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Abstract

We introduce the Basel Problem, a key problem that has consequences in mathe-

matical analysis and number theory, and present we Bernoulli’s work and two of Euler’s

proofs to the problem. Then, we present corollaries and consequences to Euler’s proof

such as the Wallis product and the Riemann zeta function. We then conclude with a

few equations and theorems relevant to analytic number theory such as Euler’s product

and the divergence of the reciprocal of primes.

1 Introduction

The Basel Problem was first introduced by Italian mathematician Pietro Mengoli in 1644.

The problem asked to find the numerical value of [10]

1 +
1

22
+

1

32
+

1

42
+ . . . =

∞∑
n=1

1

n2
.

In 1655, Wallis estimated the solution to three decimal places. Around thirty years later, in

1689, Jakob Bernoulli proved that the infinite sum must be less than two. In 1721, Daniel

and Johann Bernoulli proposed that the sum is around 8
5
. Around the same time, Goldbach

estimated that the sum was between 41
35

and 5
3
[7].

Although Leibniz and Wallis were unable to provide solutions to the Basel problem, they

made important observations, which can be seen in Euler’s proof. Wallis’s product formula

for π which will be explored later in the paper, and Leibniz’s proof that
∑∞

n=1
(−1)n+1

2n+1
= π

4
[3]

based on the properties of trigonometric power series provided important connections on

the behavior of power series, infinite sums and products, and π. Despite this progress, the

problem continued to stump mathematicians until 1734, when Euler first solved the problem,

using the properties of the power series of the sine function and techniques of calculus. Euler
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would continue to provide proof of the Basel problem, with one proposed in 1745 and another

proposed in 1755 [7].

In this paper, we will briefly start with Bernoulli’s approximation of the Basel problem.

Then, we will explore Euler’s solutions to the Basel problem. After these solutions, we will

present a result to the problem, which is the Wallis product and the Riemann Zeta Function.

We then conclude with a few equations and theorems relevant to analytic number theory

such as the Euler’s product and the divergence of the reciprocal of primes.

2 Bernoulli’s Approximation

A key observation to the upper limit of the Basel problem was made by Bernoulli who

showed that the sum must be less than or equal to two [7]. This observation was found

through the inequality that

n(n+ 1) ≤ 2n2.

From this inequality, Bernoulli showed that

1
n(n+1)

2

≥ 1

n2
.

It’s then clear that
∑∞

n=1
1

n(n+1)
2

converges to two as

∞∑
n=1

( 1
n(n+1)

2

)
= 2 ·

∞∑
n=1

(
1

n
− 1

n+ 1
),

where
∞∑
n=1

(
1

n
− 1

n+ 1
) = lim

n→∞
(1− 1

n+ 1
).

Therefore,

lim
n→∞

(1− 1

n+ 1
) = 1.

And so,
∞∑
n=1

( 1
n(n+1)

2

)
= 2.

Finally by the comparison test for series,

∞∑
n=1

1

n2
≤ 2.
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Although this approximation may seem simple, Bernoulli’s estimation provided a valuable

upper limit to the Basel problem.

3 Euler’s First Proof

In order to solve the Basel problem, Euler made the astute observation that one can

compare the coefficients of the Maclaurin series for sinx to the coefficients of a polynomial

in which the polynomial is constructed using the zeroes of sin x. From this observation,

Euler understood that the coefficients of the polynomial and the Maclaurin series for sin x

must be the same for terms with the same power of x.

The Macularin series for sin(x) is as follows [16]

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− . . .

Euler understood that any finite polynomial could be written as the product of its linear

factors determined by its roots. This observation is similar to the implications from the

Fundamental Theorem of Algebra.

Theorem (Fundamental Theorem of Algebra). If P(x) is a non-constant polynomial with

complex coefficients, then P(x) has at least one complex root. [12]

Remark 1. This Fundamental Theorem of Algebra also implies that any polynomial of degree

n with complex coefficients has n complex roots, with multiplicity included. [12]

Euler then used this observation to claim that the same can be said for an infinite

polynomial. That is, Euler claimed that one can also write an infinite degree polynomial as

a product of linear factors determined by its roots. However, this observation is not true

for all polynomials. Therefore, using this observation and understanding that the roots of

sin(x) are πn, n ∈ Z. Therefore we can write the polynomial based on the roots of sin(x) as

P (x) = Ix(x− π)(x+ π)(x− 2π)(x+ 2π)(x− 3π)(x+ 3π)(x− 4π)(x+ 4π) . . .

