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Abstract. This paper covers martingales with introduction to measure theory

concepts, and other concepts, including the Lebesgue Integration and

Conditional Expectation. It follows up with proofs on Kolmogorov’s Theorem

on conditional expectations, the Martingale Property, and the Pythagorean

Theorem on Martingales. Finally, it ends with martingales’ application in

finance.
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1. INTRODUCTION

Let’s consider a bettor participating in a game involving the flipping of a fair

coin. In this game, the bettor earns $1 for a heads outcome and loses $1 for a

tails outcome. This means that if the better flips the coin once and it lands on
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tails, they would lose a dollar. Conversely, if it lands on heads, they would gain

a dollar.

Over many run-throughs of flipping the coin, the bettor’s total earnings, rep-

resented as T, could be either positive or negative, depending on the outcomes of the

flips. Each individual coin flip carries an equal probability of 50%, meaning there is

an equal chance that the next flip will result in either heads or tails. Consequently, with

each flip, the bettor’s total earnings will either increase by $1 (if heads) or decrease by
$1 (if tails).

After many flips, the bettor’s total earnings will result from random fluctuations

due to the equal probability of heads or tails. Over many flips, the total earnings T

will show a random pattern of gains and losses, yet the expectation of total earnings

remains zero. This means that at one point, despite the variances in time, basic

probability states that the final value will be 0. This is an example of a fair game, where

the expected earnings after the next turn would equal the current earnings. A mar-

tingale shares a similar idea. Introduced by Paul Lévy in 1934 and later by Ville in 1939,

a martingale is a probability model based on a fair game. This property can be

translated to concepts outside regular games, including the stock market. In simple

terms, a martingale is a process where the conditional expectation of the next value

is equal to the present value. Since there are no predictable trends in a fair game, a mar-

tingale can effectively visualize the randomness and fairness of such games. This pa-

per covers the mathematical definition of martingale with the requirement of knowl-

edge of elementary probability, specifically measure theory (σ-Algebra, measurable

spaces, Lebesgue measure, Borel sets).

Before we begin, I will introduce the notation for a martingale and explain

each part throughout the paper.

Definition 1.1. X is a martingale if

Xn = E[Xn+1|Fn]

2. PROBABILITY AND MEASURE THEORY

We begin with definitions regarding the basics of measure theory, including sets

and events. We are given a sample space denoted by Ω as the set of all possible

outcomes of a random experiment. An event is a subset of the sample space Ω.
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For instance, if Ω represents the possible outcomes of a dice roll, then (2,4,6)

could be an event representing the roll of an even number. We begin by looking

at the first approximation, the power set of omega, P (Ω) which equals the set of

all subsets of Ω. To restrict this power set, we introduce our first definition.

Definition 2.1. A systemA ⊆ P (X), where A is a collection of elements of subsets

of X. This collection is called σ-algebra. A σ-algebra is a collection of subsets of

the sample space that includes the empty set and the sample space itself. How-

ever, to be named a σ-algebra (an important measure theory definition), it must

follow these three rules:

• ∅, X ⊆ P (X)

• If B ∈ A then BC = X/B ∈ A. This means that for any set in the

σ-algebra, its complement is also in the σ-algebra.

• B,D ∈ A → B ∪D ∈ A. Additionally, if the set B and D are in set, A,

the intersection of set B and D will also be in A.

• Then (X,A) is a measurable space.

Measurable spaces are essential to provide a framework in which measures are

defined. In the definition above, (X,A) is a measurable space with set X and

the collection of subsets, the sigma-algebra, A. The sigma-algebra includes the

subsets of X, that are considered measurable.

Definition 2.2.

• For M ⊆ P (X), there is a smallest sigma algebra that contains M:

σ(M) =:
⋂

A⊇M | A is a σ-algebra generated by set M.

• E.g. X = {a, b, c, d},M = {{a}, {b}}
• Therefore, σ(M) =

{
ϕ,X, {a}, {b}, {a, b}, {b, c, d}, {a, c, d}, {c, d}}

By defining σ(M) as the intersection of all sigma-algebras containing M , we

guarantee that (σ(M)) includes all necessary sets to be a sigma-algebra while

being minimal in the sense that it does not include any extraneous sets not

required by the sigma-algebra properties and the inclusion of M .

