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Abstract: This paper plans on motivating and explaining measure theory
and the Lebesgue integral. After those initial topics have been covered,
the paper will go to deeper theorems such as the Monotone Convergence
theorem, the Hahn Decomposition theorem, and the heart of the paper, the
Radon–Nikodym theorem.
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1 Introduction

Measure theory had its root in mathematicians yearning to generalize the integral in the
second-half of the nineteenth century. When the question “what functions are integrable”
was asked, mathematicians saw that functions had to be nice everywhere but sets with
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zero “measure”. Initially, they saw that sets with zero “measure” are finite and countable
sets. Mathematicians wanted to generalize the notion of a “measure”.
The first definition of a measure was given by Cantor (in 1883) and Stolz (in 1884).

Then, Peano (in 1887) and Jordan (in 1892) added more substance to the definitions.
See [Tao11] for an excellent historical motivation of measure theory through the Jordan
measure.

Émile Borel (in 1898) formulated some postulates of what a measure should do in his
book entitled “Lecons sur la Théorie des Fonctions”. A few years later in 1902, Henri
Lebesgue published his dissertation “Intégrale, Longueur, Aire”. Amusingly, he was
advised by Borel. Lebesgue added rigor to the ideas of a measure that have been floating
in the past half-century, as well as generalized the integral.
In the 1930s, Johann Radon and Otto Nikodym further advanced the field with the

Radon-Nikodym theorem. This theorem provides conditions under which a measure
can be derived from another measure, introducing the concept of the Radon-Nikodym
derivative. Their work was crucial in formalizing the relationship between different
measures and has had profound implications in functional analysis, probability, and
statistics. See [Pes14] for more on the history of measure theory and the Lebesgue
integral.

We will first introduce measure theory, and then we will develop Lebesgue integration
theory. Next, we will go over some of the limit theorems. Then, we will explore how
different measures are related to each other with the Radon–Nikodym theorem. Finally,
we will end with some applications of the Radon–Nikodym theorem in probability theory.

2 Preliminaries

There are a few definitions to be made before proceding to measure theory. The extended
real line refers to the set R∪{−∞,+∞}, which is also denoted as the interval [−∞,+∞].
In this context, we have

x+ (+∞) = (+∞) + x = +∞

and
x+ (−∞) = (−∞) + x = −∞

to hold for all x ∈ R. We have

x · (+∞) = (+∞) · x = +∞

and
x · (−∞) = (−∞) · x = −∞

to hold for all positive x ∈ R. We have

x · (+∞) = (+∞) · x = −∞

and
x · (∞) = (∞) · x = +∞

to hold for all negative x ∈ R. Finally, we declare

(+∞) + (+∞) = +∞,

(−∞) + (−∞) = −∞,

(+∞) · (+∞) = (−∞) · (−∞) = +∞,

2



Sai Nallani — July 10, 2024 Measure Theory and the Radon–Nikodym Theorem

(+∞) · (−∞) = (−∞) · (+∞) = −∞,

and
0 · (+∞) = (+∞) · 0 = 0 · (−∞) = (−∞) · 0 = 0.

If X is a set, the power set of X, P(X), is defined as the set of all subsets of X. In
other words, U ∈ P(X) if and only if U ⊆ X.

A metric space (X, d) is a pair with a set X and a metric d : X ×X → R satisfying
the following properties for x, y, z ∈ X:

1. We have d(x, y) = 0 if and only if x = y.

2. If x ̸= y, then d(x, y) > 0.

3. d(x, y) = d(y, x).

4. d satisfies the triangle inequality, meaning d(x, y) ≤ d(x, z) + d(z, y).

Intuitively, a metric space describes distances between points.
Given a metric space (X, d), an open ball of radius ϵ around x ∈ X is denoted by

Bϵ(x) = {y ∈ X : d(x, y) < ϵ}.
An n-dimensional Euclidean space is a pair (Rn, d) where d is the n-dimensional

Euclidean metric or norm defined as

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =
n∑

i=1

(xi − yi)
2.

Euclidean spaces are examples of metric spaces. The one dimensional metric space is the
real line and absolute value function.

Intervals in R are subsets in the form [a, b], (a, b), (a, b], and [a, b) for −∞ ≤ a ≤ b ≤
+∞. A n-dimensional interval I in Rn is in the form I = I1 × I2 × · · · × In where each
Ii is an interval in R for 1 ≤ i ≤ n. Define the length of an interval I ⊂ R as b− a, and
define the volume of a n-dimensional interval I = I1 × I2 × · · · × In as the product of
the lengths of the intervals Ii and denote the volume as vol(I).

3 Measures and σ-algebras

3.1 Introduction

Measure theory is well motivated by considering the problem of how to assign things like
lengths, areas, and volumes to sets. For intervals in the standard real line R, we can just
consider its length. For example, a closed interval [a, b] ⊆ R has length b− a for b ≥ a.
This gets trickier when trying to assign a ”length” to subsets like Q or N. A measure is
a map from subsets of a set to the extended positive real line. An ideal measure µ on R
should satisfy the following properties:

1. The domain of µ is P(R). In other words, µ can take any subset of R as an input.

2. If I ⊂ R is an interval, then µ(I) is the length of the interval.

3. If S1, S2, . . . is a countable collection of pairwise disjoint sets, then

µ

( ∞⋃
n=1

Sn

)
=

∞∑
n=1

µ(Sn).
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4. (Translation Invariant) Let A ⊆ R and define A+ x = {a+ x : a ∈ A} for all x ∈ R.
Then we want µ(A) = µ(A + x). Moving the set on the number line shouldn’t
change its measure.

Unfortunately, we can only dream of such a measure; see [Fol99, Chapter 1] for a proof
of the nonexistence of such measure. Defining µ on P(R) is not possible, so we will need
to define µ on a smaller or coarser set of subsets of R. This is where the notion of a
σ-algebra comes in, as we restrict the domain of a measure to be a specific σ-algebra.

3.2 σ-algebras and Measures

Definition 3.1. A σ-algebra A ⊆ P(X) on X is a set such that

1. ∅ ∈ A

2. If S ∈ A, then Sc ∈ A, where Sc = X \ S is the complement of S.

3. If S1, S2, . . . is a countable collection of elements in A, then

∞⋃
n=1

Sn ∈ A and

∞⋂
n=1

Sn ∈ A.

The pair (X,A) is called a measurable space.

Definition 3.2. Given a set X and a σ-algebra A, a measure on (X,A) is a function
µ : A → [0,+∞] such that

1. µ(∅) = 0

2. If S1, S2, . . . is a countable collection of pairwise disjoint elements in A, then

µ

( ∞⋃
n=1

Sn

)
=

∞∑
n=1

µ(Sn).

Definition 3.3. Let X be a set, A a σ-algebra on X, and µ a measure on A. The triple
(X,A, µ) is a measure space.

Example 3.4. Let X be non-empty, and take x ∈ X. Let us again take A = P(X) Then
the point-mass measure µx : A → [0,∞] is defined as

µx(A) =

{
1 if x ∈ A

0 if x /∈ A
.

The measure space is (X,P(X), µx).

Example 3.5. Given a set X and σ-algebra A = P(X) we can define a measure
µ : A → [0,∞] by µ(A) = |A| for finite sets A. If A is infinite, we can let µ(A) = ∞. µ
is known as the counting measure. The measure space is (X,P(X), µ).

Example 3.6. Let X be finite, and let the σ-algebra be A = P(X). Let µ : A → [0, 1] be

defined as µ(A) = |A|
|X| . This is an example of something called a probabilty measure!

A big application of measure theory is probability theory. Since the probability of
anything happening is 1, we want the probability measure of the entire space to be 1. In
fact, that is qualifying condition for a probability space.
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Definition 3.7. Let (X,A, µ) be a measure space. If µ(X) = 1, then (X,A, µ) is a
probability space and µ is a probability measure.

