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Introduction

The study of Diophantine approximation has been a significant area of research in number

theory, dating back to the works of Joseph-Louis Lagrange. Central to this field is the

concept of the Lagrange spectra, a fascinating and intricate structure that emerges from

the analysis of how well real numbers can be approximated by rationals. The Lagrange

spectrum is a set of values that quantifies the “quality” of these approximations and

encapsulates the interplay between algebraic properties and geometric representations of

numbers.

The origins of the Lagrange spectra trace back to the 18th century when Lagrange

investigated the approximation properties of quadratic irrationals. These early explo-

rations laid the groundwork for a deeper understanding of the behavior of more general

real numbers. Over the centuries, mathematicians such as Markoff, Hurwitz, and Perron

expanded upon Lagrange’s initial insights, developing a more comprehensive theory.

Objectives

1. Characterizing the elements of the Lagrange spectrum: Identifying and

describing the values that belong to the spectrum, distinguishing between those

that correspond to quadratic irrationals and more general real numbers.

2. Investigate the distribution of Lagrange numbers: Analyze the density and

gaps within the spectrum, providing insights into the ”missing” values and their

significance.

Definition and Basic Properties

The Lagrange spectrum is formally defined as follows: for a real number α, consider

the sequence of its best rational approximations pn
qn
, where pn and qn are integers with

qn > 0 and
∣∣∣α− pn

qn

∣∣∣ is minimized. The quality of these approximations is measured by

the Lagrange number L(α), defined as:

L(α) = lim sup
n→∞

qn

∣∣∣∣α− pn
qn

∣∣∣∣ .
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The set of all such Lagrange numbers L(α) for all real numbers α constitutes the

Lagrange spectrum L. This set exhibits a rich structure, revealing insights into both

number theory and dynamical systems.

Applications of the Lagrange Spectrum

Diophantine Approximation

One of the primary applications of the Lagrange spectrum lies in Diophantine approx-

imation. This branch of number theory concerns the quality of approximations of real

numbers by rational numbers. The Lagrange spectrum provides a quantitative measure,

L(α), for how well a real number α can be approximated by rational numbers p
q
, where

q is large.

Example Problem

Suppose we need to approximate
√
2 by rational numbers. The Lagrange number L(

√
2)

indicates the limit superior of q
∣∣∣√2− p

q

∣∣∣ for the best approximations p
q
. This is crucial

in fields like cryptography where accurate numerical approximations are required.

Number Theory

In number theory, the study of quadratic irrationals and continued fractions is enriched

by the Lagrange spectrum.

Example Problem

Analyzing the Lagrange spectrum helps in understanding the distribution and gaps of

values that numbers like
√
d (for square-free integers d) can take as rational approxima-

tions. This knowledge is fundamental in fields such as algebraic number theory and the

study of quadratic forms.
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Dynamical Systems

The Lagrange spectrum has implications in dynamical systems theory, particularly in

understanding the behavior of orbits and trajectories.

Example Problem

In the study of continued fractions, the Lagrange spectrum influences the structure of

invariant measures and the ergodic properties of dynamical systems. Understanding

the distribution of Lagrange numbers can reveal insights into the long-term behavior of

systems described by such approximations.

Optimization and Algorithms

Algorithms that involve numerical optimization benefit from the insights provided by the

Lagrange spectrum.

Example Problem

Optimal control theory often requires minimizing error terms in approximations of func-

tions or solutions to differential equations. By leveraging the properties of Lagrange

numbers, algorithms can be designed to efficiently find the best rational approximations,

thereby optimizing computational efficiency and accuracy.

Physics and Engineering

In fields such as signal processing and Fourier analysis, understanding how well real-world

signals or functions can be represented by simpler mathematical models is crucial.

Example Problem

Engineers designing signal processing algorithms need to approximate continuous signals

with discrete representations. The Lagrange spectrum informs them about the precision

limits and the trade-offs between approximation error and computational resources.
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Conclusion

The Lagrange spectrum serves as a foundational tool across various mathematical dis-

ciplines and applied sciences. Its applications range from theoretical studies in number

theory to practical applications in optimization, control systems, and signal process-

ing. By understanding how real numbers can be efficiently approximated by rationals,

mathematicians and scientists can develop more accurate models and algorithms, driving

advancements in both theory and practice.