Definition 2.3. Let A be an algebra, µ : A → [0,∞] is a finitely additive measure

on A, if
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• For any two sets B,D ∈ A with B ∩D = ∅ : µ(B ∪D) = µ(B) + µ(D).

A finitely additive measure is a function that assigns a non-negative value to each set,

representing its size, in a way that the measure of the union of two non-overlapping

sets equals the sum of their measures. This property ensures consistent and ad-

ditive measurements, allowing us to determine the size of complex shapes by summing

the measures of their non-overlapping parts.

Proof. Using Definition 2.1 and 2.3:

• Then A1, A2, A3. . . An ∈ A : A1 ∪ A2 ∪ · · ·An ∈ A

• If Ai ∪ Aj = ∅1 < i ̸= j < n , then µ
⋃n

i=1Ai =
∑n

i=1 µ(Ai).

The proof shows that any finite union of sets in a sigma-algebra A is also in A. It

then uses the countable additivity property of measures to show that the measure

of a finite union of disjoint sets is the sum of the measures of the individual sets.

Definition 2.4. A measure µ on an algebra, A is a set function from A → [0,∞]

if it follows the following properties:

• If we take any sequence of sets: A1, A2, A3 · · ·An ∈ A such that ∪n
i=1Ai

and Ai ∩ Aj = ∅ if i ̸= j then µ(∪iAi) =
∑

i µ(Ai).

Note that this property is denoted as σ-additivity. However if the set function,

A is in the interval [0, 1], then these properties won’t apply as it is a probability

measure rather than a measure. Now, we can define what a probability measure

is.

Definition 2.5. A probability measure (P) on the sample space satisfies P (Ω) =

1. Therefore, the triple (Ω,F , P ) is called a probability space, where F is the

sigma algebra and P is the probability measure.

With these terms defined, we can introduce what random variables are.

Definition 2.6. Given a measurable space (Ω,F), a function X : Ω → R is

said to be a measurable function or a random variable if for every Borel Set, B

∈ B(R), the pre-image of that set, X−1(B) ∈ F . This implies that the function
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X maps events in the sample space Ω to real numbers in a way that preserves

the structure of σ-algebra.

Definition 2.7. A random variable is a measurable function from the sample

space to the real numbers. The distribution of a random variable X is a function

X : B → [0, 1] such thatX(B) = P (X−1(B)) for all Borel sets B. Note that Borel

sets (subset) are important as a way of showing that if open sets are measurable,

then so are all other sets of interest (like closed sets, countable unions, and

intersections).

3. LEBESGUE INTEGRATION

If X, a integrable random variable takes on an infinite number of values, calculat-

ing the weighted average requires integration to handle this infinite sum. However,

the standard Riemann integral is often unsuitable in this context. The Riemann

integral approximates the integral by splitting the domain into contiguous inter-

vals to form ”rectangles,” then summing the areas of these rectangles. This ap-

proach might not make sense for an abstract sample space, and some measurable func-

tions may not meet the continuity requirements for Riemann integration. Therefore,

we use a more generalized form of the Riemann integral called the Lebesgue in-

tegral. However, before we define the integral, we need understand simple func-

tions.

Definition 3.1. Let A be a subset of Ω. The indicator function of A is the

function 1A : Ω → R defined as:

1A(ω) =

{
1 if ω ∈ A

0 if ω /∈ A
.

Theorem 3.2. The indicator function of A is measurable in every σ-algebra F
containing A.

Proof. Every possible Borel set B falls into one of four categories:

• 1 ∈ B, 0 /∈ B. Then 1−1
A (B) = A;

• 0 ∈ B, 1 /∈ B. Then 1−1
A (B) = Ac;

• 0, 1 ∈ B. Then 1−1
A (B) = Ω;

• 0, 1 /∈ B. Then 1−1
A (B) = ∅.
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By definition, if A ∈ F , then Ω,∅, Ac ∈ F . Thus, by Definition 3.1,1A is

measurable.