Example 3.8. Say we roll a six-sided die three times. The space we are working
with is (X = {1, 2, 3, 4, 5, 6}3,A = P(X), µ : A → [0, 1]) where µ(A) = |A|

216 . Since

µ(X) = |X|
216 = 1, we are working in a probability space.

Remark 3.9. While the framework of a probability space may be overkill in discrete
scenarios, it is certainly useful in continuous situations. See [Example after borel sigma
algebra] for how this is useful.

Definition 3.10. Let (X,A, µ) be a measure space. If A ∈ A and µ(A) = 0, then A is
called a null set.

3.3 Borel σ-algebra

We now turn to a useful σ-algebra called the Borel σ-algebra, named after French
mathematician Émile Borel. First, we define what open and closed sets are.

Definition 3.11. Given a set X endowed with a metric d, a set U ⊆ X is open if for all
x ∈ U , there exists an ϵ > 0 such that Bϵ(x) ⊆ U , where Bϵ(x) is the open ball of radius
ϵ around x. If V ⊆ X, and V c is open, then V is closed.

In R, this means a set A ⊆ R is open if for all x ∈ U , we have (x− ϵ, x+ ϵ) ⊆ A for
some ϵ > 0. For higher dimensional Euclidean spaces such as R2 and R3, we use the
metric space definition of open sets under the Euclidean norm.

Definition 3.12. The Borel σ-algebra B(R) on R is the smallest σ-algebra generated by
all open sets of R. In general, the Borel σ-algebra B(Rn) on the n-dimensional Euclidean
space (Rn, d), where d is the n-dimensional Euclidean norm is the smallest σ-algebra
generated by all open sets of Rn. A set is a Borel set if it is in the Borel σ-algebra.

Remark 3.13. For those of us with a little bit of a background in topology, we need not
define a Borel σ-algebra just on Rn. We can define it on all topologies by saying that the
Borel σ-algebra on a set X is the smallest σ-algebra containing all open sets in X. The
open sets are defined by the topology over X. Note that the Borel σ-algebra over Rn is
the most useful under the standard topology.

What does “smallest σ-algebra generated by all open sets” mean? First, we start by
saying S is the set of all open sets in Rn. We generate the σ-algebra B(Rn) by taking
complements, countable unions, and countable intersections of all sets in S. The Borel
σ-algebra over R contains all the typical intervals that we encounter.

Proposition 3.14. If I ⊆ R is an interval, then I ∈ B(R).

Proof. We split this into three cases. Since I is an interval, it is in the form [a, b], (a, b), (a, b],
or [a, b) for −∞ ≤ a ≤ b ≤ +∞. Since (a, b) is open, it is already in B(R). Therefore, we
can just concern ourselves with the other cases. Note that [a, b] = ((−∞, a) ∪ (b,+∞))c.
We also notice (−∞, b] ∈ B(R) as (b,+∞) is open and (−∞, b] is the complement of
(b,+∞). A similar argument applies to [a,+∞). With this, we note that (a, b] =
(−∞, b] ∩ (−∞, a]c and [a, b) = [a,+∞) ∩ (−∞, b). By closure, we find all the intervals
to be in B(R).

Intuitively, the Borel σ-algebra seems like a good domain for a measure as we start
with intervals, and intervals are easy to measure. We will construct a measure on B(Rn)
in the next section. While B(Rn) is a good starting point, it is not the most useful for us
as it is rather small.
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3.4 Outer measure and Lebesgue Measure

The motivation for this section is the search for a measure on the Borel σ-algebra such
that the measure of any interval on R is its length, the measure of any 2-dimensional
interval on R is its area, and the measure of any 3-dimensional interval on R3 is its
volume. First, we will work just on R, and then extend it to Rn. Before we construct
that measure, we need to construct a function on P(R) that is similar to a measure.
While this function won’t be a measure because it will not fulfill all the properties of a
measure, if we restrict the domain of the function to the Borel σ-algebra, then it will be
a measure.

Definition 3.15 (Outer measure). Let X be a set. A function µ∗ : P(X) → [0,∞] is an
outer measure if it has the following properties:

1. µ∗(∅) = 0

2. µ∗ is monotonic, meaning if A ⊆ B ⊆ X, then µ∗(A) ≤ µ∗(B).

3. If A1, A2, A3, . . . is a countable collection of sets, then we have

µ∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ∗ (An).

This property is called countable subadditivity.

To show that an outer measure µ∗ is a measure, we restrict the domain of µ∗ to a
σ-algebra A. In other words, we define µ(A) = µ∗(A) if and only if A ∈ A. Otherwise,
it is undefined. Then to show that the measure of a disjoint union of sets is the sum
of the measures of each of the disjoint sets, or µ(

⋃
nAn) =

∑
n µ(An), we just need to

show that µ(
⋃

nAn) ≥
∑

n µ(An) because we already have the other direction due to
countable subadditivity of µ∗. The most important outer measure we are concerned with
is the Lebesgue outer measure.

Definition 3.16. (Lebesgue outer measure on R) The Lebesgue outer measure on
R, denoted by λ∗, is defined as follows. For each subset A of R, let CA be the set of
all infinite sequences {(ai, bi)} of bounded open intervals such that A ⊆ ∪i(ai, bi). In
other words, CA contains sequences of all open intervals such that their union contains A.
Then, λ∗ : P(R) → [0,∞] is defined by

λ∗(A) = inf

{∑
i

(bi − ai) : {(ai, bi)} ∈ CA

}
.

We will now prove that the Lebesgue outer measure is really an outer measure.

Proposition 3.17. The Lebesgue outer measure on R is an outer measure, and it assigns
to each interval of R its length.

Proof. Let us first verify that λ∗ is an outer measure. Since for all ϵ > 0, we can choose a
sequence of open intervals {(ai, bi)} (whose union includes ∅) such that

∑
i(bi − ai) < ϵ

(for example, we can let bi − ai =
ϵ
ni for an integer n, so we have a convergent geometric

series), we have that λ∗(∅) = 0.
To prove that λ∗ is monotonic, let A ⊆ B ⊆ R. Then if a sequence of open intervals

covers B, it covers A. Thus, we have λ∗(A) ≤ λ∗(B).
Finally, we prove countable subadditivity. Let {An} be an arbitrary sequence of sets

in R. If
∑

n λ
∗(An) = +∞, then we have λ∗(∪nAn) ≤

∑
n λ

∗(An) = +∞. So suppose
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that m =
∑

n λ
∗(An) is finite, and choose arbitrary ϵ > 0. For each n, choose a sequence

{(an,i, bn,i)}∞i=1 that covers An and satisfies

∞∑
i=1

(bn,i − an,i) < λ∗(An) +
ϵ

2n
. (1)

Such a sequence must exist because λ∗An ≤
∑∞

i=1 (bn,i − an,i), as λ
∗An is the infinum of

the sum of lengths of the intervals, and if such a sequence {(an,i, bn,i)} didn’t exist, we
would have λ∗(An) +

ϵ
2n > λ∗(An) to be the infinum instead, leading to a contradiction.

Enumerate the pairs {(n, i) : {(an,i, bn,i} covers An} by {j1, j2, . . . }. Then we see that
each An is covered by some {(ajk , bjk)}, so we have

∞⋃
n=1

An ⊆
∞⋃
k=1

(ajk , bjk).

By monotonicity and (1), we have

λ∗

( ∞⋃
n=1

An

)
≤

∞∑
k=1

(bjk − ajk) <

∞∑
n=1

(
λ∗(An) +

ϵ

2n

)
=

∞∑
n=1

λ∗(An) + ϵ.

