Outer Automorphism of S_6

Sahiti Doke

July 15, 2024

イロメ イ部メ イヨメ イヨメー

重

What is a symmetric group?

Definition 0.1

- The symmetric group is defined as the elements of the group that are permutations on the given set (i.e., bijective maps from the set to itself).
- The **product** of two elements is their composite as permutations, i.e., function composition.
- The **identity** element of the group is the identity function from the set to itself.
- The **inverse** of an element in the group is its inverse as a function.

つひひ

What is a symmetric group?

Definition 0.1

- The symmetric group is defined as the elements of the group that are permutations on the given set (i.e., bijective maps from the set to itself).
- The **product** of two elements is their composite as permutations, i.e., function composition.
- The **identity** element of the group is the identity function from the set to itself.
- The **inverse** of an element in the group is its inverse as a function.

Example

Example: $S_3 = \{(1, (12), (13), (23), (123), (132)\}\$

 Ω

Given a group G, the **automorphism group** $Aut(G)$ is the group consisting of all isomorphisms from G to G (bijective structure preserving mappings)

Given a group G, the **automorphism group** $Aut(G)$ is the group consisting of all isomorphisms from G to G (bijective structure preserving mappings)

Example

$$
Aut(S_2) \text{ where } S_2 \text{ is } \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}
$$

\n• $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ is the identity
\n• An automorphism *f* must send $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ to itself
\n• *f* must send $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ to itself
\n• *f* is the identity *e* which means that $Aut(S_2)$ is trivial

 QQ

Example

Let $\phi: \mathbb{Z}_8 \to \mathbb{Z}_8$ and $\phi(x) = 3x$ (mod 8). This is bijective since we can clearly show that each element maps to another element.

Homomorphic: $\phi(x + y) = 3(x + y) = 3x + 3y = \phi(x) + \phi(y)$.

← ロ ≯ → ← 同 →

An inner automorphism of a group G is an automorphism of the form $\phi(g)=h^{-1}gh$ where h is a fixed element of G.

 QQQ

An inner automorphism of a group G is an automorphism of the form $\phi(g)=h^{-1}gh$ where h is a fixed element of G.

Example 1

Let $f(x)$ be defined as $(12)x(12)$. Then $f(123) = (12)(123)(12) = (132)$. $f(x)$ is an inner automorphism of S_3

 Ω

 $Z(G) = \{z \in G \mid \forall g \in G, zg = gz\}$ where $Z(G)$ is the **center** of the group

Example

The quartenion group $Q_8 = {\pm 1, \pm i, \pm j, \pm k}$ has $Z(Q_8) = {\pm 1}$ which means that $1x = x1$ and $-1x = x(-1)$ is true for all $x \in Q_8$.

G.

 QQQ

イロト イ押 トイヨ トイヨ トー

A group is said to be **centerless** if $Z(G)$ is trivial; i.e., consists only of the identity element.

Definition 0.6

A group G is complete if it is centerless and every automorphism of G is inner.

 Ω

Theorem 0.7

 S_n is complete for $n \neq 2, 6$

Remark 0.8

Permutations with the same cycle length when decomposed into transpositions belong to the same conjugacy class

 QQ

イロト イ母ト イヨト イヨト

Theorem 0.7

 S_n is complete for $n \neq 2, 6$

Remark 0.8

Permutations with the same cycle length when decomposed into transpositions belong to the same conjugacy class

- Let T_k be the conjugacy class in S_n consisting of products of k disjoint transpositions.
- A permutation π is an involution if and only if it lies in some T_k .
	- If f ∈ Aut(S_n), then $f(T_1) = T_k$ for some k.
- It suffices to show $|T_k| \neq |T_1|$ for $k \neq 1$.
	- This is true for $n \neq 6$.
	- For $n = 6$, it turns out that $|T_1| = |T_3|$ is the only exception.

A group G acts transitively on a set X if for any $x, y \in X$ there is some $g \in G$ such that $g \circ x = y$

• Example 1: S_n acts on $\{1, 2, 3, ..., n\}$. For each $i, j \in \{1, 2, ..., n\}$, there is a $\tau \in G$ with $\tau(i) = i$

 Ω

(□) (_□) (

Outer automorphism is any automorphism that is not inner

÷.

 QQ

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Pentagons

Figure 1: Pentagons with various edges and diagonals

 \Rightarrow э

← ロ → → ← 何 →

Visualization

Mystic Pentagons

- 12 ways to two-color edges of a complete graph on 5 vertices
- \bullet Each element of S_5 induces a permutation of six mystic pentagon pairs via action on vertices: $i : S_5 = S_{\{1,\dots,5\}} \rightarrow S_{\{a,\dots, f\}} = S_6$.
- Inclusion: every element in $\mathcal{S}_{\{1,...,5\}}$ is in $\mathcal{S}_{\{a,...,f\}}.$
- Homomorphism between $\mathcal{S}_{\{1,...,5\}}$ and $\mathcal{S}_{\{a,...,f\}}$.
- Not usual inclusion: (12) induces permutation $(ad)(bc)(ef)$ (not a transposition).
- $S_6 = S_{\{a,\ldots,f\}}$ acts on six cosets of $i(S_5)$, inducing $f: S_{\{a,\ldots,f\}} \to S_{\{1,\ldots,6\}}.$
- Outer automorphism

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

If ρ^k is the highest power of a prime p dividing the order(number of elements) of a finite group G, then a subgroup of G of order ρ^k is called a sylow \mathbf{p} – subgroup of G.

Theorem 0.12

For a group G with order divisible by p, there exists a p-Sylow subgroup. Let x be the number of p-Sylow subgroups. Then,

 $x \equiv 1 \pmod{p}$ and $x \mid |G|$.

All p-Sylow subgroups are conjugate. (For every pair of p-Sylow subgroups H and K, there exists $g\in G$ with $g^{-1}Hg=K$.)

 QQQ

イロト イ押ト イヨト イヨトー

Construction of $Out(S_6)$

- The 5-Sylow subgroups of $S₅$ are exactly the subgroups generated by a 5-cycle. Let X be the set of these subgroups.
- Then, $|X| \equiv 1 \pmod{5}$ and $|X| | 120$ so $|X| = 6$.
- Consider the action of S_5 on X by conjugation (g sends X to $g^{-1}Xg$).
	- By Sylow's theorem, this action is transitive.
	- The action gives a homomorphism f: $S_5 \rightarrow S_6$, since $|X| = 6$.
	- $ker(f)$ (elements that f maps to identity) forms a normal subgroup, so $ker(f) = \{A_5, S_5, e\}$
	- Since the action is transitive, $ker(f) \leq |S_5|/6 = 20$.
	- Hence $|ker(f)| = e$.
	- Thus, im(f) is a transitive 120-element subgroup of S_6 .

I would like to thank Emma Cardwell and Simon Rubinstein. Thank you for listening.