Definition 3.3. Simple functions are measurable functions that take on a finite

number of values. They can be written as:

g =
n∑

i=1

aiXAi

In this notation above, ai are real numbers, Ai are measurable sets, and XAi
.

Proof. If we integrate the following simple function using the linearity property:

1. Define the Simple Function:

g =
n∑

i=1

aiXAi

2. Set Up the Integral: To integrate g with respect to a measure µ, we use the

definition: ∫
gdµ =

∫ n∑
i=1

aiXAi
dµ

3. Use Linearity of the Integral: By the linearity property of the integral, we can

move the summation outside the integral:∫ n∑
i=1

aiXAi
dµ =

n∑
i=1

ai

∫
XAi

dµ

4. Evaluate Each Integral: The integral of the characteristic function XAi
of a

set Ai with respect to µ is simply the measure of Ai :∫
XAi

dµ = µ (Ai)

5. Combine the Results: Substitute the measure of each Ai into the sum:∫
gdµ =

n∑
i=1

aiµ (Ai)

So, the integral of the simple function g with respect to the measure µ is:∫
gdµ =

n∑
i=1

aiµ(Ai), where µ is a measure on Ω

.
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Properties of Lebesgue Integral:

• Linearity:
∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ

• Monotonicity: If f ≤ g, then
∫
fdµ ≤

∫
gdµ

• Countable Additivity:
∫ ∑∞

i=1 fi dµ =
∑∞

i=1

∫
fi dµ

The utility of the Lebesgue integral becomes clearer with this definition. The

Lebesgue integral of a simple function is simply the sum of its possible values

weighted by the measure of the subsets of the domain corresponding to those

values. In the context of a probability measure, this is equivalent to averaging the

possible values of a random variable weighted by the probability of the events that

produce those values—that is, the expectation. For more complex, non-simple

functions, the integral can be defined by approximating the function with simple

functions. This leads to the following theorem, which facilitates this process.

Theorem 3.4. Let f : Ω → [0,∞] be a measurable function on the space (Ω,F , µ).

Then, there exists an increasing sequence of simple functions (xi)
∞
i=1 that converges

point-wise to f .

This is known as the Simple Function Approximation Theorem. As we covered

a little about expectation, we can know understand both that and conditional

expectation.

4. CONDITIONAL EXPECTATION

Conditional expectation, denoted E[Y |X], represents the expected value of a

random variable Y given the knowledge of another variable X. It is used to

update our expectation of Y based on the additional information provided by X.

To understand this better, we begin by defining simple random variables, then

move to expectation.

Definition 4.1. A random variable, X is simple if there exists n > 0, X1, X2, · · · , Xn ∈
R, A1, A2, . . . , An ∈ F :

X =
n∑

Xi=1

Xε1Aε

This means that X is a function from Ω → R. Aε are sets in the σ-algebra,

meaning that they are subsets in Ω.
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Theorem 4.2. For every random variable X, there exist X1, X2, · · · that are

known as simple random variables such that:

|Xn| ≤ |X|

For every ω ∈ sample space, Ω.

Xn(w)n⃗∞X(w)

Theorem 4.3. If X(ω) ≥ 0 for all ω ∈ Ω, then Xn(ω) can chosen to be non-

decreasing in n for every ω.

”Non-decreasing for n” means that as the sequence progresses, the values do not

decrease for any outcome in the sample space. In other words, the values either

stay the same or increase as the index increases, ensuring the sequence never gets

smaller for each outcome.

After these definitions of random variables, we can now define the expectation of

a random variable.

Definition 4.4. If X =
∑n

Xi=1 Xε1Aε is simple, then EX (expected value) =∑n
Xi=1XεP(Aε)

This is Step 1, only applying if the random variable, X is a simple, following the

properties defined in Definition 3.1. Now, we will discuss Step 2 when X ≥ 0

(not negative).

