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Gaussian Curvature

Definition: The Gaussian curvature is an intrinsic measure of the
curvedness or flatness of a surface. Mathematically, it is defined as:

K = k1 × k2

where k1 and k2 are the principal curvatures of the surface at a given point.

Principal Curvatures: Principal curvatures are the maximum and
minimum curvatures of the surface at a given point, representing curvature
in orthogonal directions.
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Examples of Gaussian Curvature

Figure: Positive
Curvature (K ¿ 0):
Sphere

Figure: Negative
Curvature (K ¡ 0):
Hyperbolic Paraboloid

Figure: Zero Curvature
(K = 0): Plane

Gaussian curvature is an intrinsic property of a surface, remaining
unchanged under isometric transformations.

Fundamental for understanding the shape and geometry of surfaces.
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Euler Characteristic

Definition: The Euler characteristic is a topological invariant that
describes the shape or structure of a geometric object. It is defined for a
surface as:

χ = V − E + F

where V is the number of vertices, E is the number of edges, and F is the
number of faces in a polyhedral representation of the surface.
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Types of Manifolds

Riemannian Manifolds:

A Riemannian manifold is a smooth manifold M with an inner
product g on the tangent space that varies smoothly.

This inner product is called a Riemannian metric, allowing for
definitions of angles, lengths, and volumes.

Compact Manifolds Without Boundary:

A compact manifold is closed (contains all its limit points) and
bounded.

A manifold without boundary has no edges; it looks locally like
Euclidean space.
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Examples of Manifolds

Figure: Sphere (S2) -
Compact, without
boundary

Figure: Torus (T 2) -
Compact, without
boundary Figure: Hyperbolic Plane

- Riemannian manifold

Gauss-Bonnet Theorem:

Applies to 2D compact, orientable manifolds without boundary.
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Theorem

In the simplest form, the Gauss-Bonnet theorem states that:
for a compact two-dimensional Riemannian manifold M without boundary,
the integral of the Gaussian curvature K over M is proportional to the
Euler characteristic χ(M) of the manifold.
It is mathematically expressed as:∫

M
K dA = 2πχ(M).

Sphere, χ = 2 Torus, χ = 0
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Examples

Example 1: The Sphere

For a sphere of radius r , the Gaussian curvature K is 1
r2
. The Euler

characteristic χ of a sphere is 2. Hence,∫
M
K dA = 2πχ(M) = 2π × 2 = 4π.

Example 2: The Torus

For a torus, the Gaussian curvature varies, but the Euler characteristic χ is
0. Thus, ∫

M
K dA = 2πχ(M) = 2π × 0 = 0.

Prashanth Prabhala The Gauss-Bonnet Theorem July 15, 2024 8 / 16



Generalization to Surfaces with Boundary

Theorem: The Gauss-Bonnet Theorem can be extended to surfaces with
boundaries. In this case, the theorem includes a term that accounts for the
geodesic curvature κg of the boundary ∂S . The generalized theorem is:∫

S
K dA+

∫
∂S

κg ds = 2πχ(S)

This extension allows us to apply the theorem to a wider variety of
surfaces, including those that are not closed, and provides additional
insights into their geometric and topological properties.

The first term
∫
S K dA represents the integral of Gaussian curvature

over the surface.

The second term
∫
∂S κg ds accounts for the geodesic curvature along

the boundary.

This extension is crucial for studying surfaces that are not completely
enclosed.
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Mathematical Applications

The Gauss-Bonnet theorem has numerous applications in mathematics:

Topology: Provides a bridge between geometry and topology,
enabling the classification of surfaces.

Geometry: Assists in understanding the properties of geodesics and
curvature on surfaces.

Algebraic Geometry: Plays a role in the study of complex manifolds
and Riemann surfaces.
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Physics Applications

The theorem also finds applications in various fields of physics:

General Relativity: Used in the study of spacetime curvature and
the topology of the universe.

Gauge Theory: Helps in understanding the properties of fields and
particles in high-energy physics.

String Theory: Integral to the study of the geometry of strings and
branes.
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Black Hole Thermodynamics

Introduction:

Explores the analogy between the laws of thermodynamics and black
holes.

Gauss-Bonnet theorem is crucial in higher-dimensional theories.

Higher-Dimensional Theories:

Einstein-Hilbert action is generalized with higher-order curvature
terms.

Gauss-Bonnet term is the second-order term.
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Modified Action for Gravitational Field

Modified Action:

Gauss-Bonnet term modifies gravitational field action, influencing
black hole properties.

Entropy Formula:

Entropy S includes a correction term:

S =
A

4G

(
1 +

2α

(D − 3)(D − 4)
RH

)
Where:

A is the area of the event horizon.

G is the gravitational constant.

α is a coupling constant.

RH is the Ricci scalar on the horizon.
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Implications for Black Hole Physics

Implications:

Influences stability and phase transitions of black holes.

Leads to richer thermodynamic behavior compared to standard
four-dimensional black holes.

Take-aways:

Demonstrates the impact of Gauss-Bonnet theorem on black hole
entropy and thermodynamics.

Highlights the influence of higher-dimensional theories on theoretical
physics.
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Conclusion and Thank You

Conclusion:

The Gauss-Bonnet Theorem is a fundamental result in differential
geometry that links geometry and topology.

It has far-reaching implications in both mathematics and physics.

From the intrinsic curvature of surfaces to the entropy of black holes,
the theorem provides deep insights into the nature of these
phenomena.
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