In order to find the leading coefficients, I, Euler noticed that [5]

lim
x→0

sinx

x
= 1.

Therefore, substituting P (x) into the limit, we see that

1 = lim
x→0

Ix(x− π)(x+ π)(x− 2π)(x+ 2π)(x− 3π)(x+ 3π) . . .

x
.
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Therefore,

1 = I(x− π)(1 + π)(x− 2π)(x+ 2π)(x− 3π)(x+ 3π) . . . .

Thus,

I =
1

(x− 2π)(x+ 2π)(x− 3π)(x+ 3π) . . .

We then substitute zero for x to get

I =
1

(−(π2))(−(4π2))(−(9π2)) . . .

Therefore,

sinx = Ix(x− π)(x+ π)(x− 2π)(x+ 2π)(x− 3π)(x+ 3π) . . .

=
x(x− π)(x+ π)(x− 2π)(x+ 2π)(x− 3π)(x+ 3π) . . .

(−(π2))(−(4π2))(−(9π2)) . . .

=
x(x2 − π2)(x2 − 4π2)(x2 − 9π2) . . .

(−(π2))(−(4π2))(−(9π2) . . .

=
x(π2 − x2)(4π2 − x2)(9π2 − x2) . . .

(π2)(4π2)(9π2) . . .

= x · (π
2 − x2

π2
) · (4π

2 − x2

4π2
) · (9π

2 − x2

9π2
) . . .

= x · (1− x2

π2
) · (1− x2

4π2
) · (1− x2

9π2
) . . .

= x
∞∏
n=1

(1− x2

(nπ)2
).

Therefore, Euler showed out that the polynomial equivalent to sinx is

sinx = x

∞∏
n=1

(
1− x2

(nπ)2
)

Therefore, sinx
x

is equivalent to

sinx

x
=

∞∏
n=1

(
1− x2

(nπ)2
)
.

In order to solve the Basel Problem, we need to compare the coefficients of the x2 terms of

the polynomial equivalent sinx
x

to the coefficient of the x2 terms for the Maclaurin series of
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sinx. For the coefficients of the x2 terms of the polynomial equivalent sinx
x
, we see that

−(
1

π2
+

1

4π2
+

1

9π2
+ . . .) = (

−1

π2
)(1 +

1

4
+

1

9
+ . . .) = (

−1

π2
)

∞∑
n=1

1

n2
.

Moreover, we know that the coefficient of the x2 terms of the Maclaurin series for sin x is
−1
6
. Therefore,

−1

6
= (

−1

π2
)

∞∑
n=1

1

n2
.

Therefore, by doing a simple manipulation, we see that

π2

6
=

∞∑
n=1

1

n2
,

which shows us how Euler found the precise sum to the Basel problem.

4 Euler’s Proof Based on L’Hôpital’s Rule and Euler’s

Formula

In this proof, Euler used the techniques of calculus such as L’Hôpital’s rule and differen-

tiation, along with an astute change of variables and again writing sin x as a product of its

linear factors determined by its roots to solve this problem.

We know that the sin x can be expressed through this polynomial:

sinx = x(1− x

π
)(1 +

x

π
)(1− x

2π
)(1 +

x

2π
) . . .

If we substitute x = πt into the above equation, we get

sin(πt) = πt(1− t)(1 + t)(
2− t

2
)(
2 + t

2
) . . .

Combining like terms, we get

sin(πt) = πt(1− t2)(
4− t2

4
)(
9− t2

9
) . . .

Then, taking the natural logarithm of both sides and using the properties of the natural
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logarithm gives us

ln(sin(πt)) = ln(π) + ln(t) + ln
(
1− t2

)
+ ln

(
4− t2

)
− ln(4) + . . .

We then differentiate with respect to t and get

π cos(πt)

sin(πt)
=

1

t
− 2t

1− t2
− 2t

4− t2
− . . .

. We then subtract 1
t
on both sides and multiply both sides by −1

2t
to obtain

1

1− t2
+

1

4− t2
+

1

9− t2
+ · · · = 1

2t2
− π cos(πt)

2t sin(πt)
.