Since ϵ is arbitrary, we conclude that λ∗ (
⋃∞

n=1An) ≤
∑∞

n=1 λ
∗(An). Therefore λ

∗ satisfies
countable subadditivity and it is an outer measure.
Now we make sure the Lebesgue outer measure of intervals is their length. Let I be

an interval with endpoints a and b. For any ϵ > 0, I is contained in (a− ϵ, b+ ϵ) with
length b − a + 2ϵ. Since this is one of the lengths in the infinum in the definitions of
λ∗(I), we have λ∗(I) ≤ b − a + 2ϵ. Since ϵ is arbitrary, we have λ∗(I) ≤ b − a. Now,
cover I by a sequence of open intervals {(xi, yi)} such that

∑
i(yi − xi) is finite. Let

ϵ > 0. and find an n such that the sum of the lengths of the subintervals of I not covered
by the first n intervals (x1, y1), . . . , (xn, yn) is less than ϵ, i.e. the sum of the lengths of
the subintervals in I \

⋃n
i=1(xi, yi) is less than ϵ. Then

∑n
i=1(yi − xi) must be at least

(b− a)− ϵ. Since this holds for any ϵ > 0, we must have
∑∞

i=1(yi − xi) ≥ b− a. Thus we
have λ∗(I) ≥ b− a, as desired. Therefore the Lebesgue outer measure of an interval in R
is simply its length!

Definition 3.18. (Lebesgue outer measure on Rn) Let A ⊆ Rn and let SA be the set of
all sequences {Ri} of bounded and open n-dimensional intervals for which A ⊂

⋃∞
i=1Ri.

Then the Lebesgue outer measure of A is

λ∗(A) = inf

{ ∞∑
i=1

vol(Ri) : {Ri} ∈ SA

}
.

Let us note the following analogue of the previous proposition.

Proposition 3.19. The Lebesgue outer measure on Rn is an outer measure, and it
assigns to each n-dimensional interval its respective volume.

Proof. Most of the details are omitted because they are very similar to those in the
proof of Proposition 3.17. In the arguments, instead of using lengths of the intervals, we
instead use the volumes of the n-dimensional intervals.

We have successfully constructed a natural outer measure on Rn. However, we are
not done yet, as we are trying to get to a measure. Greek mathematician Constantin
Carathéodory came up with an elegant way to describe measurable sets under any outer
measure µ∗!
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Definition 3.20. (Carathéodory’s Condition or µ∗-measurability) Let X be a set, and
let µ∗ : P(X) → [0,∞] be an outer measure on X. A set A ⊆ X is µ∗-measurable (or
just measurable if the measure we are using in the context is clear), if for each arbitrary
set S ⊆ X, we have

µ∗(A) = µ∗(A ∩ S) + µ∗(A ∩ Sc).

This condition may seem like it came out of nowhere, but the underlying intuition
is that a set is measurable if and only if we can divide the set in such a way that
the sizes (as measured by µ∗) of the pieces add properly. We will now prove that all
sets in the Borel σ-algebra satisfy Carathéodory’s condition. Furthermore, if we are
trying to prove that µ∗(S) = µ∗(S ∩B) + µ∗(S ∩Bc), since by countable subadditivity
we already have µ∗(S) ≤ µ∗(S ∩ B) + µ∗(S ∩ Bc), we will only need to prove that
µ∗(S) ≥ µ∗(S ∩B) + µ∗(S ∩Bc)

Proposition 3.21. Let B ⊆ X, and let µ∗ be an outer measure on X. If µ∗(B) = 0 or
µ∗(Bc) = 0, then B is µ∗-measurable.

Proof. Suppose µ∗(B) = 0. Let S ⊆ X. Then by monotonicity, we have µ∗(S ∩B) = 0.
By monotonicity again, we have µ∗(S) ≥ µ∗(Sc ∩ B). Thus, we have µ∗(S) ≥ µ∗(S ∩
B) + µ∗(S ∩Bc), as desired. The case where µ∗(Bc) = 0 is very similar.

Theorem 3.22. Let X be a set and µ∗ be an outer measure on X. Let us denote Mµ∗

as the set of µ∗-measurable sets. Then Mµ∗ is a σ-algebra. Furthermore, µ∗ restricted to
Mµ∗ is a measure.

Proof. The rigorous proof will be omitted as it is technical, but an outline will be provided.
We have ∅ ∈ Mµ∗ because µ∗(∅) = 0, and ∅ is µ∗-measurable by Proposition 3.21. If
S ∈ Mµ∗ , then Sc is also µ∗-measurable. We can see this by choosing any set A ⊆ X
and seeing µ∗(A) = µ∗(Sc ∩A) + µ∗((Sc)c ∩A) = µ∗(Sc ∩A) + µ∗(S ∩A) because S is
µ∗-measurable.

Finally, we need to prove that Mµ∗ is closed under countable and finite unions. We must
first prove that Mµ∗ is closed under the union of two sets (therefore finitely many sets).
Then, we take a sequence of µ∗-measurable sets B1, B2, . . . that are pairwise disjoint.
We show by induction that for any set A ⊆ X, we have that µ∗(A) ≥

∑n
i=1 µ

∗(A ∩Bi) +
µ∗ (A ∩

⋃n
i=1B

c
i ) holds for any n, so it holds when the sum goes up to +∞ as well. We

showed that a countable union of pairwise disjoint µ∗-measurable, but for σ-algebras, we
need to deal with countable unions of arbitrary sets. This is fine, because a sequence of
arbitrary sets can be written as a sequence of pairwise disjoint sets; if B1, B2, . . . is an
arbitrary sequence of sets, then if

Ci = Bc
1 ∩Bc

2 ∩ · · · ∩Bc
i−1 ∩Bi,

we have all Ci to be µ∗-measurable and we have C1, C2, . . . to be a sequence of pairwise
disjoint sets with the same union as that of the Bi’s. By proving countable additivity,
we can also show that µ∗ restricted to Mµ∗ is a measure.

Proposition 3.23. All sets in the Borel σ-algebra over R are λ∗-measurable, where λ∗

is the Lebesgue outer measure.

Proof. The Borel σ-algebra is the smallest σ-algebra containing intervals of the form
(−∞, b]. This is because all open intervals in the form (a, b) can be represented as

(a, b) = (−∞, a]c ∩
∞⋃
n=1

(−∞, b− 1/n].
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Let b be an arbitrary real number, and let B = (−∞, b]. We need to check for all sets
S ⊆ R, we have

λ∗(B) ≥ λ∗(B ∩ S) + λ∗(B ∩ Sc).

Let us safely assume λ∗(S) < +∞, since otherwise both sides are +∞. Take an arbitrary
ϵ > 0. Let {(an, bn)} be a sequence of sets covering S such that the total length
(
∑

n (bn − an)) is less than λ∗(S) + ϵ (such a sequence always exists because λ∗(S) is the
infinum of all the lengths). For each n, the sets (an, bn)∩B and (an, bn)∩Bc are disjoint
intervals whose union is (an, bn). Thus we have

bn − an = λ∗((an, bn)) = λ∗((an, bn) ∩B) + λ∗((an, bn) ∩Bc).

Since the sequence {(an, bn)∩B} covers S∩B and {(an, bn)∩Bc} covers S∩Bc, countable
subadditivity of λ∗ implies that

λ∗(S ∩B) + λ∗(S ∩Bc) ≤
∑
n

((an, bn) ∩B) +
∑
n

((an, bn) ∩Bc)

=
∑
n

bn − an < λ∗(S) + ϵ.

Since ϵ is arbitrary, we have that λ∗(S ∩B) + λ∗(S ∩Bc) = λ∗(S).

Proposition 3.24. All sets in the Borel σ-algebra over Rn are λ∗-measurable.

Proof. An analogous argument to one presented in Proposition 3.22 can be modified to
prove this proposition, so the proof will be omitted.

