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1 Abstract

This paper explores the Gauss Bonnet theorem and the linkage between differ-
ential geometry and algebraic topology. In this paper, we start off by diving
into the mathematical fields of differential and Riemannian geometry, algebraic
topology, multivariable calculus, and linear algebra. After covering the required
concepts and other additional background definitions, we explore various forms
of the Gauss-Bonnet theorem, including the classical version for surfaces without
boundary, the extended version for surfaces with smooth and piecewise-smooth
boundaries, and advanced generalizations like the Chern-Gauss-Bonnet theo-
rem. I then prove the theorem and examine different versions of the proof for
theorem variations. Through rigorous mathematical exposition and illustrative
examples, this study elucidates the foundational concepts and also provides a
comprehensive understanding of the theorem’s applications in mathematics and
physics, ranging from the topology of Riemann surfaces to the intricate ge-
ometries in general relativity. This paper offers a thorough examination of the
Gauss-Bonnet theorem, its’ background, proof, and implications, underscoring
its importance in mathematics and research.

2 Introduction

Named after the German mathematician Carl Friedrich Gauss (1777–1855) and
the French mathematician Pierre Ossian Bonnet (1819–1892), the Gauss-Bonnet
theorem honors both of their contributions. Gauss was the first to formulate the
theorem in his work ”Disquisitiones Generales Circa Superficies Curvas” (1827).
In the mid-19th century, it was Bonnet who first published the generalized
version of the result.
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3 Differential Geometry & Topology

The definitions of this chapter are based on Do Carmo [14]. Some concepts are
from [24] and [25].

3.1 Regular Surfaces in R3

A regular surface in R3 is a set S ⊂ R3 such that for every point p ∈ S, there
exists a neighborhood V of p within S and a smooth map X : U ⊂ R2 → V ,
where U is an open subset of R2, satisfying the following conditions:

1. The map X : U → V is a homeomorphism.

2. For every point q = (u, v) ∈ U , the partial derivatives ∂X
∂u and ∂X

∂v are
linearly independent.

This means that S can locally be described by smooth parametric equations
in two variables, and the parameterization map X preserves the structure and
topology of the neighborhood V . The condition on the partial derivatives en-
sures that X maps the open set U in a way that retains local flatness and
differentiability, indicating that S is a smooth surface without self-intersections
or singularities in the neighborhood of any point p.

Example 1

Any graphical surface, A, is a regular surface. We consider the map X : U → A
such that X(u, v) = (u, v, f(u, v)) for some smooth function f . X is a homeo-
morphism. Taking the partial derivatives gives:

∂X

∂u
=

(
1, 0,

∂f(u, v)

∂u

)
∂X

∂v
=

(
0, 1,

∂f(u, v)

∂v

)

These are linearly independent, so by the definition, any graphical surface A is
also a regular surface.

Example 2

The unit sphere, S2, is a regular surface. A popular parameterization of the
unit sphere is given by X(u, v) = (sinu cos v, sinu sin v, cosu) for u ∈ [0, π), v ∈
[0, 2π). Taking the partial derivatives we get:

Xu = (cosu cos v, cosu sin v,− sinu)
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Xv = (− sinu sin v, sinu cos v, 0)

Again, these are linearly independent, since − sinu < 0, so by the definition,
the unit sphere is a regular surface.

Note: The notation Xu will be used to signify the partial derivative ∂X
∂u .

3.2 Differentiable on a Regular Surface

A real-valued function f : V ⊂ S → R is said to be differentiable at a point p ∈ V
if there exists a parameterization X : U ⊂ R2 → S such that p ∈ X(U) ⊂ V
and the composed function f ◦ X : U → R is differentiable at X−1(p). If
this condition holds for every point p ∈ V , then the function f is considered
differentiable on V .

The tangent plane Tp(S) at a point p on the surface S is the subspace dXp(R2)
consisting of tangent vectors to S at X(p).

