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The Essence of Measure Theory

Lengths, Areas, and Volumes

Let us say we have a set X . How can we compare sizes of subsets of X?
One way is cardinalities, but this approach is not useful when we are
dealing two uncountable subsets.

For example, in the real line the subsets [0, 1] and [0, 2] have the same
cardinality though [0, 2] is, in a way, bigger.
For intervals in R, we might focus on their lengths. How about R2 and
R3? We use areas and volumes, respectively.
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The Essence of Measure Theory

Measuring Subsets of R

How can we find the “length” of the rationals Q ⊂ R? How about the
Cantor set C ⊆ R? We can’t just measure its length as easily as for the
intervals.

Figure 1: The Cantor set is created by repeatedly taking the middle third interval.
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The Essence of Measure Theory

What We Want

We want a function µ taking subsets of R to [0,+∞] such that the
function satisfies the following properties:

1 The domain of µ is P(R). In other words, µ can take any subset of R
as an input.

2 If I ⊂ R is an interval, then µ(I ) is the length of the interval.

3 If S1, S2, . . . is a countable collection of pairwise disjoint sets, then

µ

( ∞⋃
n=1

Sn

)
=

∞∑
n=1

µ(Sn).

4 (Translation Invariant) Let A ⊆ R and define A+ x = {a+ x : a ∈ A}
for all x ∈ R. Then we want µ(A) = µ(A+ x). Moving the set on the
number line shouldn’t change its measure.
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The Essence of Measure Theory

Bad News

See Folland’s Real Analysis for a proof on why such a function does not
exist on R (or google it up)!

This means that we need to focus on certain subsets of P(R)...
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Measures and σ-algebras

σ-algebras

Definition 2.1

A σ-algebra A ⊆ P(X ) on X is a set such that

1 ∅ ∈ A
2 If S ∈ A, then Sc ∈ A, where Sc = X \ S is the complement of S .

3 If S1, S2, . . . is a countable collection of elements in A, then

∞⋃
n=1

Sn ∈ A and
∞⋂
n=1

Sn ∈ A.

The pair (X ,A) is called a measurable space.

Essentially, A is a set of subsets that contain the empty set, and is closed
under complements and countable unions.
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Measures and σ-algebras

Measures

Definition 2.2

Given a set X and a σ-algebra A, a measure on (X ,A) is a function
µ : A → [0,+∞] such that

1 µ(∅) = 0

2 If S1, S2, . . . is a countable collection of pairwise disjoint elements in
A, then

µ

( ∞⋃
n=1

Sn

)
=

∞∑
n=1

µ(Sn).

The triplet (X ,A, µ) is called a measure space.
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Measures and σ-algebras

Examples of Measure Spaces

Example 1

Let X be non-empty, and take x ∈ X . Let us again take A = P(X ) Then
the point-mass measure µx : A → [0,∞] is defined as

µx(A) =

{
1 if x ∈ A

0 if x /∈ A
.

The measure space is (X ,P(X ), µx).

Example 2

Given a set X and σ-algebra A = P(X ) we can define a measure
µ : A → [0,∞] by µ(A) = |A| for finite sets A. If A is infinite, we can let
µ(A) = ∞. µ is known as the counting measure. The measure space is
(X ,P(X ), µ).
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Measures and σ-algebras

Borel σ-Algebra

Definition 2.3

The Borel σ-algebra B(R) on R is the smallest σ-algebra generated by all
open sets of R. In general, the Borel σ-algebra B(Rn) on the
n-dimensional Euclidean space (Rn, d), where d is the n-dimensional
Euclidean norm is the smallest σ-algebra generated by all open sets of Rn.
A set is a Borel set if it is in the Borel σ-algebra.

B(R) is the smallest σ-algebra containing all intervals.
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Lebesgue Measure
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Lebesgue Measure

Outer Measures

Definition 3.1 (Outer measure)

Let X be a set. A function µ∗ : P(X ) → [0,∞] is an outer measure if it
has the following properties:

1 µ∗(∅) = 0

2 µ∗ is monotonic, meaning if A ⊆ B ⊆ X , then µ∗(A) ≤ µ∗(B).

3 If A1,A2,A3, . . . is a countable collection of sets, then we have

µ∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ∗ (An).

This property is called countable subadditivity.
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Lebesgue Measure

Lebesgue Outer Measure

The Lebesgue outer measure on R, denoted by λ∗, is defined as follows.
For each subset A of R, let CA be the set of all infinite sequences {(ai , bi )}
of bounded open intervals such that A ⊆ ∪i (ai , bi ). In other words, CA
contains sequences of all open intervals such that their union contains A.
Then, λ∗ : P(R) → [0,∞] is defined by

λ∗(A) = inf

{∑
i

(bi − ai ) : {(ai , bi )} ∈ CA

}
.