We will be mainly working in the Lebesgue σ-algebra, denoted by Mλ∗ , which contains
all sets that are λ∗-measurable over Rn. The Lebesgue σ-algebra is finer than the Borel
σ-algebra over Rn, meaning Mλ∗ ⊃ B(Rn), where λ∗ is the Lebesgue outer measure on
Rn. We call λ : Mλ∗ → [0,+∞] defined by λ(A) = λ∗(A) the Lebesgue measure. We
call sets S ∈ Mλ∗ Lebesgue sets.

Remark 3.25. There are sets S ⊆ R that are Lebesgue measurable but are not Borel
sets. See [Coh13, Pg. 55] regarding the construction of such set.

4 Measurable Functions and the Lebesgue Integral

The Lebesgue measure brings life to the heart of measure theory: integration! It kind of
makes sense to why measure theory is going to be related to integration. After all, we
are assigning lengths, areas, and volumes to sets, so it is natural for us to try to extend
this to functions.

4.1 The Riemann Integral

In a Calculus course, we may have learnt about the Riemann integral. If we have a
bounded, non-negative valued function f defined on an interval [a, b], the Riemann

integral is
∫ b
a f(x)dx measuring the area bounded by the lines y = 0, x = a, and x = b.

If f is negative, that portion of the area under y = 0 will have negative area. Let us just
assume that f(x) ≥ 0 for simplicity.

9
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y = f(x) = x2 + 1

1 2

1

2

3

4

5

6

x

y

Figure 1: As the width of the rectangles gets smaller, the sum of the areas approaches
the area under the curve.

Definition 4.1 (Riemann Sum). Let [a, b] be an interval on R, and let f : [a, b] → R≥0.
Consider any partition P of [a, b], i.e. a finite collection of points t0, t1, . . . , tn with
a = t0 < t1 < t2 < · · · < tn, and define

RP (f)
b
a =

n∑
i=1

f(ti)(ti − ti−1).

We say that f is Riemann-integrable on [a, b] if

lim
∥P∥→0

RP (f)
b
a

exists, where ∥P∥ = max(ti − ti−1). If f is Riemann-integrable on [a, b], we define its
Riemann integral to be ∫ b

a
f(x)dx = lim

∥P∥→0
RP (f)

b
a.

We essentially approximate the area under f(x) with vertical rectangles with very
small widths. Any continuous function is Riemann-integrable. See [Pug03, Chapter 3]
for a proof. More generally, a function is Riemann-integrable if it is continuous almost
everywhere (see [Coh13, Chapter 2] for a proof).

Definition 4.2 (Almost everywhere and almost nowhere). Let (X,A, µ) be a measure
space, and let f : X → Y be a function, where Y is any set. Define a property on f
Pf : X → {TRUE,FALSE} to be a true or false function. An example of a property on
f is continuity; Pf (x) is TRUE if f is continuous at x and FALSE otherwise. A property
on f , Pf , holds almost everywhere if µ({x ∈ X : Pf (x) = FALSE}) = 0. In other
words, a property holds almost everywhere if the set of points it doesn’t hold has measure
zero. Likewise, a property on f holds almost nowhere if the set of points it is TRUE
has measure zero.

Example 4.3 (Single point of discontinuity). A function is continuous almost everywhere
if the set of discontinuous points has measure zero. On the measure space (R,Mµ∗ , λ),
which is the real line under the Lebesgue measure, an example of a function that is

continuous almost everywhere is the function f defined as f(x) =

{
sin(x) x ̸= 0

1729 x = 0
. It is

discontinuous at x = 0, and λ(0) = 0.

10
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An example of a function that isn’t Riemann integrable is the indicator function on
Q.

Definition 4.4. Let X be a set, and let A ⊆ X. An indicator function 1A is defined
as follows:

1A =

{
1 x ∈ A

0 x /∈ A

Example 4.5 (Function that is not Riemann-integrable). The indicator function on Q
denoted by 1Q : R → R is only continuous at x = 0. Therefore, it is continuous almost

nowhere! This function is not Riemann-integrable, but we do expect
∫ 1
0 1Q(x)dx = 0,

as there are only a few points x ∈ [0, 1] with 1Q(x) = 1. On most points from [0, 1], we
seem to just have the function f(x) = 0.

Riemann’s theory of integration seems to have some limitations, so we may need a
better notion of an integral to be able to integrate functions like 1Q.

4.2 The Lebesgue Integral

Measure theory was developed to integrate functions like the ones above. Some functions
should be integrable, but aren’t under the Riemann definition of integration. In this
section, we will build up to the Lebesgue integral in steps. We will start by defining
integrals on a nice set of functions known as simple functions. Afterwards, we can
extend the definition to a more general class of functions.

Definition 4.6 (Integral of an indicator function). Let (X,A, µ) be a measure space,
and let A ∈ A. The (Lebesgue) integral of 1A is defined as∫

X
1Adµ = µ(A).

To prove that this definition makes sense to us, we can consider the integral of 1[0,1]. It
is zero everywhere but the interval [0, 1], so the area bounded by 1[0,1] and the horizontal
axis is simply µ([0, 1]) = 1, as the height there is also 1. This resolves our motivating
problem of integrating 1Q, as ∫

R
1Qdλ = λ(Q) = 0.

How can we extend this from indicator functions? Since we want this new theory of
integration to be better than Riemann’s, we still want to preserve the Riemann’s integrals
nice properties of linearity; namely, we want∫

X
a1Adµ = a

∫
X
1Adµ = aµ(A)

for real a ∈ R and we also want∫
X
(1A + 1B)dµ =

∫
X
1Adµ+

∫
X
1Bdµ = µ(A) + µ(B).

Therefore, we can extend our (and Lebesgue’s) integral by defining simple functions,
which are finite linear combinations of indicator functions!

11
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Definition 4.7 (Simple functions). Let (X,A, µ) be a measure space. A simple func-
tion is a function f : X → R such that there exist finitely many measurable subsets
A1, A2, . . . , An ∈ A and real numbers c1, . . . , cn such that

f(x) =

n∑
i=1

ci1Ai(x).

The integral of a simple function f agrees with out intuition laid out previously.

Definition 4.8 (Lebesgue Integral of a simple function). Let (X,A, µ) be a measure
space, and let f(x) =

∑n
i=1 ci1Ai(x) be a simple function. Then we define the integral of

f to be ∫
X
fdµ =

n∑
i=1

ciµ(Ai).

Simple functions look like piecewise horizontal functions. For example, below is the
graph of

f = c11[0,a) + c21[a,b) + c11[b,c].

x

f(x)

c1

c2

a b c

A typical theme in mathematics when dealing with functions is “if a function f : X → Y
is a function we care about, for ‘nice’ subsets V ⊆ Y , we want f−1(V ) ⊆ X to also be
‘nice’, where f−1(V ) is the preimage of V .” We define a measurable function this way as
well.

Definition 4.9 (Measurable function). Let (X,AX) and (Y,AY ) be measurable spaces.
A function f : X → Y is measurable if for all sets V ∈ AY , we have f−1(V ) ∈ AX .

This definition seems very random, but it is a little more intuitive when we look
through the lens of probability. Again, let (X,AX) and (Y,AY ) be measurable spaces,
and let f : X → Y . Think of the (X,AX) as the space of “actions”, and the space
(Y,AY ) as the space of possible outcomes given the actions. The function f : X → Y
takes a possible action and outputs a possible outcome. Let us say we want to calculate
the probability of outcomes in Y . The possible outcomes are sets V ∈ AY , and the
probability of that outcome happening is the measure of the set f−1(V ), which is the set
of all actions that lead to outcomes in V . Therefore, we want f−1(V ) to be in AX . For
real valued functions however, it is sufficient to consider a special case of measurability

Definition 4.10 (Measurable extended real-valued functions). Let (X,A) be a measur-
able space, and let f : X → [−∞,+∞]. We say f is A-measurable (or just measurable)
if for each real number t ∈ R the set {x ∈ A : f(x) ≤ t} belongs to A.