Definition 4.5. If X ≥ 0 and a random variable, then X1, X2, . . . is a simple

random variable such that Xi converges to X.

EX = limX→iEXi ∈ [0,∞]

Definition 4.6. If X is a random variable, then X := X+ −X−

This second part of the definition is stating that the positive part of the variable,

X+ plus the negative part of the variable, X− equals to the variable itself. For

instant the positive part of 4 is 4, but the negative part of 4 is 0. Adding these

two numbers, we get the number 4 itself. This may seem intuitive, but if we do

this for every ω, we can define a function, where both the positive and negative
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part of the variable is not negative. If we take the expectation of this equation

we get the following:

EX := EX+ − EX−

unless

EX+ = ∞ = EX−

Making E[X] not exist, which is known as the Cauchy random variable.

Now we move to defining what conditional expectation is.

Theorem 4.7. Kolmogorov’s Theorem on conditional expectations.

Let (Ω,F ,P) be a probability space, X is an integrable random variable; E|X| <
∞. Let G ⊆ F be a sub sigma-algebra. Take random variable Y such that it

follows these properties:

• Y is G-measurable.

• E|Y | < ∞
• ∀A ∈ G
•
∫
A
XdP =

∫
A
Y dP =

∫
A
E(X|G)dP

The random variable Y is denoted by E(X|G) and is called the conditional expectation
of X given G.

The best way to explain this is through a proof, where we shall require the use

of Radon-Nikodym Theorem.

Proof. Define a new measure, Q on (Ω,G) by:

Q(A) =

∫
A

XdP

for all A ∈ G.
Since X is integrable, Q is a finite measure on (Ω,G):

Q(Ω) =

∫
Ω

XdP = E[X] < ∞

The Radon-Nikodym theorem states that since Q is a sigma-finite measure on
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(Ω,G) and P |G is the restriction of the probability measure P to G, there exists

a G-measurable function Y such that:

Q(A) =

∫
A

Y dP for all A ∈ G

From here, since A ∈ G: ∫
A

XdP =

∫
A

Y dP

Define Y = E[X | G]. By construction, Y is G-measurable and satisfies:∫
A

XdP =

∫
A

E[X | G]dP for allA ∈ G

To show uniqueness, suppose Y ′ is another G-measurable function that satisfies

the same integral property. Then for all A ∈ G :∫
A

E[X | G]dP =

∫
A

Y ′dP

Taking A = {E[X | G] > Y ′}, we get:∫
{E[X|G]>Y ′}

(E[X | G]− Y ′) dP = 0

Since E[X | G]− Y ′ ≥ 0 on {E[X | G] > Y ′}, this implies P ({E[X | G] > Y ′}) =
0. A similar argument holds for {E[X | G] < Y ′}. Thus, E[X | G] = Y ′ almost

surely.

The Radon-Nikodym theorem provides a G-measurable function Y that satisfies

the integral property, ensuring the existence of the conditional expectation E[X |
G]. The uniqueness follows from the fact that any two G-measurable functions

satisfying this property must be equal almost surely. Thus, Kolmogorov’s theorem

on conditional expectations is proved.

Let’s move on to an important property of Conditional Expectation, the tower

rule.
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Definition 4.8. (Ω,F ,P); G ⊆ H ⊆ F (These are all σ-algebras). Both G and

H are sub-sigma-algebras. Let X be a random variable, E[X] < ∞.

Then the Tower rule states:

E(E(X|G)|H) = E[X|G]

The Tower Rule essentially tells us that if we first condition on a larger sigma-

algebra G and then on a smaller sigma-algebra H, the result is the same as if we

had conditioned on the smaller sigma-algebra H directly.

5. MARTINGALES

We are given a probability space (Ω,F ,P) and a filtration as defined below.

Definition 5.1. A filtration (Ft)t≥0 is an increasing family of σ-algebras:

Fs ⊆ Ft ⊆ F for s ≤ t

From this we can define adaptation.

Definition 5.2. A sequence of random variables {Xn;n ≥ 0} is adapted if:

Xn ∈ Fn

In Adaptation, the data Xn only depends on information until instant n.