We take the sum of lengths of sequences of open intervals such that their
union just barely cover the set we are trying to measure.

See proof in the paper for how Lebesgue outer measure is actually an
outer measure, and it satisfies the properties of a measure we want on R.
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Lebesgue Measure

Carathéodory’s Condition

Definition 3.2

(Carathéodory’s Condition or µ∗-measurability) Let X be a set, and let
µ∗ : P(X ) → [0,∞] be an outer measure on X . A set S ⊆ X is
µ∗-measurable (or just measurable if the measure we are using in the
context is clear), if for each arbitrary set A ⊆ X , we have

µ∗(A) = µ∗(A ∩ S) + µ∗(A ∩ Sc).

A set is measurable if we can divide the set in such a way that the sizes of
the pieces add properly.
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Lebesgue Measure

Lebesgue Measure

Proposition 3.3

Let (R,B(R)) be a measurable space. All sets S ∈ B(R) are
λ∗-measurable.

Theorem 3.4

Let X be a set and µ∗ be an outer measure on X . Let us denote Mµ∗ as
the set of µ∗-measurable sets. Then Mµ∗ is a σ-algebra. Furthermore, µ∗

restricted to Mµ∗ is a measure.

We call λ : Mλ∗ → [0,+∞] defined by λ(A) = λ∗(A) the Lebesgue
measure. We call sets S ∈ Mλ∗ Lebesgue sets.
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Integration

Integration
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Integration

Riemann Integral

In a Calculus course, we may have been introduced to the Riemann
integral: ∫ b

a
f (x) dx .

It is typically defined as a summation of rectangles of partitions of [a, b] as
the partition gets finer and finer.
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Integration

Riemann Integral Visualization

y = f (x) = x2 + 1

1 2
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As the width of the rectangles gets smaller, the sum of the areas
approaches the area under the curve.

Sai Nallani Introduction to Measure Theory July 9, 2024 20 / 49



Integration

Limitations of Riemann Integral

The Riemann integral is good at integrating continuous functions, and
even some discontinuous functions as long as the set of points of
discontinuity have measure zero.

y = x2
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Integration

Limitations of Riemann Integral Continued

Consider the function f (x) =

{
1 x ∈ Q
0 x /∈ Q

. Since it is discontinuous almost

everywhere (only continuous at x = 0), it is not Riemann-integrable on the
interval [0, 1]. But there are only a few points with f (x) = 1 on [0, 1], as
there are a lot more irrationals than rationals. It seems like the area under
f (x) on [0, 1] should just be zero.
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Integration

Integral of Indicator functions

Using measure theory, we can expand the definition of integration to allow
functions like the one in the previous slide to also be integrated.

Definition 4.1

Let X be a set, and let A ⊆ X . An indicator function 1A is defined as
follows:

1A =

{
1 x ∈ A

0 x /∈ A
.

Definition 4.2

Let (X ,A, µ) be a measure space, and let A ∈ A. The (Lebesgue)
integral of 1A is defined as ∫

X
1A dµ = µ(A).
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Integration

Resolving Integral of 1Q

We see that
∫
X 1Q dµ = µ(Q) = 0, and this lines up with our original

intuition, as 1Q is basically the zero function for most points.
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Integration

Now What Do We Do?

How can we extend this from indicator functions? Since we want this new
theory of integration to be better than Riemann’s, we still want to
preserve the Riemann integral’s nice properties of linearity.

Namely, we want ∫
X
a1Adµ = a

∫
X
1Adµ = aµ(A)

for real a ∈ R and we also want∫
X
(1A + 1B)dµ =

∫
X
1Adµ+

∫
X
1Bdµ = µ(A) + µ(B).

Therefore, we can extend our (and Lebesgue’s) integral by defining simple
functions, which are finite linear combinations of indicator functions!
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Integration

Simple Functions

Definition 4.3 (Simple functions)

Let (X ,A, µ) be a measure space. A simple function is a function
f : X → R such that there exist finitely many measurable subsets
A1,A2, . . . ,An ∈ A and real numbers c1, . . . , cn such that

f (x) =
n∑

i=1

ci1Ai
(x).
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Integration

Simple Functions Continued

The integral of a simple function f agrees with out intuition laid out
previously.