Now we may define the Lebesgue integral of arbitrary non-negative, extended real-
valued measurable functions.

12
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Figure 2: Bad approximation of integral using a simple function

Figure 3: Decent approximation of integral using a simple function

Definition 4.11 (Lebesgue integral of measurable functions f : X → [0,+∞). ]Let(X,
A, µ) be a measure space, and let f : X → [0,+∞] to be a measurable function. We
define its Lebesgue integral to be∫

X
fdµ = sup

{∫
X
sdµ : s is a simple function and s(x) ≤ f(x) for all x

}
,

if this suprenum is finite. When the suprenum is finite, we say that f is integrable.

See figures 2, 3, and 4 for a visualization of how the Lebesgue integral works. Through
those figures, we can see that the simple functions are all “under” the function we are
integrating, and as the simple function is a better approximation, the area is getting
closer to the full area under the function. We have defined integrals only over the entire
space, but let us say we want to integrate over a measurable subset A of X. Then we
define the Lebesgue integral of f over A as∫

A
fdµ =

∫
X
f · 1Adµ.

This works because f · 1A vanishes when x /∈ A, so when we integrate over it, it does not
change the value of the integral.
What if we want to integrate over functions that take up negative values? Suppose

f : X → [−∞,+∞] is measurable. Define two functions, splitting f into a positive part

13
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Figure 4: Good approximation of integral using a simple function

and negative part, as follows:

f+(x) = max(f(x), 0), f−(x) = max(0,−f(x)).

Now we define the integral of f to be∫
X
fdµ =

∫
X
f+dµ−

∫
X
f−dµ.

5 Limit Theorems

We want to be able to swap limits and integrals. In the early 1800s, mathematicians
switched around summations, integrals, and limits without much thought. After the
foundations of real analysis was thoroughly investigated, mathematicians realized we
need to prove when we can swap integrals and limits without any harm.

Definition 5.1. Let (X,A, µ) be a measure space. Denote S to be the set of measurable
real-valued simple functions, and denote S+ ⊆ S to be the set of measurable non-negative
simple functions.

The following lemma shows that simple functions are a good framework for defin-
ing Lebesgue integrals the way we did. It shows that measurable functions can be
approximated by simple functions.

Lemma 5.2 (Measurable functions are limits of simple functions). Let (X,A) be a
measurable space, let A be a subset of X that belongs to A , and let f be a [0,+∞]-
valued measurable function on A. Then there is a sequence {fn} of simple [0,+∞)-valued
measurable functions on A that satisfy

f1(x) ≤ f2(x) ≤ . . .

and
f(x) = lim

n
fn(x)

at each x in A.

Proof. For each positive integer n and for k = 1, 2, . . . , n2n let An,k = {x ∈ A : (k −
1)/2n ≤ f(x) < k/2n}. The measurability of f implies that each An,k belongs to A.
Define a sequence {fn} of functions from A to R by requiring fn to have value (k−1)/2n at

14
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each point in An,k (for k = 1, 2, . . . , n2n) and to have value n at each point in A−
⋃

k An,k.
The functions so defined are simple and measurable, and it is easy to check that they
satisfy (1) and (2) at each x in A.

Proposition 5.3 (Swapping integrals and limits). Let (X,A, µ) be a measure space, let
f belong to S+, and let {fn} be a non-decreasing sequence of functions belonging to S+

for which f(x) = limn fn(x) holds at each x in X. Then∫
X
fdµ = lim

n

∫
fndµ.

Proof. By monotonicity and linearity of integrals of simple functions, we have∫
X
f1 dµ ≤

∫
X
f2 dµ ≤ · · · ≤

∫
X
f dµ;

hence limn

∫
X fn dµ exists and satisfies limn

∫
X fn dµ ≤

∫
X f dµ. We turn to the reverse

inequality. Let ϵ be a number such that 0 < ϵ < 1. We will construct a nondecreas-
ing sequence {gn} of functions in S+ such that gn ≤ fn holds for each n and such
that limn

∫
X gn dµ = (1 − ϵ)

∫
X f dµ. Since

∫
X gn dµ ≤

∫
X fn dµ, this will imply that

(1 − ϵ)
∫
X f dµ ≤ limn

∫
X fn dµ and, since ϵ is arbitrary, that

∫
X f dµ ≤ limn

∫
X fn dµ.

Consequently
∫
X f dµ = limn

∫
X fn dµ.

We turn to the construction of the sequence {gn}. Suppose that a1, . . . , ak are the
nonzero values of f and that A1, . . . , Ak are the sets on which these values occur. Thus
f =

∑k
i=1 ai1Ai . For each n and i let

A(n,i) = {x ∈ Ai : fn(x) ≥ (1− ϵ)ai}.

Then each A(n,i) belongs to A, and for each i the sequence {A(n,i)}∞n=1 is nondecreasing

and satisfies Ai =
⋃

nA(n,i). If we let gn =
∑k

i=1(1− ϵ)ai1A(n,i)
, then gn belongs to S+

and satisfies gn ≤ fn, and we can use the fact that limn µ(A(n,i)) = µ(Ai) to conclude
that

lim
n

∫
X
gn dµ = lim

n

k∑
i=1

(1− ϵ)aiµ(A(n,i)) =
k∑

i=1

(1− ϵ)aiµ(Ai) = (1− ϵ)

∫
X
f dµ.

Proposition 5.4. Let (X,A, µ) be a measure space, let f be a [0,+∞]-valued A-
measurable function on X, and let {fn} be a non-decreasing sequence of functions in S+

such that f(x) = limn fn(x) holds at each x ∈ X. Then∫
X
f dµ = lim

n

∫
X
fn dµ.

Proof. It is clear that ∫
X
f1 dµ ≤

∫
X
f2 dµ ≤ · · · ≤

∫
X
f dµ;

hence limn

∫
X fn dµ exists and satisfies limn

∫
X fn dµ ≤

∫
X f dµ.

We turn to the reverse inequality. Recall that
∫
X f dµ is the supremum of those elements

of [0,+∞] of the form
∫
X g dµ, where g ranges over the set of functions that belong to S+

15
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and satisfy g ≤ f . Thus to prove that
∫
X f dµ ≤ limn

∫
X fn dµ, it is enough to check that

if g is a function in S+ that satisfies g ≤ f , then
∫
X g dµ ≤ limn

∫
X fn dµ. Let g be such a

function. Define (a∧ b)(x) = min(a(x), b(x)) for any [−∞,+∞]-valued functions a and b.
Then {g ∧ fn} is a nondecreasing sequence of functions in S+ for which g = limn(g ∧ fn),
and so we have that

∫
X g dµ = limn

∫
X(g ∧ fn) dµ. Since

∫
X(g ∧ fn) dµ ≤

∫
X fn dµ, it

follows that
∫
X g dµ ≤ limn

∫
X fn dµ, and the proof is complete.

For a sanity check, we will prove monotonicity and linearity of the Lebesgue integral.

Proposition 5.5. (Properties of Lebesgue Integral) Let (X,A, µ) be a measure space,
let f and g be [0,+∞]-valued A-measurable functions on X, and let α be a non-negative
number. Then

1.
∫
X αfdµ = α

∫
X fdµ,

2.
∫
X (f + g)dµ =

∫
X fdµ+

∫
X gdµ, and

3. if f(x) ≤ g(x) for all x ∈ X, then
∫
X fdµ ≤

∫
X gdµ.