3.3 Differential of a Map Between Regular Surfaces

Let S1 and S2 be regular surfaces and f : S1 → S2 a smooth map. The
differential of f at a point p ∈ S1 is the map

dfp : Tp(S1) → Tf(p)(S2)

such that for any v ∈ Tp(S1), and any curve α : (−ϵ, ϵ) → S1 with α(0) = p
and α′(0) = v, if β = f ◦ α, then

dfp(v) = β′(0) ∈ Tf(p)(S2).

3.4 The First Fundamental Form

The first fundamental form of a regular surface S at a point p is the inner
product Ip : TpS × TpS → R defined by

Ip(u, v) = ⟨u, v⟩R3 =

3∑
i=1

uivi.
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3.5 Unit Normal

Given a parameterization X : U ⊂ R2 → S of a regular surface, the unit normal
at a point p ∈ U is defined as:

N(p) =
Xu ×Xv

|Xu ×Xv|

If U ⊂ S is open and there exists a unit normal N : U → R3 for each p ∈ U , we
call N a differentiable field of unit normals on U .

Not all regular surfaces have a differentiable field of unit normals. The concept
of orientation helps distinguish surfaces that possess such a field from those
that do not. A regular surface, S, is said to be orientable if it has an associated
differentiable field of unit normals, N. Let’s expand a bit more on orientable
manifolds for better understanding.

3.6 Orientability

A manifold M is said to be orientable if it is possible to consistently define a
”direction” or ”orientation” across the entire manifold. More formally:

Two-Dimensional Surface: A two-dimensional surface S embedded in R3

is orientable if there exists a continuous choice of unit normal vector at every
point on the surface. This means you can smoothly assign a normal vector
pointing in a specific direction (e.g., ”outwards” or ”inwards”) at every point
without ambiguity.

Higher-Dimensional Manifold: For an n-dimensional manifold M , ori-
entability can be defined in terms of coordinate charts and transition maps:
An n-dimensional manifold M is orientable if there exists an atlas of coordinate
charts {(Uα, ϕα)} such that all transition maps ϕα ◦ ϕ−1

β have a positive deter-
minant of the Jacobian matrix. In other words, the transition maps preserve
the orientation of the manifold.

The Jacobian matrix is a matrix of all first-order partial derivatives of a
vector-valued function. Given a function f : Rn → Rm, which maps an n-
dimensional input vector x = (x1, x2, . . . , xn) to anm-dimensional output vector
y = (y1, y2, . . . , ym), the Jacobian matrix J of f is an m×n matrix where each
element Jij is given by the partial derivative of the i-th component of f with
respect to the j-th component of x:

Jij =
∂yi
∂xj
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In matrix form, the Jacobian matrix J is:

J =


∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xn

...
...

. . .
...

∂ym

∂x1

∂ym

∂x2
· · · ∂ym

∂xn


The determinant of the Jacobian matrix, if it is a square matrix (i.e., m = n),
indicates the local scaling factor of the transformation f . A positive determinant
means the orientation is preserved under the transformation.

Example 1

The Möbius strip is a classic example of a non-orientable surface. It can be
constructed by taking a rectangular strip of paper, twisting one end by 180
degrees, and then joining the ends together to form a loop.

3.7 Gauss Map

Let S be a regular surface in R3. The Gauss map, N , is a function that maps
each point on the surface S to a corresponding point on the unit sphere S2 in
R3. Mathematically, this is expressed as:

N : S → S2

where S2 represents the unit sphere.

The Gauss map assigns to each point on the surface S the unit normal vector at
that point. This normal vector is a point on the unit sphere S2. In essence, the
Gauss map translates the geometric properties of the surface into a mapping on
the sphere, providing a way to study the curvature of the surface. The Gauss
map is crucial for understanding the Gaussian curvature, which is central to our
study of the Gauss-Bonnet theorem.

3.8 Weingarten Map or Shape Operator

The Weingarten map, or shape operator, is a linear map Sp : TpS → TpS defined
on the tangent plane TpS at a point p on a regular surface S. For a given tangent
vector v ∈ TpS, the shape operator is defined by:

Sp(v) = −dNp(v),
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where N is the Gauss map and dNp is the differential of the Gauss map at p.

The shape operator Sp encodes the way the surface bends by measuring the
rate of change of the unit normal vector as one moves along the surface. It is
symmetric and its eigenvalues are the principal curvatures of the surface at p.