Definition 4.4 (Lebesgue Integral of a simple function)

Let (X ,A, µ) be a measure space, and let f (x) =
∑n

i=1 ci1Ai
(x) be a

simple function. Then we define the integral of f to be∫
X
fdµ =

n∑
i=1

ciµ(Ai ).
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Integration

Simple Functions Continued

Simple functions look like piecewise horizontal functions. For example, this
is the graph of

f = c11[0,a) + c21[a,b) + c11[b,c].

x

f (x)

c1

c2

a b c
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Integration

A-measurable Functions

Definition 4.5 (Measurable extended real-valued functions)

Let (X ,A) be a measurable space, and let f : X → [−∞,+∞]. We say f
is A-measurable (or just measurable) if for each real number t ∈ R the
set {x ∈ A : f (x) ≤ t} belongs to A.

Definition 4.6

Let (X ,A, µ) be a measure space. Denote S to be the set of measurable
real-valued simple functions, and denote S+ ⊆ S to be the set of
measurable non-negative simple functions.
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Integration

Measurable Functions are Limits of Simple Functions

The following Lemma gives us an indication that simple functions are the
correct framework for defining our (well, actually Lebesgue’s) new integral.

Lemma 4.7 (Measurable functions are limits of simple functions)

Let (X ,A) be a measurable space, let A be a subset of X that belongs to
A , and let f be a [0,+∞]-valued measurable function on A. Then there
is a sequence {fn} of simple [0,+∞)-valued measurable functions on A
that satisfy

f1(x) ≤ f2(x) ≤ . . .

and
f (x) = lim

n
fn(x)

at each x in A.
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Integration

Proof of Lemma 4.7

Proof.

For each positive integer n and for k = 1, 2, . . . , n2n let
An,k = {x ∈ A : (k − 1)/2n ≤ f (x) < k/2n}. The measurability of f
implies that each An,k belongs to A. Define a sequence {fn} of functions
from A to R by requiring fn to have value (k − 1)/2n at each point in An,k

(for k = 1, 2, . . . , n2n) and to have value n at each point in A−
⋃

k An,k .
The functions so defined are simple and measurable, and it is easy to
check that they satisfy (1) and (2) at each x in A. ■
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Integration

Picture of Lemma 4.7

Figure 2: Approximating the function f (x) = x2 with n = 1 by using the proof,
we have these four “steps”.
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Integration

Lebesgue Integral of A-Measurable functions

Definition 3 (Lebesgue integral of measurable functions f : X → [0,+∞)

Let(X, A, µ) be a measure space, and let f : X → [0,+∞] to be a
measurable function. We define its Lebesgue integral to be∫

X
f dµ = sup

{∫
X
s dµ : s ∈ S and s(x) ≤ f (x) for all x

}
,

if this suprenum is finite. When the suprenum is finite, we say that f is
integrable.

We define the Lebesgue integral of f over A as∫
A
f dµ =

∫
X
f · 1A dµ.
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Integration

Integrating [−∞,+∞]-valued functions

What if we want to integrate over functions that take up negative values?

Suppose f : X → [−∞,+∞] is measurable. Define two functions, splitting
f into a positive part and negative part, as follows:

f +(x) = max(f (x), 0), f −(x) = max(0,−f (x)).

Now we define the integral of f to be∫
X
fdµ =

∫
X
f +dµ−

∫
X
f −dµ.
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Integration

Simple Functions Partition Measurable Functions
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Limit Theorems

Limit Theorems
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Limit Theorems

Almost Everywhere and Almost Nowhere

Let (X ,A, µ) be a measure space. A property holds true almost
everywhere if the set of points where the property doesn’t hold true has
measure zero. A property holds true almost nowhere if the set of points
where the property holds true has measure zero.
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Limit Theorems

Monotone Convergence Theorem

Theorem 5.1

(Monotone Convergence Theorem) Let (X ,A, µ) be a measure space, let
f and f1, f2, . . . be [0,+∞]-valued A-measurable functions on X , Suppose
that the relations

f1(x) ≤ f2(x) ≤ . . . (1)

and

f (x) = lim
n

fn(x) (2)

hold at almost every x in X . Then
∫
X f dµ = limn

∫
fn dµ.
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Signed Measures
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Signed Measures

Signed Measures

Definition 6.1 (Signed Measure)

Let (X ,A) be a measurable space, and let µ : A → [−∞,+∞]. If the
function µ is countably additive, meaning the identity

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai )

holds for each sequence of pairwise disjoint sets A1,A2, . . . and µ(∅) = 0,
then it is a signed measure.