This breadth of applications underscores the importance of the Lagrange spectrum

in modern mathematics and its relevance in addressing complex problems across diverse

fields.

Examples of Lagrange Numbers

Introduction

The Lagrange spectrum is an intriguing area in number theory that provides insights into

the quality of rational approximations for real numbers. By exploring specific examples

of well-known irrationals, such as
√
2 and the golden ratio ϕ, we can gain a deeper

understanding of how the Lagrange numbers are determined and their significance. These

examples illustrate the application of continued fractions and the limsup of the sequence

of best rational approximations.

Theorems and Proofs

Theorem 1: Lagrange Number for
√
2

Statement:

The Lagrange number for
√
2 is given by:

L(
√
2) =

√
2.

4



Proof:

1. Continued Fraction Expansion of
√
2:

The continued fraction expansion of
√
2 is:

√
2 = [1; 2] = 1 +

1

2 +
1

2 +
1

2 + · · ·

This periodic continued fraction leads to the sequence of convergents pn
qn

that are best

approximations.

2. Best Rational Approximations:

The sequence of best rational approximations for
√
2 is:

pn
qn

=

{
1

1
,
3

2
,
7

5
,
17

12
, . . .

}

These can be generated recursively.

3. Limsup Calculation:

By definition, the Lagrange number L(α) is given by:

L(α) = lim sup
n→∞

qn

∣∣∣∣α− pn
qn

∣∣∣∣ .
For

√
2, this becomes:

L(
√
2) = lim sup

n→∞
qn

∣∣∣∣√2− pn
qn

∣∣∣∣ .
4. Approximation Quality:

The error term
∣∣∣√2− pn

qn

∣∣∣ is minimized by the convergents, and for the continued fraction

expansion of
√
2, it is known that: ∣∣∣∣√2− pn

qn

∣∣∣∣ < 1

2q2n
.
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5. Final Value:

Combining these results, we get:

L(
√
2) =

√
2.

Theorem 2: Lagrange Number for the Golden Ratio ϕ

Statement:

The Lagrange number for the golden ratio ϕ = 1+
√
5

2
is given by:

L(ϕ) =
1 +

√
5

2
.

Proof:

1. Continued Fraction Expansion of ϕ:

The continued fraction expansion of ϕ is:

ϕ = [1; 1] = 1 +
1

1 +
1

1 +
1

1 + · · ·

This periodic continued fraction leads to the sequence of convergents pn
qn

that are best

approximations.

2. Best Rational Approximations:

The sequence of best rational approximations for ϕ is:

pn
qn

=

{
1

1
,
2

1
,
3

2
,
5

3
,
8

5
, . . .

}

These can be generated by the Fibonacci sequence.

3. Limsup Calculation:
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By definition, the Lagrange number L(α) is given by:

L(α) = lim sup
n→∞

qn

∣∣∣∣α− pn
qn

∣∣∣∣ .
For ϕ, this becomes:

L(ϕ) = lim sup
n→∞

qn

∣∣∣∣ϕ− pn
qn

∣∣∣∣ .
4. Approximation Quality:

The error term
∣∣∣ϕ− pn

qn

∣∣∣ is minimized by the convergents, and for the continued fraction

expansion of ϕ, it is known that: ∣∣∣∣ϕ− pn
qn

∣∣∣∣ < 1

q2nϕ
.

5. Final Value:

Combining these results, we get:

L(ϕ) = ϕ.

Fundamental Theorems

1. Lagrange’s Theorem: For any quadratic irrational α, L(α) is a finite positive

value.

2. Markoff Spectrum: A subset of the Lagrange spectrum consisting of values cor-

responding to quadratic irrationals related to indefinite binary quadratic forms.

Geometric Interpretation

The geometric perspective of the Lagrange spectrum involves interpreting rational ap-

proximations as points on a lattice in the Euclidean plane. The properties of these lattice

points and their arrangements provide a visual and intuitive understanding of the spec-

trum’s structure. This interpretation is crucial for exploring connections with hyperbolic
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geometry and the theory of continued fractions.