3.9 The Second Fundamental Form

The second fundamental form of a regular surface S at a point p is a quadratic
form IIp : TpS × TpS → R that measures how the surface bends at p. It is
defined as:

IIp(u, v) = ⟨dNp(u), v⟩,

where dNp is the differential of the Gauss map at p, u, v ∈ TpS are tangent
vectors, and ⟨·, ·⟩ denotes the Euclidean inner product in R3.

In terms of the coefficients of the first and second fundamental forms, if E,F,G
are the coefficients of the first fundamental form and e, f, g are the coefficients of
the second fundamental form, then the second fundamental form can be written
as:

II = e du2 + 2f dudv + g dv2.

3.10 Gaussian Curvature

The Gaussian curvature of a regular surface in R3 at a point p is formally defined
as

K(p) = det(S(p)), (15)

where S is the shape operator and det denotes the determinant.

If x : U → R3 is a regular patch, then the Gaussian curvature is given by

K =
eg − f2

EG− F 2
, (16)

where E, F , and G are coefficients of the first fundamental form and e, f , and
g are coefficients of the second fundamental form [16].
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Torus Shape Operator [27] +, -, & 0 Gaussian Curvature

3.11 Geodesic Curvature

Let α : [a, b] → S be a curve on the surface S. The geodesic curvature, denoted
kg, is defined as follows:

kg =
⟨α′′(t), (N × α′(t))⟩

|α′(t)|3

Here, N is the unit normal of the surface.

3.12 Geodesics

Let α : [a, b] → S be a curve on the surface S. We say that α is geodesic on
S if its geodesic curvature kg = 0. Geodesic curvature intuitively measures the

deviation of a curve from being a geodesic. Geodesics are the curves that locally
minimize the distance between two points on any given surface or mathemati-
cally defined space. Here are a few examples to illustrate geodesics on different
surfaces:

Example 1

A simple example is in a standard Euclidean space, the geodesics will be straight
lines.

Example 2

The geodesics for a sphere will be its great circles, i.e., the circles obtained
from intersecting the sphere with a plane that goes through the centre of the
sphere, like the equator or the lines of longitude on planet Earth. These curves
represent the shortest path between two points on the spherical surface.
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3.13 Regular Regions

3.13.1 Regular Region of a Surface

Let S be a regular surface. We say that a region R ⊂ S is regular if and only if
R is compact and the boundary ∂R is a finite union of piecewise regular curves
that do not intersect.

3.13.2 Triangulation of a Regular Region

A triangulation of a regular region R is a finite family T of triangles Ti, i =
1, 2, . . . , n, where by triangle we simply mean a region with three vertices and
non-zero external angles, such that

1.
⋃n

i=1 Ti = R.

2. If Ti ∩ Tj ̸= ∅, then Ti ∩ Tj is either a common edge of Ti and Tj or a
common vertex of Ti and Tj .

3.14 Euler-Poincaré formula

Let T be a triangulation of a regular region R ⊂ S.

The Euler-Poincaré formula is defined as

F − E + V = χ(R)

where F is the number of faces of the triangulation, E is the number of sides,
and V is the number of vertices. χ is known as the Euler characteristic of the
surface S.

The Euler characteristic χ(R) is a topological invariant that provides a measure
of the surface’s shape or structure in a way that is independent of the exact
geometric form. V , E, and F are the numbers of vertices, edges, and faces,
respectively, in the polygonal decomposition of the surface.

3.15 The Gram-Schmidt Process

3.15.1 Vectors

In Euclidean space, a vector is represented as an arrow with a specific magnitude
and direction. The arrow starts from one point (called the initial point) and
ends at another point (called the terminal point).

Example 1 In two-dimensional space (R2), a vector can be represented as
v = (v1, v2), where v1 and v2 are the components of the vector along the x and
y axes, respectively.
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The Gram-Schmidt process (or procedure) is a sequence of operations that trans-
forms a set of linearly independent vectors into a set of orthonormal vectors that
span the same space as the original set.

Let’s begin by going over some essential concepts.