We then substitute t = −ix to get

1

1 + x2
+

1

4 + x2
+

1

9 + x2
+ . . . =

π cos(−iπx)

2ix sin(−iπx)
− 1

2x2
.

Then, we use Euler’s formula which states that for any x and for i =
√
−1 [6],

eix = cosx+ i sinx

to derive the following identities [6]

cosx =
eix + e−ix

2

sinx =
eix − e−ix

2
.

From Euler’s formula, we then know

cos(y)

sin(y)
=

1
2
(eiy + e−iy)

1
2i
(eiy − e−iy)

=
i(e2iy + 1)

e2iy − 1
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We then substitute y = −iπx into the above equation to get

π cos(−iπx)

2ix sin(−iπx)
=

π

2ix
· i(e

2πx + 1)

e2πx − 1

=
π

2x
· (e

2πx − 1) + 2

e2πx − 1

=
π

2x
+

π

x(e2πx − 1)

We then substitute π
2x

+ π
x(e2πx−1)

for π cos(−iπx)
2ix sin(−iπx)

into our original equation to get

1

1 + x2
+

1

4 + x2
+

1

9 + x2
+ . . . =

−1

2x2
+

π cos(iπx)

2ix sin(−iπx)

=
πx− 1

2x2
+

π

x(e2πx − 1)

=
πxe2πx − e2πx + πx+ 1

2x2e2πx − 2x2

We then take the limit as x approaches zero to both sides. On the left hand side, we will

apply Tannery’s Theorem as we then take the limit as x approaches zero. We will also apply

Tannery’s Theorem to the left hand sides.

Theorem (Tannery’s Theorem). Let Sn =
∑∞

k=0 ak(n), and assume that limn→∞ ak(n) = bk.

If |ak(n)| ≤ Mk and
∑∞

k=0Mk < ∞, then limn→∞Sn =
∑∞

k=0 bk [15].

Applying Tannery’s Theorem to the left hand side gives us

lim
x→0

∞∑
n=1

1

n2 + x2
=

∞∑
n=1

1

n2
.

After taking the limit as x approaches zero to both sides, we are then given the indeterminate

form 0
0
on the right hand side. Seeing this, we can now use L’Hôpital’s Rule.

Theorem (L’Hôpital’s Rule: 0
0
Case). Assume f and g are continuous functions which are

defined on an interval containing c. Also, assume that f and g are differentiable on this

interval, with the exception of point c. Then, if f(c) = 0 and g(c) = 0, then

lim
x→c

f ′(x)

g′(x)
= L

implies

lim
x→c

f(x)

g(x)
= L
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[1].

We apply L’Hôpital’s Rule’s numerous times and simplify

∞∑
n=1

1

n2
= lim

x→0

(πxe2πx − e2πx + πx+ 1

2x2e2πx − 2x2

)
= lim

x→0

( π − πe2πx + 2π2e2πx

4xe2πx + 4πx2e2πx − 4x

)
= lim

x→0

( π3xe2πx

e2πx + 4πxe2πx + 2π2x2e2πx − 1

)
= lim

x→0

( π2(2πx+ 1)

4π2x2 + 12πx+ 6

)
=

π3

4π + 2π

=
π2

6
.

Therefore, we have found the precise sum for the Basel problem which is

∞∑
n=1

1

n2
=

π2

6
.

5 Consequences of Euler’s Proof of the Basel Problem

5.1 The Wallis Product

The Wallis Product was first discovered by English mathematician John Wallis in 1655.

The Wallis Product [9] is

π

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· 8
7
· 8
9
. . . .

Although the Wallis product was discovered before Euler’s first proof to the Basel problem,

Euler’s polynomial for sin x also yields us the Wallis product when we substitute x = π
2
.

We will also explore the more modern and common proof to the Wallis product, and an

alternative form of the Wallis product. The original proof begins with an application of the

integration by parts formula.