Proof. Choose nondecreasing sequences {fn} and {gn} of functions in S+ such that f =
limn fn and g = limn gn (see Lemma 5.2). Then {αfn} and {fn + gn} are nondecreasing
sequences of functions in S+ that satisfy αf = limn αfn and f + g = limn(fn + gn).
Hence, we can use Proposition 5.4, together with the linearity of the integral on S+, to
conclude that ∫

X
αf dµ = lim

n

∫
X
αfn dµ = lim

n
α

∫
X
fn dµ = α

∫
X
f dµ

and ∫
X
(f + g) dµ = lim

n

∫
X
(fn + gn) dµ

= lim
n

(∫
X
fn dµ+

∫
X
gn dµ

)
=

∫
X
f dµ+

∫
X
g dµ.

Thus, parts (a) and (b) are proved. For part (c), note that if f ≤ g, then the class of
functions h in S+ that satisfy h ≤ f is included in the class of functions h in S+ that
satisfy h ≤ g; it follows that ∫

X
f dµ ≤

∫
X
g dµ.

Proposition 5.6. (Properties of Lebesgue Integral) Let (X,A, µ) be a measure space,
let f and g be real-valued A-measurable functions on X, and let α be a real number.
Then

1. αf and f + g are integrable,

2.
∫
X αf dµ = α

∫
X f dµ,

3.
∫
X (f + g) dµ =

∫
X f dµ+

∫
X g dµ, and

4. if f(x) ≤ g(x) for all x ∈ X, then
∫
X f dµ ≤

∫
X g dµ.
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Proof. The proof is omitted as we just break up f and g into positive and negative parts
and use Proposition 5.5.

Theorem 5.7. (Monotone Convergence Theorem) Let (X,A, µ) be a measure space,
let f and f1, f2, . . . be [0,+∞]-valued A-measurable functions on X, Suppose that the
relations

f1(x) ≤ f2(x) ≤ . . . (1)

and

f(x) = lim
n

fn(x) (2)

hold at almost every x in X. Then
∫
X f dµ = limn

∫
fn dµ.

Proof. First, suppose that relations (1) and (2) hold at each x in X. The monotonicity
of the integral implies that

f1 dµ ≤ f2 dµ ≤ · · · ≤ f dµ;

hence the sequence {
∫
X fn dµ} converges (perhaps to +∞), and its limit satisfies

limn

∫
X fn dµ ≤

∫
X f dµ. We turn to the reverse inequality. For each n, choose a

nondecreasing sequence {gn,k}∞k=1 of simple [0,+∞)-valued measurable functions such
that fn = limk gn,k (Lemma 5.2). For each n, define a function hn by

hn = max(g1,n, g2,n, . . . , gn,n).

Then {hn} is a nondecreasing sequence of simple [0,+∞)-valued measurable functions
that satisfy hn ≤ fn and f = limn hn. It follows from these remarks, Proposition 5.4,
and the monotonicity of the integral that∫

X
f dµ = lim

n

∫
X
hn dµ ≤ lim

n

∫
X
fn dµ.

Hence
∫
X f dµ = limn

∫
X fn dµ.

Now suppose that we only require that relations (1) and (2) hold for almost every x
in X. Let N be a set that belongs to A, has measure zero under µ, and contains all
points at which one or more of these relations fails. The function f1Nc and the sequence
{fn1Nc} satisfy the hypotheses made in the first part of the proof, and so∫

X
f1Nc dµ = lim

n

∫
X
fn1Nc dµ. (3)

Since fn1Nc agrees with fn almost everywhere and f1Nc agrees with f almost everywhere,
Eq. (3) and the fact that if two functions agree almost everywhere they have the same
integral imply that ∫

X
f dµ = lim

n

∫
X
fn dµ.

For completeness, we will provide the following corollary. It is unnecessary for the
Radon–Nikodym theorem, but it is nice to know.
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x

f(x) ∫
[−0.3,0] f dλ = 0.8∫
[0,0.8] f dλ = −0.3

Figure 5: A visualization of a signed measure.

Corollary 5.8 (Beppo Levi’s theorem). Let (X,A, µ) be a measure space, and let∑∞
k=1 fk be an infinite series whose terms are [0,+∞]-valued A-measurable functions on

X. Then ∫
X

∞∑
k=1

fkdµ =
∞∑
k=1

∫
X
fkdµ.

Proof. Use the linearity of the integral, and apply the Monotone Convergence theorem
to the sequence {

∑n
k=1 fk}∞n=1 of partial sums of the series

∑∞
k=1 fk.

6 Signed and Complex Measures

Definition 6.1 (Signed and Complex Measures). Let (X,A) be a measurable space, and
let µ : A → [−∞,+∞]. If the function µ is countably additive, meaning the identity

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

holds for each sequence of pairwise disjoint sets A1, A2, . . . and µ(∅) = 0, then it is a
signed measure. Let ν : A → C. If ν is countably additive and ν(∅) = 0, then ν is a
complex measure.

Example 6.2. An example of a signed measure is integrals of functions. For example,
let f(x) = x1/3, and take the measurable space (R,B(R)). Then we can define a measure
ν(A) =

∫
A f dµ.

Example 6.3. Let (R,A, λ) be a measure space under the Lebesgue measure. Define
f(x) = 1 if x ≥ 0 and f(x) = −1 if x < 0. Then, we can see that ν(A) =

∫
A f dλ is a

measure. Furthermore, we can interpret ν as being a measure that gives negative weight
to sets with negative numbers. For example, we can see that ν([−0.3, 0.8]) = 0.5. We
might ask ourselves if every signed measure can be split up into a positive and negative
measure. See Figure 5 for a visualization.

Definition 6.4 (Positive and negative sets). Let µ be a signed measure on the measurable
space (X,A). A subset A of X is a positive set for µ if A ∈ A and each A-measurable
subset E of A satisfies µ(E) ≥ 0. Likewise A is a negative set for µ if A ∈ A and for
each A-measurable subsets E of A we have µ(E) ≤ 0.

Lemma 6.5 (Set of negative measure contains negative set). Let µ be a signed measure
on (X,A), and let A be a subset of X that belongs to A and satisfies −∞ < µ(A) < 0.
Then there is a negative set B that is included in A and satisfies µ(B) ≤ µ(A).
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Proof. We will remove a suitable sequence of subsets from A and then let B consist of
the points of A that remain. To begin, let

δ1 = sup{µ(E) : E ∈ A and E ⊆ A},

and choose an A-measurable subset A1 of A that satisfies

µ(A1) ≥ min

(
1

2
δ1, 1

)
.

Then δ1 and µ(A1) are nonnegative (note that µ(A1) ≥ min
(
1
2δ1, 1

)
implies that δ1 ≥

µ(∅) = 0). We proceed by induction, constructing sequences {δn} and {An} by letting

δn = sup

{
µ(E) : E ∈ A and E ⊆

(
A−

n−1⋃
i=1

Ai

)}
,

and then choosing an A-measurable subset An of A−
⋃n−1

i=1 Ai that satisfies

µ(An) ≥ min

(
1

2
δn, 1

)
.

Now define A∞ and B by A∞ =
⋃∞

n=1An and B = A−A∞.
We require that µ(A1) be at least min(δ1/2, 1), rather than at least δ1/2, because we

have not yet proved that δ1 is finite (see Exercise 4).
Let us check that B has the required properties. Since the sets An are disjoint and

satisfy µ(An) ≥ 0, it follows that µ(A∞) ≥ 0 and hence that

µ(A) = µ(A∞) + µ(B) ≥ µ(B).

Thus we have that µ(B) ≤ µ(A).
We turn to the negativity of B. The finiteness of µ(A) implies the finiteness of

µ(A∞) and so, since µ(A∞) =
∑

n µ(An), implies that limn µ(An) = 0. Consequently,
limn δn = 0. Since an arbitrary A-measurable subset E of B satisfies µ(E) ≤ δn for each
n and so satisfies µ(E) ≤ 0, B must be a negative set for µ.