Theorem (Geometric Interpretation of the Lagrange Spectrum): The La-

grange spectrum can be described geometrically in terms of distances between points on

a certain manifold and a fixed point.

Proof Outline

1. Minkowski’s Theorem: One interpretation involves Minkowski’s theorem in the

geometry of numbers, which relates to the shortest vector in a lattice.

2. Geodesic Flow on the Modular Surface: The spectrum can be interpreted

using the dynamics of the geodesic flow on the modular surface SL(2,R)/SL(2,Z).

The lengths of closed geodesics correspond to elements in the Lagrange spectrum.

1 Theorem: Connection with Markov Spectrum

Theorem (Connection with Markov Spectrum): The Lagrange spectrum is closely

related to the Markov spectrum, which arises in the study of binary quadratic forms.

Proof Outline

1. Binary Quadratic Forms: Both spectra can be described in terms of the minimal

values of binary quadratic forms with integer coefficients.

2. Cusps of Hyperbolic Planes: The connection can also be interpreted geometri-

cally through the cusps of hyperbolic planes and their horocycles.

2 Theorem: Diophantine Approximation and Geodesics

Theorem (Diophantine Approximation and Geodesics): The Lagrange spectrum

can be understood in terms of Diophantine approximation on manifolds and the lengths

of geodesics on certain hyperbolic surfaces.
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Proof Outline

1. Diophantine Approximation: The Lagrange spectrum represents the set of best

approximation constants for irrational numbers.

2. Hyperbolic Geometry: These constants can be interpreted as lengths of geodesics

on a hyperbolic surface, particularly the modular surface.

3 Theorem: Geodesic Flows and Continued Frac-

tions

Theorem (Geodesic Flows and Continued Fractions): There is a deep connection

between the continued fraction expansion of real numbers and the geodesic flow on the

modular surface, which in turn relates to the Lagrange spectrum.

Proof Outline

1. Continued Fractions: The convergents of the continued fraction expansion of a

real number give good rational approximations.

2. Geodesic Flow: These approximations can be seen as corresponding to closed

geodesics on the modular surface, providing a geometric understanding of the La-

grange spectrum.
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3.1 Geometric Properties

Theorem 1: Markoff’s Theorem

Statement:

The Lagrange spectrum below 3 consists precisely of the values√
9− 4

m2

for all Markoff numbers m.

Proof:

• Markoff Numbers: Markoff numbers are solutions to the Diophantine equation:

x2 + y2 + z2 = 3xyz

where x, y, z are positive integers. These numbers form a sequence starting with 1,

2, 5, 13, etc.

• Relation to Lagrange Spectrum: For each Markoff number m, there exists a

corresponding value in the Lagrange spectrum given by:

Lm =

√
9− 4

m2

• Lower Bound of Spectrum: The Lagrange spectrum below 3 is given by the

sequence of values Lm. These values are derived from the continued fraction ex-

pansion of quadratic irrationals associated with the Markoff numbers.

• Maximal Approximation: The quadratic irrationals that are roots of the quadratic

forms associated with the Markoff numbers achieve the best possible approximation,

which directly corresponds to the Lagrange spectrum values.
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Theorem 2: Hurwitz’s Theorem

Statement:

For any real number α, there are infinitely many rational approximations p
q
such that

∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Proof:

• Dirichlet’s Approximation Theorem: For any real number α and any positive

integer Q, there exist integers p and q such that 1 ≤ q ≤ Q and∣∣∣∣α− p

q

∣∣∣∣ < 1

qQ
.

• Improving the Bound: By choosing Q = ⌊
√
5q⌋, we can improve the bound.

Specifically, for large q, there exist integers p and q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

• Infinitely Many Solutions: Since q can be arbitrarily large, there are infinitely

many rational approximations satisfying the above inequality.

Objectives

Density and Gaps in the Lagrange Spectrum

The Lagrange spectrum L is not a continuous interval of real numbers but rather a set

that exhibits both dense and discrete characteristics. Understanding the distribution of
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Lagrange numbers involves exploring regions where the spectrum is densely populated

and identifying significant gaps that suggest ”missing” values.