Theorem (Integration by Parts). Let u and v be differentiable functions of x on an interval

I containing a and b. Then
∫ b

a
u(x)v′(x) dx = u(b)v(b)− u(a)v(a)−

∫ b

a
u′(x)v(x) dx. [1]

We first let In =
∫ π

2

0
sinn x dx and understand that sinn x = sinn−1 x · sinx. We then let
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let u(x) = sinn−1(x) and v(x) = − cos(x) and apply integration by parts. This results in

I(n) =

∫ π
2

0

sinn x dx

= − sinn−1 x cosx
∣∣∣π2
0
−
∫ π

2

0

(− cosx)(n− 1) sinn−2 x cosx dx

= 0 + (n− 1)

∫ π
2

0

cos2 x sinn−2 x dx

= (n− 1)

∫ π
2

0

(1− sin2 x) sinn−2 x dx

= (n− 1)

∫ π
2

0

sinn−2 x dx− (n− 1)

∫ π
2

0

sinn x dx

= (n− 1)I(n− 2)− (n− 1)I(n)

=
n− 1

n
I(n− 2).

From this, then we know that
I(n)

I(n− 2)
=

n− 1

n
.

Then we make two substitutions that will be relevant in future steps.

I(2n) =
2n− 1

2n
I(2n− 2)

I(2n+ 1) =
2n

2n+ 1
I(2n− 1).

We also substitute n = 0, 1 into I(n) to get

I(0) =

∫ π
2

0

dx = x
∣∣∣π2
0
=

π

2

I(1) =

∫ π
2

0

sinx dx = (− cosx)
∣∣∣π2
0
= 1.
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We then separate the cases and calculate I(2n) and I(2n+ 1).

I(2n) =
2n− 1

2n
I(2n− 2)

=
2n− 1

2n
· 2n− 3

2n− 2
I(2n− 4)

=
2n− 1

2n
· 2n− 3

2n− 2
· 2n− 5

2n− 4
· . . . · 5

6
· 3
4
· 1
2
· I(0)

=
π

2

n∏
k=1

2k − 1

2k

I(2n+ 1) =
2n

2n+ 1
I(2n− 1)

=
2n

2n+ 1
· 2n− 2

2n− 2
I(2n− 3)

=
2n

2n+ 1
· 2n− 2

2n− 1
· 2n− 4

2n− 3
· . . . · 6

7
· 4
5
· 2
3
I(1)

=
n∏

k=1

2k

2k + 1
.

By properties of the sin x function, we see that

0 ≤ sinn+1 x ≤ sinn x ≤ 1 for 0 ≤ x ≤ π

2
.

Therefore,

0 ≤ sin2n+2 x ≤ sin2n+1 x ≤ sin2n x.

Therefore, we know that

0 < sin2n+2 x ≤ sin2n+1 x ≤ sin2n x.

Therefore,

0 < I2n+1 ≤ I2n ≤ I2n−1.

From the recurrence relation, we have that

I2n−1

I2n + 1
=

2n+ 1

2n
.

We then divide 0 < I2n+1 ≤ I2n ≤ I2n−1 by I2n+1

1 ≤ I2n
I2n+1

≤ 2n− 1

2n+ 1
=

2n+ 1

2n
.
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Then, we use the squeeze theorem.

Theorem (Squeeze Theorem). Assume that g(x) ≤ f(x) ≤ h(x) for all x close to c but not

equal to c. If limx→c g(x) = L = limx→c h(x), then limx→c f(x) = L [1].

Therefore,

lim
n→∞

I2n
I2n+1

= 1.

From this, we know that

lim
n→∞

I2n
I2n+1

=
π

2

n∏
k=1

(
2k − 1

2k
· 2k + 1

2k
) = 1.

Therefore, we have derived the Wallis product as

π

2
=

∞∏
k=1

(
2k

2k − 1
· 2k

2k + 1
) =

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
. . .

Since we have finished the original proof to the Wallis product, we can explore how the

Wallis product can be derived from Euler’s proof to the Basel problem.

We start with the polynomial for sin x.

sinx = x
∞∏
n=1

(1− x2

(nx)2
).

We then solve for a common denominator and substitute x = π
2
:

sinx = x
∞∏
n=1

(
n2π2 − x2

n2π2
)

sin
π

2
=

π

2

∞∏
n=1

(
n2π2 − (π

2

4
)

n2π2
).

We then factor out and cancel π2:

1 =
π

2

∞∏
n=1

(
π2(n2 − 1

4
)

π2n2
)

1 =
π

2

∞∏
n=1

(
(n2 − 1

4
)

n2
).
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We then solve for a common denominator and simplify

1 =
π

2

∞∏
n=1

(
4n2−1

4

n2
)

1 =
π

2

∞∏
n=1

(
4n2 − 1

4n2
).