Theorem 6.6 (Hahn Decomposition Theorem). Let (X,A) be a measurable space, and
let µ be a signed measure on (X,A). Then there are disjoint subsets P and N of X such
that P is a positive set for µ, N is a negative set for µ, and X = P ∪N .

Proof. A signed measure µ cannot include both +∞ and −∞ among its values, we can
for definiteness assume that −∞ is not included. Let

L = inf{µ(A) : A is a negative set for µ}.

Choose a sequence {An} of negative sets for µ for which L = limn µ(An), and let
N =

⋃∞
n=1An. It is easy to check that N is a negative set for µ (each A-measurable subset

of N is the union of a sequence of disjoint A-measurable sets, each of which is included in
some An). Hence L ≤ µ(N) ≤ µ(An) holds for each n, and so L = µ(N). Furthermore,
since µ does not attain the value −∞, µ(N) must be finite. Let P = N c. Our only
remaining task is to check that P is a positive set for µ. If P included an A-measurable set
A such that µ(A) < 0, then it would include a negative set B such that µ(B) < 0 (Lemma
6.5), and N ∪B would be a negative set such that µ(N ∪B) = µ(N)+µ(B) < µ(N) = L
(recall that µ(N) is finite). However this contradicts how L was initially defined, and so
P must be a positive set for µ.
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Theorem 6.7 (Jordan Decomposition Theorem). Every signed measure is the difference
of two positive measures, at least one of which is finite.

Proof. Let µ be a signed measure on (X,A). Choose a Hahn decomposition (P,N) for
µ, and then define functions µ+ and µ− on A by

µ+(A) = µ(A ∩ P ) and µ−(A) = −µ(A ∩N).

It is clear that µ+ and µ− are positive measures such that µ = µ+ − µ−. Since +∞ and
−∞ cannot both occur among the values of µ, at least one of the values µ(P ) and µ(N),
and hence at least one of the measures µ+ and µ−, must be finite.

Corollary 6.8. Let ν be a complex measure on a measurable space (X,A). Then
ν = µ1 + iµ2 where µ1 and µ2 are finite signed measures on (X,A). Hence by the Jordan
decomposition theorem we have that ν = µ+

1 − µ−
1 + i(µ+

2 − µ−
2 ).

7 Radon–Nikodym theorem

The Jordan decomposition theorem gives us an insight on classifying measures. Since we
know that every signed or complex measure can be broken down into positive measures,
we may ask ourselves how else we can “break down” measures into another measure. The
Radon–Nikodym theorem does exactly that. It shows us that we can represent a measure
ν in terms of a measure µ through an integral of a function as long as ν is absolutely
continuous with respect to µ.

Definition 7.1 (Absolute continuity). Let (X,A) be a measurable space and let µ and
ν be measures on (X,A). Then for all A ∈ A, if µ(A) = 0 implies ν(A) = 0, then ν is
absolutely continuous with respect to ν.

Example 7.2. Define ν(A) =
∫
A f dµ, then ν is absolutely continuous with respect to

µ. This is because if µ(A) = 0, the integral vanishes; ν(A) =
∫
X f1A dµ and f1A = 0

almost everywhere, so ν(A) = 0 too.

Definition 7.3 (σ-finite measures). Let (X,A) be a measurable space, and let µ be a
positive measure on (X,A). The measure µ is σ-finite if X is a countable union of sets
of finite measure. That is, X =

⋃∞
i=1Ai where µ(Ai) < +∞ for all i.

Example 7.4. The Lebesgue measure is σ-finite over (R,B(R)). This is because R =⋃
n=1 [−n, n].

Before we prove the Radon–Nikodym theorem, we will need a small lemma showing
that integrable functions are finite-valued almost everywhere.

Lemma 7.5. Let (X,A, µ) be a measure space, and let f : X → [−∞,+∞] be integrable.
Then we must have |f(x)| < +∞ holds for almost every x ∈ X.

Proof. First we observe that if g : X → [0,+∞] is an A-measurable function, t is a
positive real number, and At = {x ∈ X : f(x) ≥ t}, then

µ(At) ≤
1

t

∫
At

fdµ ≤ 1

t

∫
X
fdµ.

This is because 0 ≤ t · 1At ≤ f · 1At ≤ f , and the monotonicity and linearity of the
integral implies that

tµ(At) =

∫
X
t1Atdµ ≤

∫
At

fdµ ≤
∫
X
fdµ.
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Applying that observation to the function |f |, we have

µ({x ∈ X : |f(x)|n}) ≤ 1

n

∫
X
|f |dµ

holds for each positive integer n. Thus

µ({x ∈ X : |f(x)| = +∞}) ≤ µ({x ∈ X : |f(x)| ≥ n}) ≤ 1

n

∫
X
|f |dµ

holds for each n, and so µ({x ∈ X : |f(x)| = +∞}) = 0. (Note that
∫
X |f |dµ must be

finite as f is integrable.)

From Example 7.2, we know that if we make a new measure from an integral, that
the new measure is absolutely continuous with respect to our old measure. How about
the converse? Does absolute continuity imply that we can put a measure as an integral?
Turns out the answer is yes, given a few more conditions.

Theorem 7.6 (Radon–Nikodym theorem). Let (X,A) be a measurable space, and let µ
and ν be σ-finite positive measures on (X,A). If ν is absolutely continuous with respect
to µ, then there is an A-measurable function g : X → [0,+∞) such that ν(A) =

∫
A gdµ

holds for each A in A. The function g is unique up to µ-almost everywhere equality.

Proof. First consider the case where µ and ν are both finite. Let F be the set consisting
of those A-measurable functions f : X → [0,+∞] that satisfy

∫
A f dµ ≤ ν(A) for each

A ∈ A. We will show first that F contains a function g such that∫
g dµ = sup

{∫
f dµ : f ∈ F

}
(1)

and then that this function g satisfies

ν(A) =

∫
A
g dµ for each A ∈ A.

Finally, we will show that g can be modified so as to have only finite values.
We begin by checking that if f1 and f2 belong to F , then f1∨f2 defined as (f1∨f2)(x) =

max f1(x), f2(x) belongs to F ; to see this note that if A is an arbitrary set in A, if
A1 = {x ∈ A : f1(x) > f2(x)}, and if A2 = {x ∈ A : f2(x) ≥ f1(x)}, then∫

A
(f1 ∨ f2) dµ =

∫
A1

f1 dµ+

∫
A2

f2 dµ ≤ ν(A1) + ν(A2) = ν(A).

Furthermore, F is not empty (the constant 0 belongs to it). Now choose a sequence
{fn} of functions in F for which

lim
n

∫
fn dµ = sup

{∫
f dµ : f ∈ F

}
.

By replacing fn with f1 ∨ · · · ∨ fn, we can assume that the sequence {fn} is increasing.
Let g = limn fn. The monotone convergence theorem implies that the relation∫

A
g dµ = lim

n

∫
A
fn dµ ≤ ν(A)

holds for each A and hence that g belongs to F . It also implies that∫
g dµ = sup

{∫
f dµ : f ∈ F

}
.
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Thus g has the first of the properties claimed for it.
We turn to the proof that

ν(A) =

∫
A
g dµ holds for each A ∈ A.

Since g belongs to F , the formula

ν0(A) = ν(A)−
∫
A
g dµ

defines a positive measure on A. We need only show that ν0 = 0. Assume the contrary.
Then, since µ is finite, there is a positive number ϵ such that

ν0(X) > ϵµ(X).