Dense Regions

In the lower part of the spectrum, the Lagrange numbers are densely distributed. This

dense region primarily corresponds to values associated with quadratic irrationals. More

specifically, within certain intervals, every value can be approximated arbitrarily closely

by Lagrange numbers. This phenomenon reflects the rich and intricate nature of quadratic

irrationals, which are tightly interwoven within the spectrum.

Markoff Spectrum

A significant portion of the Lagrange spectrum is characterized by the Markoff spectrum,

denoted as M. The Markoff spectrum comprises values that are related to solutions of

the Markoff equation:

x2 + y2 + z2 = 3xyz,

where x, y, and z are integers. The numbers in the Markoff spectrum are linked to

the minima of indefinite binary quadratic forms. These forms play a pivotal role in the

distribution of Lagrange numbers, especially in the lower part of the spectrum. The

connection between the Markoff spectrum and Lagrange spectrum illuminates the dense

nature of the latter in certain regions.

Gaps in the Spectrum

As we move up in the spectrum, we encounter gaps—intervals of real numbers that do not

contain any Lagrange numbers. These gaps signify the absence of certain approximation

qualities for real numbers and are indicative of the limitations in approximating specific

real numbers by rationals with the same efficiency.
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Theorems and Proofs for Gaps in the Lagrange Spec-

trum

Theorem 1: The Existence of Gaps in the Lagrange Spectrum

Statement:

There exist gaps in the Lagrange spectrum, i.e., intervals (a, b) with a, b ∈ R such that

no element of the Lagrange spectrum lies in (a, b).

Proof:

1. Initial Observation: It is known that the beginning part of the Lagrange spectrum

is continuous up to a certain point, after which gaps appear. Specifically, the

spectrum is continuous up to the smallest accumulation point
√
5.

2. Markoff Numbers and Lagrange Values: The Lagrange spectrum below 3

consists of values associated with Markoff numbers. There is a smallest gap starting

after
√
5.

3. Explicit Construction: Define a sequence of values derived from the quadratic

irrationals related to Markoff numbers. The properties of these numbers ensure

that certain intervals do not contain any Lagrange spectrum values.

4. Proof of Gaps: By examining the quadratic forms and continued fraction expan-

sions related to the Markoff numbers, we can construct explicit examples of gaps.

For example, there are no values of the form Lm =
√
9− 4

m2 between
√
5 and the

next smallest Lagrange value greater than
√
5.

Theorem 2: The Freiman’s Gap Theorem

Statement:

There is a largest gap in the Lagrange spectrum. Specifically, the interval (3, 3.1) is a
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gap in the Lagrange spectrum.

Proof:

1. Upper Bound Analysis: The value 3 is in the Lagrange spectrum, corresponding

to the best possible approximation rate given by continued fractions with coefficients

all equal to 1.

2. Gap Identification: Through detailed analysis of the continued fractions and the

associated quadratic forms, it is shown that no values in the Lagrange spectrum

exist in the interval (3, 3.1).

3. Proof by Contradiction: Assume there exists a value L in the Lagrange spectrum

in the interval (3, 3.1). This would imply a better approximation rate than provided

by the known values associated with Markoff numbers, which is impossible based

on the properties of the continued fractions.

4. Conclusion: Therefore, the interval (3, 3.1) must be a gap.

Theorem 3: Freiman’s Large Gaps

Statement:

There exist arbitrarily large gaps in the Lagrange spectrum.

Proof:

• Basic Construction: By considering continued fractions with large coefficients,

it is possible to construct large gaps in the spectrum.

• Quadratic Irrationals: For quadratic irrationals with large coefficients in their

continued fraction expansions, the corresponding Lagrange values are significantly

spaced apart.

• Gap Proof: Given any large interval, one can construct specific quadratic irra-

tionals whose Lagrange values create gaps of arbitrary size.
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• Detailed Analysis: A thorough investigation of the continued fraction expansions

and the associated Diophantine approximations shows that the Lagrange values do

not densely populate the real line, thus allowing for arbitrarily large gaps.

