Outer Automorphism of S_6

Sahiti Doke

July 15, 2024

-		-
50	hiti	Doke
Ja	III CI	DORE

イロト イヨト イヨト イヨト

2

What is a symmetric group?

Definition 0.1

- The **symmetric group** is defined as the elements of the group that are permutations on the given set (i.e., bijective maps from the set to itself).
- The **product** of two elements is their composite as permutations, i.e., function composition.
- The **identity** element of the group is the identity function from the set to itself.
- The inverse of an element in the group is its inverse as a function.

What is a symmetric group?

Definition 0.1

- The **symmetric group** is defined as the elements of the group that are permutations on the given set (i.e., bijective maps from the set to itself).
- The **product** of two elements is their composite as permutations, i.e., function composition.
- The **identity** element of the group is the identity function from the set to itself.
- The inverse of an element in the group is its inverse as a function.

Example

Example: $S_3 = \{(), (12), (13), (23), (123), (132)\}$

Automorphism group

Definition 0.2

Given a group G, the **automorphism group** Aut(G) is the group consisting of all isomorphisms from G to G (bijective structure preserving mappings)

イロト 不得 トイヨト イヨト

Automorphism group

Definition 0.2

Given a group G, the **automorphism group** Aut(G) is the group consisting of all isomorphisms from G to G (bijective structure preserving mappings)

Example

Aut(**S**₂) where **S**₂ is
$$\left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

• $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ is the identity
• An automorphism *f* must send $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ to itself
• *f* must send $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ to itself
• *f* is the identity *e* which means that Aut(**S**₂) is trivial

イロト イポト イヨト イヨト

Automorphism group

Example

Let $\phi: \mathbb{Z}_8 \to \mathbb{Z}_8$ and $\phi(x) = 3x \pmod{8}$. This is bijective since we can clearly show that each element maps to another element.

Original	Mapped		
0	0		
1	3		
2	6		
3	1		
4	4		
5	7		
6	2		
7	5		

Homomorphic: $\phi(x + y) = 3(x + y) = 3x + 3y = \phi(x) + \phi(y)$.

Sahiti Doke

< < >>

An inner automorphism of a group G is an automorphism of the form $\phi(g) = h^{-1}gh$ where h is a fixed element of G.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

An inner automorphism of a group G is an automorphism of the form $\phi(g) = h^{-1}gh$ where h is a fixed element of G.

Example 1

Let f(x) be defined as (12)x(12). Then f(123) = (12)(123)(12) = (132). f(x) is an inner automorphism of S_3

< □ > < □ > < □ > < □ >

 $Z(G) = \{z \in G \mid \forall g \in G, zg = gz\}$ where Z(G) is the **center** of the group

Example

The quartenion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ has $Z(Q_8) = \{\pm 1\}$ which means that 1x = x1 and -1x = x(-1) is true for all $x \in Q_8$.

(日)

A group is said to be **centerless** if Z(G) is trivial; i.e., consists only of the identity element.

Definition 0.6

A group G is **complete** if it is centerless and every automorphism of G is inner.

Theorem 0.7

 S_n is complete for $n \neq 2, 6$

Remark 0.8

Permutations with the same cycle length when decomposed into transpositions belong to the same conjugacy class

э

Theorem 0.7

 S_n is complete for $n \neq 2, 6$

Remark 0.8

Permutations with the same cycle length when decomposed into transpositions belong to the same conjugacy class

- Let T_k be the conjugacy class in S_n consisting of products of k disjoint transpositions.
- A permutation π is an involution if and only if it lies in some T_k .
 - If $f \in \operatorname{Aut}(S_n)$, then $f(T_1) = T_k$ for some k.
- It suffices to show $|T_k| \neq |T_1|$ for $k \neq 1$.
 - This is true for $n \neq 6$.
 - For n = 6, it turns out that $|T_1| = |T_3|$ is the only exception.

イロト 不得下 イヨト イヨト 二日

A group G **acts** transitively on a set X if for any $x, y \in X$ there is some $g \in G$ such that $g \circ x = y$

Example 1: S_n acts on {1, 2, 3, ..., n}. For each i, j ∈ {1, 2, ..., n}, there is a τ ∈ G with τ(i) = j

Outer automorphism is any automorphism that is not inner

<u> </u>					
50	hr	÷	1.1	\sim	20
Ja		U	ັ	0	

イロト 不得 トイヨト イヨト

э

Pentagons

Figure 1: Pentagons with various edges and diagonals

July 15, 2024

글▶ 글

< □ > < /□ >

Visualization

Mystic Pentagons

- 12 ways to two-color edges of a complete graph on 5 vertices
- Each element of S_5 induces a permutation of six mystic pentagon pairs via action on vertices: $i: S_5 = S_{\{1,...,5\}} \rightarrow S_{\{a,...,f\}} = S_6$.
- Inclusion: every element in $S_{\{1,\dots,5\}}$ is in $S_{\{a,\dots,f\}}$.
- Homomorphism between $S_{\{1,\dots,5\}}$ and $S_{\{a,\dots,f\}}$.
- Not usual inclusion: (12) induces permutation (ad)(bc)(ef) (not a transposition).
- $S_6 = S_{\{a,\dots,f\}}$ acts on six cosets of $i(S_5)$, inducing $f: S_{\{a,\dots,f\}} \to S_{\{1,\dots,6\}}$.
- Outer automorphism

12/15

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの

If p^k is the highest power of a prime p dividing the order(number of elements) of a finite group G, then a subgroup of G of order p^k is called a sylow $\mathbf{p} - \mathbf{subgroup}$ of G.

Theorem 0.12

For a group G with order divisible by p, there exists a p-Sylow subgroup. Let x be the number of p-Sylow subgroups. Then,

 $x \equiv 1 \pmod{p}$ and $x \mid |G|$.

All p-Sylow subgroups are conjugate. (For every pair of p-Sylow subgroups H and K, there exists $g \in G$ with $g^{-1}Hg = K$.)

イロト 不得 トイヨト イヨト

Construction of $Out(S_6)$

- The 5-Sylow subgroups of S_5 are exactly the subgroups generated by a 5-cycle. Let X be the set of these subgroups.
- Then, $|X| \equiv 1 \pmod{5}$ and $|X| \mid 120$ so |X| = 6.
- Consider the action of S_5 on X by conjugation (g sends X to $g^{-1}Xg$).
 - By Sylow's theorem, this action is transitive.
 - The action gives a homomorphism f: $S_5 \rightarrow S_6$, since |X| = 6.
 - ker(f) (elements that f maps to identity) forms a normal subgroup, so $ker(f) = \{A_5, S_5, e\}$
 - Since the action is transitive, $ker(f) \leq |S_5|/6 = 20$.
 - Hence |ker(f)| = e.
 - Thus, im(f) is a transitive 120-element subgroup of S_6 .

I would like to thank Emma Cardwell and Simon Rubinstein. Thank you for listening.

イロト イヨト イヨト イヨト

æ