a manifold including its boundary points(the edges). Or formally,

Definition 5.2. The boundary of a manifold X is the set of all boundary points and is

denoted as ∂X.

Example 5.2.1. Consider a closed unit ball B3 := (x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1. It is a

three dimensional manifold with boundary and its boundary is the two dimensional unit

sphere.

Definition 5.3. An open subset D ∈ X is a smooth domain if

• The boundary ∂Dis an (n− 1) dimensional submanifold of X;

• The boundary ∂D concides with the boundary of D that is without boundary.

One important reason to generalize the understanding of the boundary here is that, in

manifolds the boundary might be oriented. It is oriented on a oriented surface, and the

orientation usually remains the same.

Example 5.3.1. Let’s look at the three dimensional unit ball: B3 := (x, y, z) ∈ R3|x2 + y2 + z2 < 1.

It is not a manifold with boundary, but it has an ”edge”(boundary) outside of it, which is

still the two dimensional unit sphere. Thus, it is a smooth domain

5.2 Integration on Manifolds

Definition 5.4. Let α be a compactly supported n− form on a smooth domain D, where

α can be written as α = fdx1 ∧ dx2 ∧ ...∧ dxn. Let f0 : U0 → U be a parametrization. Since

f is oriented, we can define ∫
D

α =

∫
D

f ∗
0α

∫
D

α =

∫
D

fdx1 ∧ dx2 ∧ ... ∧ dxn

From the additivity properties of Rieaman Integrals, we can legitimately get analogous

properties for integrals over manifolds:∫
D

(α1 + α2) =

∫
D

α1 +

∫
D

α2

Similarly, for a constant c, we also have∫
D

cα = c

∫
D

α
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However, we need to extend the definition of integral to any compactly supported n −
manifold. Before that, I will show how I derive the partition of unity properties in

manifold.

Theorem 5.1. Let C = {Uk}k∈I be a covering of X. Let U be an open subset of X. Then

there exists a family of smooth functions ρi(i.e. partition of unity subordinates to X )such

that for i ≥ 1, it has the following properties:

1. ρi ≥ 0;

2. For every compact set S ⊂ X, there exists a postiive integer N such that if i > N ,

supp(ρi) ∩ S = ∅

3.
∑∞

i=1 ρi = 1

4. For every i ≥ 1 there exists an index k ∈ I such that supp(ρi) ⊂ Uk

Proof. For each point p in X, and for some Uk containing this point, select an open set

Op ∈ RN with p ∈ Op and Op ∩X ∈ Uk being true. Let O :=
⋃

p∈X Op and let ρ̃i be a

smooth form defined on O. For i ≥ 1, let ρ̃i be a partition of unity subordinate to O by the

O′
ps. From the second condition of selecting Op, we see that U ⊆ O, so ρi is a restriction of

ρ̃i, and thus it inherits the properties of ρ̃i, which are those of a partition of unity(property

1 -3), and being subordinate to the covering(property 4).

Now, let the covering in theorem5.2 be any covering of an open subset in X, and let ρibe

a family of smooth functions such that for i ≥ 1, it is a partition of unity subordinate to the

cover. Let α be a compact n −manifond on X, we define the integral of α over an open

subset X to be
∞∑
i=1

∫
X

ρiα

Note that in definition 5.4, α has to be compactly supported. But here, we allow it to be an

arbitrary smooth n− form on manifolds.

Theorem 5.2. change of variable formula

Let X0and X be oriented n − manifolds and f : X0 → Xan orientation-preserving

diffeomorephism. If W is an open subset of X and W ′ := f−1(W ), then∫
W ′
f ∗α =

∫
W

α

where α is a compact n− form.

Proof. From above, we see that the integral
∫
W
α is a sum of smooth forms while each form

is supported on a parametrizable open subset, and thus we can assume that α has these
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properties. Let V be a parametrizable open set containing supp (α) and let ϕ0 : U → V

be an oriented parametrization of V . Because f is a diffeomorphism, it has an inverse f−1

which is a diffeomorphism of X onto X1. Let V
′ = f−1(V ) and let ϕ′ = f−1 ◦ ϕ0. Note that

ϕ′ is also an oriented parametrization. Now, because f ◦ ϕ′
0 = ϕ0 and we know from the

condition that W0 = ϕ−1
0 (W ), we have

W0 = (ϕ′
0)

−1(f−1(W )) = (ϕ′
0)

−1(W ′)

By the chain rule we have

ϕ∗
0α = (f ◦ ϕ′

0)
∗α = (ϕ′

0)
∗f ∗α

Thus ∫
W

α =

∫
W0

ϕ∗
0α =

∫
W0

(ϕ′
0)

∗(f ∗α) =

∫
W ′
f ∗α

5.3 Generalized Stokes’ Theorem

Let’s start with a preliminary version of Stokes’ Theorem.