Theorem 4: The Structure of Small Gaps

Statement:

The Lagrange spectrum has a dense subset within certain intervals, but specific small

gaps still exist.

Proof:

1. Dense Subsets: The Lagrange spectrum is known to be dense in certain intervals,

particularly near the smaller values associated with quadratic irrationals with small

continued fraction coefficients.

2. Identification of Small Gaps: By detailed analysis of the continued fractions

and the approximation properties of irrationals, small gaps can be identified.

3. Proof Technique: Utilize the properties of continued fraction expansions and the

related quadratic forms to show the absence of Lagrange values in specific small

intervals.

4. Detailed Proof: This involves constructing irrationals with specific approxima-

tion properties and proving that no Lagrange values exist within the given small

intervals.

The Hall’s Ray

One of the most notable features of the Lagrange spectrum is the presence of the Hall’s

ray. This ray is an interval [c,∞) for a specific constant c, known as Hall’s constant,

approximately equal to 0.872. Above this constant, the spectrum becomes continuous,

meaning that every value in this interval is a Lagrange number. The emergence of the
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Hall’s ray indicates that beyond a certain threshold, the quality of rational approximations

improves uniformly, leading to the absence of further gaps.

Proof:

1. Hall’s Ray Definition: Hall’s ray refers to the part of the Lagrange spectrum

that is known to be dense from
√
5 onwards. This means that for any number

greater than
√
5, there is an element of the Lagrange spectrum arbitrarily close to

it.

2. Initial Interval: The Lagrange spectrum below 3 consists of values derived from

Markoff numbers, forming discrete points. After
√
5, the structure of the Lagrange

spectrum changes, leading to the dense region known as Hall’s ray.

3. Density Argument:

• For any α >
√
5 and any ϵ > 0, we can find a value L in the Lagrange spectrum

such that |L− α| < ϵ.

• This is achieved by considering the continued fraction expansions of quadratic

irrationals. As the coefficients of the continued fractions become larger, the as-

sociated Lagrange values can be made to approximate any real number greater

than
√
5 arbitrarily closely.

• The continued fractions with larger partial quotients correspond to Lagrange

values that fill in the gaps, ensuring density.

4. Quadratic Irrationals and Approximations:

• The properties of quadratic irrationals and their continued fraction expansions

play a crucial role. The approximation properties of these numbers are such

that their Lagrange values cover the real line densely from
√
5 onwards.

• Specifically, the work of Marshall Hall showed that for any interval above
√
5,

there exist quadratic irrationals whose Lagrange values lie within that interval.
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5. Conclusion: By leveraging the properties of continued fractions and the approxi-

mation theory of quadratic irrationals, we conclude that Hall’s ray is indeed a dense

region in the Lagrange spectrum starting from
√
5.

Smallest Gaps and their Significance

The smallest gaps in the spectrum, particularly those below Hall’s constant, provide

critical insights into the arithmetic and geometric properties of numbers. These gaps

often correspond to specific classes of real numbers that cannot be approximated with the

same efficiency as others, highlighting the irregularity and complexity of the spectrum’s

structure.

Significance of Missing Values

The missing values in the Lagrange spectrum, represented by the gaps, offer significant

insights into the nature of Diophantine approximation. They reveal the limitations of cer-

tain real numbers in terms of their rational approximability, suggesting deeper underlying

algebraic and geometric properties. Understanding these gaps helps in identifying and

classifying real numbers based on their approximation characteristics, thereby enriching

the theory of Diophantine approximation and its applications.

Higher-Dimensional Rational Approximations

In higher dimensions, we consider the Lagrange spectrum for vectors x ∈ Rn. The

Lagrange number L(x) is defined similarly to the one-dimensional case but involves multi-

dimensional rational approximations. Specifically, for a vector x = (x1, x2, . . . , xn) ∈ Rn,

the Lagrange number is given by:

L(x) = lim sup
(p1,p2,...,pn)∈Zn,q→∞

q1/n ∥qx− p∥ ,

where p = (p1, p2, . . . , pn) ∈ Zn and ∥·∥ denotes the Euclidean norm.
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Theorem and Proof

For almost all x ∈ Rn, the Lagrange number L(x) satisfies

L(x) =
1

n
√
n!
.