Let (P,N) be a Hahn decomposition for the signed measure ν0 − ϵµ. Note that for each
A ∈ A we have

ν0(A ∩ P ) ≥ ϵµ(A ∩ P ),

and hence we have

ν(A) =

∫
A
g dµ+ ν0(A) ≥

∫
A
g dµ+ ν0(A ∩ P )

≥
∫
A
g dµ+ ϵµ(A ∩ P ) =

∫
A
(g + ϵχP ) dµ.

Note also that µ(P ) > 0, since if µ(P ) = 0, then ν0(P ) = 0, and so

ν0(X)− ϵµ(X) = (ν0 − ϵµ)(N) ≤ 0,

contradicting the assumption. It follows from this, the relation
∫
g dµ ≤ ν(X) < +∞,

and the above inequality that g + ϵχP belongs to F and satisfies∫
(g + ϵχP ) dµ >

∫
g dµ.

This, however, contradicts the supremum property of g and so implies that ν0 = 0. Hence

ν(A) =

∫
A
g dµ holds for each A ∈ A.

Since g can have an infinite value only on a µ-null set (Lemma 7.5), it can be redefined
so as to have only finite values. With this, we have constructed the required function in
the case where µ and ν are finite.
Now suppose that µ and ν are σ-finite. Then X is the union of a sequence {Bn} of

disjoint A-measurable sets, each of which has finite measure under µ and under ν. For
each n the first part of this proof provides an A-measurable function gn : Bn → [0,+∞)
such that

ν(A) =

∫
A
gn dµ holds for each A-measurable subset A of Bn.

The function g : X → [0,+∞) that agrees on each Bn with gn is then the required
function.
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We turn to the uniqueness of g. Let g, h : X → [0,+∞) be A-measurable functions
that satisfy

ν(A) =

∫
A
g dµ =

∫
A
h dµ for each A ∈ A.

First consider the case where ν is finite. Then g − h is integrable and∫
A
(g − h) dµ = 0

holds for each A ∈ A; since in this equation A can be the set where g > h or the set
where g < h, it follows that∫

(g − h)+ dµ = 0 and

∫
(g − h)− dµ = 0

and hence that (g − h)+ and (g − h)− vanish µ-almost everywhere. Thus g and h agree
µ-almost everywhere. If ν is σ-finite and if {Bn} is a sequence of A-measurable sets that
have finite measure under ν and satisfy X = ∪nBn, then the preceding argument shows
that g and h agree µ-almost everywhere on each Bn and hence µ-almost everywhere on
X.

Theorem 7.7 (Radon–Nikodym theorem for finite signed or complex measure). Let
(X,A) be a measurable space, let µ be σ-finite positive measure on (X,A), and let ν be
a finite signed or complex measure on (X,A). If ν is absolutely continuous with respect
to µ, then there is a function g that belongs to L 1(X,A, µ,R) (or to L 1(X,A, µ,C))
and satisfies ν(A) =

∫
A gdµ for each A in A. The function g is unique up to µ-almost

everywhere equality.

Proof. If ν is a complex measure that is absolutely continuous with respect to µ, then it
can be written in the form

ν = ν1 − ν2 + iν3 − iν4,

where ν1, ν2, ν3, and ν4 are finite positive measures that are absolutely continuous with
respect to µ. Then by the Radon–Nikodym theorem for two σ-finite positive measures,
we have functions gj , j = 1, . . . , 4, that satisfy

νj(A) =

∫
A
gj dµ

for each A ∈ A. The required function g is now given by

g = g1 − g2 + ig3 − ig4.

The case of a finite signed measure is similar. The uniqueness of g can be proved with
the method used in the proof of the previous theorem; in case ν is a complex measure,
the real and imaginary parts of g should be considered separately.

Let (X,A) be a measurable space, let µ be a σ-finite positive measure on (X,A), and
let ν be a finite signed, complex, or σ-finite positive measure on (X,A). Suppose that
ν is absolutely continuous with respect to µ. An A-measurable function g on X that
satisfies

ν(A) =

∫
A
g dµ for each A ∈ A

is called a Radon–Nikodym derivative of ν with respect to µ or, in view of its uniqueness up
to µ-null sets, the Radon–Nikodym derivative of ν with respect to µ. A Radon–Nikodym
derivative of ν with respect to µ is sometimes denoted by dν

dµ .
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8 Applications of Radon–Nikodym Theorem

The Radon–Nikodym theorem gives a quick way to switch between different measures. It
is used a ton in finance, probability, and physics, but the easiest way to see its significance
is through probability theory.

8.1 Probability Density Functions

Remember that a probability space is a measure space (Ω,A,P). The elements of Ω are
called the elementary outcomes or the sample points of our experiment, and the
members of A are called events. If A ∈ A, then P(A) is the probability of the event A.

Definition 8.1. A real-valued random variable on a probability space (Ω,A,P) is
an A-measurable function from Ω to R.

Let X be a real-valued random variable on a probability space (Ω,A,P). Such a
variable represents a numerical observation or measurement whose value depends on
on the outcome of the random event represented by (Ω,A,P). The distribution of X is
represented by the measure PX−1 on (R,B(R)) defined by (PX−1)(A) = P (X−1(A))
where X−1 is the pre-image of A under X. We usually denote PX−1 as PX .

Now let us look at the probability space (R,B(R),P) with P(A) =
∫
A f dλ where f is

a Borel measurable function such that
∫
R f dλ = 1. We call f the density of P, but we

can also see that f is actually a Radon–Nikodym derivative of P with respect to µ! This
means that some of the distributions we go through in a introductory statistics course,
such as the Gaussian or Normal distribution, are actually Radon–Nikodym derivatives!

8.2 Conditional Expectation

When learning probability in grade school, we may have learnt about conditional
probability. It is something like “the probabilty of event A given event B”. It even has
a nice formula:

P (A | B) =
P (A ∩B)

P (B)
.

In terms of probability spaces, we can use the same relation. Let (Ω,A,P) be a probability
space and let A and B be events in A, and assume that P (B) ̸= 0. We still use the same
formula as above for the conditional probability. We will generalize this idea a bit further
to something called conditional expectation.

Definition 8.2. Let X be a real-valued random variable on (Ω,A,P), and let X be
integrable with respect to P. The expected value or expectation of X is written E(X)
and is defined by E(X) =

∫
RX dP. If X is integrable, one also says that X has finite

expected value.

Definition 8.3. Let (Ω,A,P) be a probability space, and let B be a sub-algebra of A
(meaning that B ⊆ A and B is a σ-algebra). Suppose that X is a real-valued random
variable on (Ω,A,P) that has finite expected value. A conditional expectation of X
given B is a random variable Y that is B-measurable, is integrable (that is, has finite
expected value), and satisfies ∫

B
Y dP =

∫
B
X dP.

One generally writes E(X | B) for a conditional expectation of X given B. When one
needs to be more precise, one sometimes calls an integrable B-measurable function Y
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that satisfies ∫
B
Y dP =

∫
B
X dP for all B ∈ B

a version of the conditional expectation of X given B or a version of E(X|B). Now for
the main result of this section.

Theorem 8.4. Let (Ω,A,P) be a probability space, let X be a random variable on
(Ω,A,P) with finite expected value, and let B be a σ-algebra such that B ⊆ A. Then

1. X has a conditional expectation given B, and

2. the conditional expectation of X given B is unique, in the sense that if Y1 and Y2
are versions of E(X|B)

Proof. The formula

µ(B) =

∫
B
X dP

defines a finite signed measure on (Ω,B); it is absolutely continuous with respect to
the restriction of P to B. Thus, the Radon–Nikodym theorem, applied to µ and the
restriction of P to B, gives a B-measurable random variable Y such that∫

B
Y dP = µ(B) =

∫
B
X dP

holds for each B ∈ B. Thus, Y is a conditional expectation of X given B. The unique-
ness assertion in the Radon–Nikodym theorem gives the uniqueness of the conditional
expectation.

See [Bro02] for more information on conditional expectation.
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