Definition 5.3. We consider a sequence of random variables X = {Xn;n ≥ 0}
such that

• {Xn;n ≥ 0} is adapted.

• Xn ∈ L1(Ω) for all n ≥ 0.

Then

• X is a martingale if Xn = E [Xn+1 | Fn].

• X is a supermartingale if Xn ≥ E [Xn+1 | Fn].

• X is a submartingale if Xn ≤ E [Xn+1 | Fn].

We see that the definition of a martingale was shared in definition 1.1, this

is the martingale property. This equation emphasizes the current value, Xn is

the expected value of the next step, given the information up to n. However,
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this definition is in discrete time, meaning that it follows the adaptation and

integrability condition. To better understand this idea, we can use an example

of the fair game shared in the introduction. Using the same rules, we can now

prove this definition.

Example. Let Xn represent the player’s total winnings after n games. We will

show that (Xn)n≥0 is a martingale.

Filtration:

Define the filtration {Fn}n≥0 where Fn represents the information up to the nth

game. Specifically, Fn contains the outcomes of the first n coin tosses.

Martingale Property:

To prove that {Xn}n≥0 is a martingale with respect to {Fn}n≥0, we need to verify

the three conditions:

• Adaptation: Xn is Fn-measurable because the total winnings after n games

depend only on the outcomes of the first n games.

• Integrability: The expectation E [|Xn|] is finite. Since Xn is the sum of n

independent bets of ±1, its absolute value grows linearly with n, ensuring

finite expectation.

• Martingale Property:

E [Xn+1 | Fn] = Xn

Proof. Given that Xn is the player’s total winnings after n games, the total

winnings after n+ 1 games, Xn+1, can be written as:

Xn+1 = Xn + Yn+1

where Yn+1 is the result of the (n+ 1) th game

• Yn+1 = 1 if the player wins the (n+ 1) th game (heads).

• Yn+1 = −1 if the player loses the (n+ 1) th game (tails).

The expected value of Yn+1 given Fn is:

E [Yn+1 | Fn] = 0

because the coin toss is fair, and the expected outcome of a fair coin toss is zero

(since

P (Yn+1 = 1) = P (Yn+1 = −1) = 1/2)
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Therefore,

E [Xn+1 | Fn] = E [Xn + Yn+1 | Fn] = Xn + E [Yn+1 | Fn] = Xn + 0 = Xn

This confirms that the process {Xn}n≥0 is a martingale with respect to the filtration

{Fn}n≥0

From this example, we can move to another stochastic process like martingales,

stopping time.

Definition 5.4. Given a probability space (Ω,F ,P) and a filtration {Ft}t≥0, a

random variable τ : Ω → [0,∞] is a stopping time if for every t ≥ 0,

{τ ≤ t} ∈ Ft.

Lemma 5.5. Let T be a stopping time If there exists a not random variable, N

and ε > 0 such that P (T ≤ n+N | Fn) > ε ∀n ≥ 0, then E[T ] < ∞.

Proof. P(T > kN) = P(T > kN ∪ T > (k − 1)N)

= P(T > kN |T > (k − 1)N) ∗ P(T > (k − 1)N))

≤ (1− ε) ∗ P(T > (k − 1)N) ≤ (1− ε) ∗ P(T > (k − 2)N) ≤ · · · ≤ (1− ε)k

E[T ] =
∞∑
l=0

P(T > l) ≤ N
∞∑
k=0

P(T > kN) ≤ N
∞∑
k=0

(1−ε)k =
N

1− (1− ε)
=

N

ε
< ∞

This shows that the expectation of a T , a stopping time is finite. Now, we can

move into the martingale transform.

Definition 5.6. We assume we have a probability space with a filtration. Cn is

predictable if Cn is Fn−1 measurable ∀n. Imagine that Cn is the strategy that you

are making at time n, but to make prediction at time n, we used the information

at time n−1. Once we have this base information, we can move to the martingale

transform of X.