Lemma 5.3. If µ is a compact n− 1− form on X, then∫
X

dµ = 0

Proof. Let ρi(i ≥ 1 be a partition of unity such that each ρi is supported in a parametrizable

open set Wi = W . We can prove the theorem using the change of variable formula.

Suppose f : W0 → W is an oriented parametrization of U . Then from Theorem 5.2 and

Theorem 4.2, we have ∫
W

dµ =

∫
U0

f ∗dµ =

∫
U0

d(f ∗µ)

Let X be an oriented n-dimensional manifold and D ⊂ X a smooth domain. Because

∂D obtains a natural orientation from D, so if we define ι : ∂D → X to be an inclusion map

and α a n− 1− form on X,
∫
∂D
ι∗α is a well-defined integral. Now let’s turn our attention

to prove Stokes’ Theorem.

Theorem 5.4. (Stokes’ Theorem) For a n− 1− formα, we have∫
∂D

ι∗α =

∫
D

dα

18



Proof. The proof is inspired from [4] Let ρi(i ≥ 1) be a partition of unity such that for each

i, the support of ρi is contained in a parametrizable open set Ui = U of one of the following

three types:

1. U is a subset of the interior of D.

2. U is a subset of the exterior of D.

3. There exists an openU0 ⊂ Rn and an oriented D-adapted parametrization ϕ : U0→̃U .

If we replace α by the finite sum
∑∞

i ρiα, we will be able to prove the theorem by proving

that it works for each ρiα. Because ρi is a partition of unity, we see from Theorem 5.1

property 4 that the support of α is contained in a parametrizable open set U of one of the

three types above.

1. If U is of type 1, because we know that ι is an inclusion map, and∫
D

dα =

∫
U

dα =

∫
X

dα

so ι∗α = 0. In this case the left hand side of the Stokes’ Theorem equation is 0. From

Theorem 5.4, we see that the right hand side would also be 0. The equation stands.

2. If U is of type 2, ι∗α = 0 for the same reason. The restriction of α to D is 0, so both

sides of the Stokes’ Theorem equation is 0. The equation stands.

Thus, to prove the Stokes’ Theorem it is sufficient to prove that U is an oriented D-

adapted parametrization open set.

From the properties of such open sets, we can see that the restriction of the map to

U0 ∩ ∂Hn is the diffeomorphism

ψ : U0 ∩ ∂Hn → U ∩D

Another restriction is on ι. If we define ιRn−1 : Rn−1 → Rn, then

ιD ◦ ψ = ϕ ◦ ιRn−1

Note that it is an inclusion map from ∂D to Rn, we can thus rewrite the right hand side of

5.4 to ∫
D

dα =

∫
Hn

ϕ∗dα =

∫
d

Hnα
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Because we also have 5.3, the left hand side of 5.4 to∫
∂D

ι∗α =

∫
Rn−1

ψ∗ι∗α

=

∫
Rn−1

ι∗Rn−1ϕ∗α

=

∫
∂Hn

ι∗Rn−1ϕ∗α

(3)

Here we are able to identify Rn−1 with ∂Hn is because H is a half space. Consequently, what

is left to do now is to prove the Stokes’ Theorem on Hn, which is sufficient to prove 5.4.

Let

α =
n∑

i=1

(−1)i−1fidx1 ∧ ... ∧ dxn

Then

dα =
n∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ ... ∧ dxn

The integral it on Hn is ∫
Hn

dα =
n∑

i=1

∫
Hn

(−1)i−1 ∂fi
∂xi

dx1 ∧ ... ∧ dxn

We can rearrange the order of integration in each term. For i > 1, from the fundamental

theorem of calculus, we have

n∑
i=2

(−1)i−1

∫ ∞

−∞
...