We then multiply both sides by π
2
and take the reciprocal of each side:

2

π
=

∞∏
n=1

(
4n2 − 1

4n2
)

π

2
=

∞∏
n=1

(
4n2

4n2 − 1
).

We then are factor the numerator and denominator:

π

2
=

∞∏
n=1

( (2n)(2n)

(2n+ 1)(2n− 1)

)
.

Therefore, we are finished as

π

2
=

∞∏
n=1

( (2n)(2n)

(2n+ 1)(2n− 1)

)
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
. . .

which is the Wallis Product. We will now show and derive the alternative form of the Wallis

Product which is
√
π = lim

n→∞

22n(n!)2

(2n!)
√
n.

We will first state some simple formulas. First, the nth product of even numbers:

(2) · (4) · (6) · (8) · . . . · (2n) · . . . = 2nn!.

Second, the nth product of odd numbers:

(1) · (3) · (7) · (9) · . . . · (2n+ 1) · . . . = (2n+ 1)!

2nn!
.
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Using the Wallis product formula, we see that

π

2
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)

= lim
n→∞

( 2n(n!)2

(
∏n

k=1(2k − 1))(
∏n

k=1(2k + 1))

)
Substituting the above formulas for the nth product of odd numbers and even numbers,

we see that

π

2
= lim

n→∞

(22n(n!)2(2nn!)(2nn!(2n+ 1))

((2n+ 1)!)2
)

= lim
n→∞

(22n(n!)2
(2n)!

)2(
2n

2n(2n+ 1)

)
.

Therefore,

π = ( lim
n→∞

(22n(n!)2
(2n)!

)2(
1

n
)
)(

lim
n→∞

2n

2n+ 1

)
=
(
lim
n→∞

22n(n!)2

(2n)!
√
n

)2
.

Therefore
√
π = lim

n→∞

22n(n!)2

(2n)!
√
n
,

which is the alternative form of the Wallis product.

5.2 The Zeta Function

The Zeta Function is an extremely important topic of analytic number theory, and it’s

consequences are still extremely important today such as it’s relation to the prime number

theorem and the Riemann hypothesis.

Definition (Zeta Function). We define the Riemann zeta function to be [14]

ζ(s) =
∞∑
n=1

1

ns

for all s ∈ C with Re(s) > 1.
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5.3 Euler’s Product

The zeta function was first discovered by Euler around the same time in which Euler

solved the Basel problem. Euler also described the zeta function in terms of an infinite prod-

uct termed as Euler’s product. Euler’s product also played a pivotal role in Riemann’s own

work, and is said to be an important idea in the eventual proof of the Riemann hypothesis.

Definition (Euler product). We define Euler’s product as [8]

ζ(s) =
∞∑
n=1

1

ns
=
∏

pprime

1

1− p−s
.

We will now proof Euler’s product in a method similar to Euler’s original proof.

We first see that when we multiply ζ(s) by 1
2s
, we have

1

2s
(
ζ(s) = 1 +

1

2s
+

1

3s
+

1

4s
+

1

5s
+ . . .

)
1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+ . . .

We then subtract the second equation from the original zeta function equation:

(1− 1

2s
)ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+

1

13s
+ . . .

We then multiply the entire former equation by the next prime:

1

3s
(1− 1

2s
)ζ(s) =

1

3s
+ 1

1

9s
+

1

15s
+

1

21s
+

1

27s
+

1

33s
+ . . .

We then subtract the former equation from the original zeta function equation:

(1− 1

3s
)(1− 1

2s
)ζ(s) = 1 +

1

5s
+

1

7s
+

1

9s
+

1

11s
+

1

13s
+

1

17s
+ . . .

We then repeat this process an infinite amount of times for 1
ps

where p is prime:

. . . (1− 1

11s
)(1− 1

7s
)(1− 1

5s
)(1− 1

3s
)(1− 1

2s
)ζ(s) = 1

We then write this as

ζ(s) =
∏

p prime

1

1− p−s
,

which is Euler’s product.
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5.4 The Sum of the Reciprocal of Primes is Divergent

Theorem (The Sum of Reciprocal of Primes is Divergent). The sum of the reciprocal of all

prime numbers diverges which can be represented as [11]

lim
n→∞

n∑
k=1

1

pk
= ∞.