Yn =
∑

1≤k≤n

Ck ∗ (Xk −Xk−1)

Theorem 5.7. If Cn is predictable, and 0 ≤ Cn ≤ k. ∀(n, ω) and X is a super-

martingale, then so is the martingale transform, C ·X. If Cn is predictable, and

|Cn| ≤ K ∀(n, ω) and X is a martingale, then so is C ·X
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Remark 5.8. If Cn has E[C2
n] < ∞, and E[X2

n] < ∞ ∀n, then Theorem 5.7 still

works without the bound, |Cn| ≤ K.

Proof. To prove Y is a martingale, then we must prove the following equation:

E[(Yn − Yn−1)Fn−1] = 0. To prove this, we must find what the difference of

(Yn−Yn−1) is and it should equal Cn∗(Xn−Xn−1), where Cn is Fn−1 measurable.

Let’s begin by factoring out the original equation.

= CnE(Xn −Xn−1|Fn−1)

= Cn(E(Xn|Fn−1)− E(Xn−1|Fn−1))

If X is a martingale, Xn−1 = 0, which is proved here.

Theorem 5.9. Let T be a stopping time, if X is a supermartingale, then so is

XT .

Proof. Cn := 1(n ≤ T ) = 1(n− 1 < T ), which is Fn measurable.

(C ·X)n =
n∑

k=1

Ck(Xk −Xk−1)

=

{
T ≥ n :

∑n
k=1 (xk − xk−1) = xn − x0

T < n :
∑T

k=1 (xk − xk−1) = xT − x0

= XT∧n −X0 = XT
n −X0

Now we can move to the Optional Stopping Theorem, the relation between

stopping time and martingales.

Remark 5.10. If Mn is a martingale, then E[Mn] = E(E[Mn|Fn−1]) = E[Mn−1] =

· · · = E[M0] (from the Tower Property).

Remark 5.11. If T is a stopping time, Mn is a martingale, then E[MT∧n] = EM0 .

Theorem 5.12. Doob’s Optional Stopping: Let T be a stopping time, X is a

supermartingale. If it follows these conditions:
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• T is bounded OR X is bounded and T is infinite almost surely OR E[T ] <
∞ and |Xn −Xn−1| ≤ k

Then E[XT ] ≤ E[X0]

Proof. If T is not almost surely bounded, approximate it by a sequence of bounded

stopping times Tn = min(T, n). Then we can use the martingale property to show

that for each Tn,E [XTn ] = E [X0] Finally, apply the Dominated Convergence

Theorem to take the limit as n → ∞ and conclude that E [XT ] = E [X0]

After talking a bit about convergence in supermartingales, we can move to

understanding Doob’s Forward Convergence Theorem.

Definition 5.13. X ∈ Lp, if E[|X|p] < ∞; |X|p := (E[|X|p])1/p, where p is

positive.

Definition 5.14. Xn is bounded in Lp, if we take supn||Xn||p < ∞ This means

if we take the p-norms, it will still be bounded regardless if we take the largest

value of n. However, there is an uniform bound, ||Xn||p ≤ k < ∞ for all n.

Lemma 5.15. Using Doob’s upcrossing Lemma, if Xn is a supermartingale, then

(b− a)E[Un] on the interval [a, b] ≤ E[Xn − a]−, we can do a collarary.

Corollary 5.16. Let X be a supermartingale, bounded in L1 : supnE[|Xn|] < ∞.

If we fix a < b, then (b−a)E[U∞] on the interval [a, b] ≤ |a|+ supmE[|Xm|] < ∞.

In particular, P(U∞[a, b] = ∞) = 0.

Proof. (b−a)E[Un][a, b] ≤ E[Xn−a]− ≤ E|Xn−a| ≤ E|Xn|+|a| ≤ supnE|Xn|+|a|.
Un[a, b] is defined as number of upcrossings until time N, so if we know that it

is non-decreasing in N, then it has a limit. limn→∞ : U∞[a, b]. We need to make

sure that this expression is finite, proving the corollary. To begin this, we take

(b− a)E|U∞|[a, b] then use the monotone convergence theorem to find the limit.