∫ ∞

−∞

∂fi
∂xi

(x)dx2 ∧ ... ∧ dxn

=
n∑

i=2

(−1)i−1

∫ ∞

−∞
...

∫ ∞

−∞
fi(x)|xi=∞

xi=−∞dx1 ∧ ... ∧ dxn

= 0

(4)

because αis compactly supported. The only thing that is left is dx1. Because Hn is a half

space, the range of interation is the interval (−∞, 0)∫ 0

−∞

∂f1
x1

dx1 = f(0, x2, ..., xn)

Integrate it with respect to the remaining variables,∫
Hn

=

∫
Rn−1

f(0, x2, ..., xn)dx2 ∧ ... ∧ dxn
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For the same reason, ι∗Rn−1x1 = 0 while ι∗Rn−1xi = xi thus∫
Rn−1

ι∗Rn−1α =

∫
Rn−1

f(0, x2, ..., xn)dx2 ∧ ... ∧ dxn

which is the same with 5.3. Hence the two sides of 5.4 are equal, hence the Stokes’ Theorem

stands.

There is another way of writing the Stokes’ Theorem: Suppose X is an oriented n −
manifold with boundary, and α being a compactly supported (n − 1) − form on X. Then

the Stokes’ Theorem states, ∫
X

dα =

∫
∂X

α

This is the same statement as 5.4, but this one is more commonly seen as it looks more

straightforward.

5.4 Application

I will start by talking about its applications in Mathematics. It is widely used in multiple

fields, including geometry, topology, and calculus. In fact, the Stokes’ Theorem can be used

to conduct to two other important theorems in multivariable calculus: the Green’s Theorem

and the Divergence Theorem. Let’s take a look at Green’s Theorem together.

Theorem 5.5. Suppose D is a smooth domain in R2, and P,Q are smooth real-valued

functions on D. Then ∫
D

(
∂Q

∂x
− ∂P

∂y
)dxdy =

∫
∂D

PdxQdy

Proof. Apply the Stokes’ Theorem to the 1 − form Pdx + Qdy, we will have the Green’s

Theorem.

While there are multiple applications of Stokes’ Theorem in physics, it is comparatively

harder to apply the theorem to physics, as manifolds are highly abstract concepts and physi-

cists are still exploring the space and time so that they can use the math that we have for

higher-dimensional spaces. However, we can still use Stokes’ Theorem a lot in lower dimen-

sional spaces. Let’s look at Maxwell-Faraday equation for an example.

The Maxwell-Faraday equation predicts how a magnetic field will interact with an electric

circuit to provide an electromotive force(EMF).

Lemma 5.6. (Lenz’s Law)

EMF = −dΦ
dt

The proof for this law will not be given here as it is an experimental result. If you are

interested, you can give it a try.
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Theorem 5.7. Maxwell-Faraday equation

∇× E = −∂B(t)

∂t

Proof. In order to derive the equation, let’s imagine a loop, with B being the time-varying

electric field. Because the rate of change of the total magnetic flux is equal to the opposite

of the EMF, so taking the sum of the magnetic flux (Φ) is the integral of B over the area

enclosed by the circuit

Φ(t) =

∫
S

B(t)dS

while the total EMF is the line integral

EMFtotal =

∮
circuit

d(EMF )

From the definition of Voltage(V ) and the relationship between V and the electric field E,

we have

V =

∫
EdlE =

dV

dl

rewrite 5.4with the two equations above, we have

EMFtotal =

∮
circuit

Edl

If we apply the Stokes’ Theorem on one form(i.e. Green’s Theorem)to the right hand side

of 5.4 we have ∮
circuit

Edl =

∫
S

∇× EdS

From the equation above and the Lenz’s theorem, we have∫
S

∇× EdS = − d

dt

∫
S

B(t)dS =

∫
S

−dB(t)

dt
dS

Integrate both sides,

∇× E = −∂B(t)

∂t

which is the Maxwell-Faraday equation, the third equation in the Maxwell’s equations. The

other three equations can also be proved

6 Conclusion

In this paper, the idea of differential forms was introduced and discussed to prove the Stokes’

Theorem. The theorem is already used in physics, and it will be more widely applied once
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humankind succeeds in understanding higher dimensional spaces. The future studies on the

Stokes’ Theorem should also be how it can be applied to theoretical physics to interpret the

universe.
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