We will use Euler’s product to prove this theorem. However, before we begin, we will

restate a few useful expressions.

First, that
∞∑
k=0

1

xk
=

1

1− x−1

for x > 1.

Secondly, the taylor expansion of lnx is

ln
1

1− x−1
=

∞∑
k=0

1

kxk

for x > 1. Third, the prime factorization theorem.

Theorem (Prime Factorization Theorem). Let k be a positive integer. Then there exists

prime numbers p1, p2, p3, ..., pn and integers i1, i2, i3, ..., in such that k = pi11 p
i2
2 . . . pinn .

In order to prove this theorem, we will compare the harmonic series to the sum of the

reciprocal of prime numbers. To compare the harmonic series to the sum of the reciprocal of

prime numbers, we will create an upper bound on the partial sums of the harmonic series.

To begin, by the prime factorization theorem and the formula
∑∞

k=0
1
xk = 1

1−x−1 , we

find [2]

n∑
k=1

1

k
≤

n∏
k=1

n∑
j=0

1

pjk

≤
n∏

k=1

∞∑
j=0

1

pjk

=
n∏

k=1

1

1− p−1
k

15



Therefore, understanding that ln is increasing, we have

ln
n∑

k=1

1

k
≤ ln

n∏
k=1

1

1− p−1
k

=
n∑

k=1

ln
1

1− p−1
k

=
n∑

k=1

∞∑
j=1

1

jpjk

=
n∑

k=1

1

pk
+

n∑
k=1

∞∑
j=2

1

jpjk

≤
n∑

k=1

1

pk
+

n∑
k=1

∞∑
j=2

1

jpjk

=
n∑

k=1

1

pk
+

n∑
k=1

p−2
k

1− p−1
k

≤
n∑

k=1

1

pk
+

∞∑
i=2

1

i2 − i

=
n∑

k=1

1

pk
+ 1.

Since the harmonic series is divergent which means that left hand side will also be divergent,

then

lim
n→∞

n∑
k=1

1

pk
= ∞.

Therefore, using Euler’s product and a few other mathematical expressions, we have showed

that the sum of the reciprocal of primes diverges.

5.5 Euler’s derivation of the formula for ζ(2n)

Another consequence of Euler’s initial solution to the Basel Problem was his continued

work on the zeta function, namely that ζ(4) = π4

90
and that ζ(6) = π6

945
using similar techniques

to his original proof of ζ(2) = π2

6
[13], which eventually lead Euler to derive the general

formula for ζ(2n).

Theorem (Formula for ζ(2n)). The general formula for ζ(2n) is given by [4]

ζ(2n) =
1

2
(−1)n+1 B2n

(2n)!
(2π)2n.

16



The symbol B2m are Bernoulli numbers which are relevant in number theory and analysis,

and which were also discovered by Euler when he derived the formula for ζ(2n).

Definition (Bernoulli numbers). Bernoulli numbers can be defined as the coefficients of the

exponential function [4]

x

ex − 1
=

∞∑
k=0

Bkx
k

k!
.

In order to find the general formula for ζ(2n), we first began with the infinite polynomial

expression of sinx
sinx

x
=

∞∏
n=1

(1− x2

(πn)2
).

To find the general formula for ζ(2n), we must find some way to relate the infinite polynomial

expression of sinx to cot. To begin, we recognize the relation

d

dx

(
ln(sinx)

)
=

cosx

sinx
= cotx

Taking the natural logarithm of sinx
x
, we get

ln
sinx

x
= ln

(
∞∏
n=1

(1− x

πx
)2

)

ln sinx− lnx = ln

(
∞∏
n=1

(1− x

πx
)2

)

ln sinx =
∞∑
n=1

ln

(
1− x2

(πx)2

)
+ lnx.

We then take the derivative of each side:

cotx =
1

x
+

∞∑
n=1

(
2x

x2 − (πx)2
)

=
1

x
+

∞∑
n=1

1

πn
(

1

1 + x
πn

+
1

1− x
πn

).