Example

Consider the positive measure space (X ,A, µ), and let f : X → [−∞,+∞]
be integrable. Then ν(A) =

∫
A f dµ is a signed measure!
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Signed Measures

Another Example of Signed Measures

Let (R,A, λ) be a measure space under the Lebesgue measure. Define
f (x) = 1 if x ≥ 0 and f (x) = −1 if x < 0. Then, we can see that
ν(A) =

∫
A f dλ is a measure. Furthermore, we can interpret ν as being a

measure that gives negative weight to sets with negative numbers. For
example, we can see that ν([−0.3, 0.8]) = 0.5. We might ask ourselves if
every signed measure can be split up into a positive and negative measure.

x

f (x) ∫
[−0.3,0] f dλ = 0.8∫
[0,0.8] f dλ = −0.3
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Signed Measures

Positive and Negative Sets

Definition 6.2 (Positive and negative sets)

Let µ be a signed measure on the measurable space (X ,A). A subset A of
X is a positive set for µ if A ∈ A and eqach A-measurable subset E of A
satisfies µ(E ) ≥ 0. Likewise A is a negative set for µ if A ∈ A and for
each A-measurable subsets E of A we have µ(E ) ≤ 0.

A natural question to now ask is if we can split up X into sets P and N
such that P is positive and N is negative.
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Signed Measures

Splitting Signed Measure Spaces

Theorem 6.3 (Hahn Decomposition Theorem)

Let (X ,A) be a measurable space, and let µ be a signed measure on
(X ,A). Then there are disjoint subsets P and N of X such that P is a
positive set for µ, N is a negative set for µ, and X = P ∪ N.

Corollary 6.4 (Jordan Decomposition Theorem)

Every signed measure is the difference of two positive measures, at least
one of which is finite.

Sai Nallani Introduction to Measure Theory July 9, 2024 43 / 49



Radon–Nikodym Theorem

Radon–Nikodym Theorem
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Radon–Nikodym Theorem

Absolute Continuity

Definition 7.1

Let (X ,A) be a measurable space, and let µ and ν be positive measures
on (X ,A). Then ν is absolutely continuous with respect to µ if for
each set A in A that satisfies µ(A) = 0 also satisfies ν(A) = 0.

Example

Define ν(A) =
∫
A f dµ, then ν is absolutely continuous with respect to µ.

This is because if µ(A) = 0, the integral vanishes; ν(A) =
∫
X f 1A dµ and

f 1A = 0 almost everywhere, so ν(A) = 0 too.

Definition 7.2 (σ-finite measures)

Let (X ,A) be a measurable space, and let µ be a positive measure on
(X ,A). The measure µ is σ-finite if X is a countable union of sets of
finite measure. That is, X =

⋃∞
i=1 Ai where µ(Ai ) < +∞ for all i .
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Radon–Nikodym Theorem

Radon–Nikodym Theorem

If we make a new measure ν by integrating over a function in the measure
space (X ,A, µ), we have that ν is absolutely continuous with respect to µ.

What about the converse? If ν is absolutely continuous with respect to µ,
is ν the integral of some function?

Theorem 7.3 (Radon–Nikodym theorem)

Let (X ,A) be a measurable space, and let µ and ν be σ-finite positive
measures on (X ,A). If ν is absolutely continuous with respect to µ, then
there is an A-measurable function g : X → [0,+∞) such that
ν(A) =

∫
A gdµ holds for each A in A. The function g is unique up to

µ-almost everywhere equality.

We call g the Radon–Nikodym derivative.
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Radon–Nikodym Theorem

Significance of Radon–Nikodym Theorem

Let us just zoom in on the measurable space (R,B(R)). Any measure µ
we come up with on that space, if µ(A) = 0 whenever λ(A) = 0, we can
write µ as an integral of some function g .

The theorem also has various applications in probability theory. The
Conditional expectation of a random variable is its expected value
evaluated with respect to the conditional probability distribution.
Essentially, it is what we expect a random variable X to be, given another
random variable Y .
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Radon–Nikodym Theorem

Probability Density Functions

What we see below is a probability density function (or pdf) for a random
variable X . More specifically, it is a normal distribution. Let the f (x)
represent the curve below. Define a new measure on the space (R,B(R))
by defining ν(A) =

∫
A f dµ. We have ν(A) to give us the probability of A.

We can say that f is a Radon–Nikodym derivative.
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Thank you for listening. Please reach out to me on Discord (or
email) if there are any questions.

Thank you for listening. Please reach out to me on
Discord (or email) if there are any questions.
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