The proof of this theorem involves advanced techniques from the geometry of numbers

and measure theory. The key idea is to use the distribution of lattice points in Rn and

the properties of multi-dimensional continued fractions.

1. Lattice Point Distribution: Consider the space Rn tiled by unit cubes centered at

lattice points p ∈ Zn. For large q, the vector qx will fall within one of these unit cubes.

2. Approximation Quality: The distance from qx to the nearest lattice point p can be

analyzed using properties of uniform distribution. For almost all x, the distance ∥qx− p∥

can be shown to behave statistically like a random variable uniformly distributed over

the unit cube.

3. Measure Theoretic Argument: By applying measure theory, particularly the ergodic

properties of the flow on the space of lattices, it is possible to show that the lim sup of

q1/n ∥qx− p∥ is almost surely 1
n√
n!
.

Thus, for almost all x ∈ Rn, we have L(x) = 1
n√
n!
.

Future Research Directions

1. Probabilistic Aspects

Investigating the probabilistic distribution of Lagrange numbers involves studying their

statistical properties and connections to random matrix theory or stochastic processes.

• Research Focus:

– Statistical Distribution: Exploring the distribution of Lagrange numbers

L(α) for various classes of real numbers α. This includes understanding the

asymptotic behavior of gaps between consecutive Lagrange numbers and their

distribution within the spectrum.

– Connections to Random Matrix Theory: Investigating analogies between

the behavior of Lagrange numbers and eigenvalues of random matrices. Ran-

18



dom matrix theory provides powerful tools for understanding the statistical

properties of complex systems, and similar insights may shed light on the

distribution of Lagrange numbers.

– Stochastic Processes: Analyzing Lagrange numbers from the perspective of

stochastic processes, particularly those related to number-theoretic dynamics.

This approach could reveal unexpected connections between rational approx-

imations and stochastic models in mathematical physics or biology.

• Potential Impact:

• A deeper understanding of the probabilistic nature of Lagrange numbers could lead

to new insights into the nature of irrational numbers and their approximability by

rationals.

• Applications in fields such as statistical physics, where irrational numbers play a

crucial role in modeling physical phenomena, could benefit from these insights.

2. Applications in Cryptography

Exploring the implications of Lagrange spectrum properties in cryptography involves

leveraging number-theoretic principles for secure encryption schemes.

• Research Focus:

– Secure Encryption Schemes: Developing cryptographic algorithms that

utilize the irregularity and distribution of Lagrange numbers for enhanced se-

curity. For instance, properties of irrational numbers in the Lagrange spectrum

could form the basis of cryptographic keys resistant to certain types of attacks.

– Computational Complexity: Investigating the computational complexity

of algorithms based on Lagrange numbers, ensuring they are feasible for prac-

tical implementations in cryptographic protocols.

• Potential Impact:

19



• Enhanced cryptographic protocols that are resistant to attacks leveraging number-

theoretic properties, offering improved security guarantees.

• Potential applications in secure data transmission, digital signatures, and authen-

tication protocols where robust encryption is critical.

3. Generalizations to Algebraic Structures

Extending the concept of the Lagrange spectrum beyond real numbers to algebraic num-

bers, fields, or other algebraic structures opens new avenues for research.

• Research Focus:

– Algebraic Numbers: Studying the Lagrange spectrum for algebraic num-

bers, exploring how their algebraic properties influence their rational approx-

imability.

– Algebraic Fields: Extend the concept to fields other than the real numbers,

such as complex numbers or finite fields, and investigate the corresponding

Lagrange spectrum.

– Higher Algebraic Structures: Generalize the concept to more abstract al-

gebraic structures, potentially involving ideals, modules, or algebraic varieties,

and study the rational approximations within these frameworks.

• Potential Impact:

• Advances in understanding the interplay between algebraic structures and rational

approximations, with implications for both theoretical algebra and applied mathe-

matics.

• Applications in algebraic geometry, where approximating points on curves or sur-

faces by rational points is a fundamental problem.
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