We then substitute the power series 1
1−x

=
∑∞

k=0 x
k and 1

1+x
=
∑∞

k=0(−1)kxk into the above

17



equation:

cotx =
1

x
+

∞∑
n=1

1

πn

( ∞∑
k=0

(−1)k(
x

πn
)k −

∞∑
k=0

(
x

πn
)k
)

=
1

x
+

∞∑
n=1

1

πn

(
(

∞∑
k=0

(
x

πn
)2k − (

x

πn
)2k+1

)
−
( ∞∑

k=0

(
x

πn
)2k − (

x

πn
)2k+1)

)
=

1

x
+

∞∑
n=1

1

πn

(
2

∞∑
k=0

(
x

πn
)2k+1

)
.

Then, changing k to k + 1, and changing the order of summation, we have

cotx =
1

x
+

∞∑
n=1

∞∑
k=1

(2x2k−1

(nπ)2k
)

=
1

x
+

∞∑
k=1

∞∑
n=1

2x2k−1

π2k
· 1

n2k

=
1

x
+

∞∑
k=1

2x2k−=1

(π)2k

∞∑
n=1

1

n2k

=
1

x
+

∞∑
k=1

2x2k−1

π2k
ζ(2n).

Now, we have a cotangent function written in terms of the zeta function. The next step is

to find a cotangent function written in terms of the Bernoulli numbers. In order to so, we

must state other equations involving the Bernoulli numbers. Firstly, from our definition of

the Bernoulli numbers involving the exponential generating function, we know that

x

ex − 1
= B0 +B1x+

B2x
2

2!
+

B3x
3

3!
+ . . .

18



We then subtract B1x to get

f(x) =
x

ex − 1
−B1x

=
x

ex − 1
+

x

2

=
2x+ x(ex − 1)

2(ex − 1)

=
x(ex + 1)

2(ex − 1)

=
x(ex + 1)

2(ex − 1)
(
e

−x
2

e
−x
2

)

=
x(e

x
2 + e

−x
2 )

2(e
x
2
−e

−x
2 )

.

Therefore,

f(x) =
x

ex − 1
−B1x =

x(e
x
2 + e

−x
2 )

2(e
x
2 − e

−x
2 )

.

In order to rewrite the this equation in terms of Bernoulli numbers, we will have to substitute

the hyperbolic sinhx and coshx curves into the right hand side of the equation.

The hyperbolic sinhx and coshx curves are

sinhx =
ex − e−x

2
,

coshx =
ex + e−x

2
.

Using these hyperbolic equations, we see

ex
2
+ e

−x
2

e
x
2 − e

−x
2

=

ex
2
+e

−x
2

2

e
x
2 −e

−x
2

2

=
cosh x

2

sinh x
2

= coth
x

2
.
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Therefore,

f(x) =
x(e

x
2 + e

−x
2 )

2(e
x
2 − e

−x
2 )

=
x

2
coth

x

2
.

Since f(x) has no negative odd terms, we can write x
2
coth x

2
as

x

2
coth

x

2
=

∞∑
n=0

B2nx
2n

(2n)!
.

From this, we can derive a relation between the hyperbolic cothx curve and the Bernoulli

expression

cothx =
∞∑
n=0

B2n(2x)
2n

x(2n)!

=
∞∑
n=0

2B2n(2x)
2n−1

(2n)!
.

Substituting xi for x in the equation, we get

cotx =
∞∑
n=0

(−1)n
2B2n(2x)

2n−1

(2n)!
.

Now that we have two different expressions for cotx, we can prove Euler’s general formula

for ζ(2n).

Firstly, we can rewrite the cotx expression involving the Bernoulli numbers as

cotx =
∞∑
k=0

(−1)k
2B2k(2x)

2k−1

(2k)!

=
1

x
+

∞∑
k=1

(−1)k−12B2k(2x)
2k−1

(2n)!
.

We then set this equation with the cotangent equation involving the zeta function equal to

20



each other. Doing this, we get

1

x
+

∞∑
k=1

2x2k−1

π2k
ζ(2k) =

1

x
+

∞∑
k=1

(−1)k−12B2k(2x)
2k−1

(2k)!

∞∑
k=1

2x2k−1

π2k
ζ(2n) =

∞∑
k=1

(−1)k−12B2k(2x)
2k−1

(2k)!
.

Comparing the coefficients of terms with x2k+1, we get

2

π2k
ζ(2k) = (−1)k−12

2kB2k

(2k)!
.

We then isolate ζ(2k) to get

ζ(2k) = (−1)k−1 (2π)
2k

(2k)!
B2k.

Therefore, we have found a general formula for ζ(2n).
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