This means that it equals to (b − a)limn→∞EUn[a, b], which is ≤ k + |a| due to

the first statement of the proof.

Now, we can move to what Doob’s forward convergence theorem states.

Theorem 5.17. Doob’s forward convergence: Let X be a supermartingales, bounded

in L1. Then X∞ := limnXn exists almost surely and is almost surely finite.
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Proof. We want to prove thatXn does not convergence. To prove thatX∞ := limnXn

exists almost surely, we begin that =
⋃

a<b liminfXn < a < b < limsupXn ⊆
⋃

a<b U∞[a, b] =

∞, so the probability of this latter part = 0.

P(Xn does not converge) = 0

For the second part of the theorem, of ”almost surely finite,” we state that E|X∞| =
E[lim inf]|Xn| ≤ (using Fatou’s Lemma) [lim inf]E|Xn| ≤ supE|Xn| < ∞. Therefore,

knowing that X is a supermartingale is bounded in L1, we get |X∞| < ∞ almost

surely.

Remark 5.18. If Xn ≥ 0 is a supermartingale, then the L1 bound is automatic:

E|Xn| = E[Xn] ≤ E[X0] < ∞

From here we are able to understand convergence in Lp, but take a case of a L2

martingale. L2 martingales: Mn ∈ L2 ∀n.
Then Mv −Mu ⊥ L2(Fu) In this situation, what does orthogonal exactly mean?

Let’s assume we have a square integrable random variable that is finite, we can

define a similar scalar product. E(X · Y ) = ”⟨x, y⟩” In the sense that these ran-

dom variable are almost like vectors, we can fully understand what orthogonality means.

Going back to the first first expression, ∀v > u > t > s, then following is true, E[(Mt−
Ms) ∗ (Mv −Mu)] = 0 This is saying that the increment of my martingale from

s to t and u to m are orthongal in the sense that my scalar product is 0. The proof of

this is the following.

Proof. E[E[(Mt −Ms) ∗ (Mv −Mu)]|Fu] Because v > u > t > s, Mt −Ms are F -

measurable. That means our new expression is, E[(Mt −Ms) ∗E[(Mv −Mu)]|Fu]

And by the martingale property, our latter expectation equals 0, this implies a

theorem.

Theorem 5.19. An L2-martingale Mn is bounded in L2 if.
∑∞

k=1 E (Mk −Mk−1)
2 <

∞. In this case, Mn → M0 almost surely in L2.

Proof. We can show proof of the Pythagorean Theorem. E[M2
n] = ||Mn||22

= E[M0 +
∞∑
k=1

(Mk −Mk−1)]
2
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= E[M2
0 ] +

n∑
k=1

E[Mk −Mk−1]
2 + 0

Therefore, M is bounded in

L2 : E[M2
n] = E[M2

0 ] +
n∑

k=1

E[Mk −Mk−1]
2 ≤ E[M2

0 ] +
∞∑
k=1

E[Mk −Mk−1]
2 < ∞

Also, bounded in L1 because of Doob’s Forward Convergence, meaning that

Mn →almost surely M∞

The second norm states the following.

E[M∞−Mn]
2 ≤ lim infE[Mn+r−Mn]

2 = lim inf
n+r∑

k=n+1

E[Mk−Mk−1]
2 =

∞∑
k=n+1

E[Mk−Mk−1]
2

and as n approaches ∞, this expression equals 0.

6. APPLICATIONS IN FINANCE

This martingale theory can be applied to stock market strategies. For instance,

the Martingale Strategy suggests doubling your investment when you incur a

loss. In the context of the stock market, if you purchase a stock at 10 dollars

and its price drops to 9 dollars, you would buy another share at the new price.

If the stock price falls further to 8 dollars, you would buy two additional shares.

Eventually, when the stock price rebounds to 10 dollars, you not only recover

your initial investment but also make a profit from the shares purchased at the

lower prices. This approach reflects the martingale theory’s essence, where the

future expected value of the process remains equal to the present value, despite

short-term fluctuations.
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