- Two vectors r and s are orthogonal if their inner product is zero, i.e., ⟨r, s⟩ = 0.

- The norm (length) of a vector s given an inner product is defined as ∥s∥ =√
⟨s, s⟩.

- A set of vectors is orthonormal if each vector has unit norm and is orthogonal
to each other.

When a basis for a vector space is also an orthonormal set, it is called an
orthonormal basis [24].

3.15.2 Steps of the Gram-Schmidt Process [24]

1. Start with a set of linearly independent vectors {v1, v2, . . . , vn} in Rn.

2. Initialize the first orthogonal vector u1 as the first vector v1:

u1 = v1

3. For each subsequent vector vk (k = 2, 3, . . . , n), orthogonalize it against all
previously computed orthogonal vectors:

uk = vk −
k−1∑
j=1

⟨vk, uj⟩
⟨uj , uj⟩

uj

where ⟨·, ·⟩ denotes the inner product.

4. Normalize each orthogonal vector uk to get an orthonormal set:

ek =
uk

∥uk∥

We have now discussed enough background concepts to proceed to the Gauss-
Bonnet theorem.
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4 The Gauss-Bonnet Theorems

4.1 Classical Theorem - Surfaces Without Boundary

Let S be a compact and orientable surface in R3 which lacks a boundary. We
can mathematically express the Gauss-Bonnet theorem as:

∫
S

K dA = 2πχ(S)

where

• K is the Gaussian curvature.

• dA denotes the area element of the surface.

• χ(S) is the Euler characteristic of the surface.

Consider a torus or a doughnut-shaped surface (which has no boundary). The
Euler characteristic of a torus is 0. The Gauss–Bonnet theorem tells us that the
integral of the Gaussian curvature over the entire surface of the torus will also
be zero. Now, imagine if you were to stretch and deform the torus in various
ways, such as by squeezing it or elongating it. Despite these deformations,
the Euler characteristic of the torus would remain 0. Consequently, the total
Gaussian curvature of the torus, given by

∫
S
K dA, would also remain 0 under

such deformations. Now let us generalize this theorem to surfaces with smooth
boundary.

4.2 Surfaces With Smooth Boundary

Let M be a compact and orientable surface in R3 with a smooth boundary
∂M . An example of a surface with smooth boundary is a cylinder. We can
mathematically express the Gauss-Bonnet theorem as:

∫
M

K dA+

∫
∂M

kg ds = 2πχ(M)

where

• K is the Gaussian curvature.

• kg is the geodesic curvature of the boundary ∂M .

• dA denotes the area element of the surface.

• ds denotes the line element along the boundary.
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• χ(M) is the Euler characteristic of the surface.

Now, let’s further generalize the Gauss–Bonnet theorem to also include surfaces
where we only require a piecewise smooth boundary.

4.3 Surfaces With Piecewise-Smooth Boundary

Consider a surface P with only a piecewise smooth boundary and go along its
boundary. The Gauss–Bonnet theorem for a piecewise smooth surface is

∑
vertices

ωi +

∫
S

K dA+

∫
∂S

kg ds = 2πχ(P )

where

• K is the Gaussian curvature.

• kg is the geodesic curvature of each side ∂P .

• dA denotes the area element of the surface.

• ds denotes the line element along the boundary.

• χ(M) is the Euler characteristic of the surface.

• ω is the exterior angles at the boundary of the surface.

This theorem is advantageous because it only requires the boundary to be piece-
wise smooth. Consequently, we can apply the Gauss–Bonnet theorem to struc-
tures such as polygons on a plane or polyhedral surfaces.

Other versions of this theorem include the Chern-Gauss-Bonnet theorem and
other adapted forms which are discussed in the applications portion of this
paper.

5 Proof of the Classical Gauss-Bonnet Theorem

One should note that there are many different versions of the proof for this theo-
rem. In this study, we will prove the classic theorem, the Gauss-Bonnet theorem
for surfaces with no boundary. The proof for the other theorem variations can
be derived from this. This proof follows the proof by Sigmundur Gudmundsson
in [23].
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5.1 The Theorem Statement:

Let M be a compact, orientable, and regular C3-surface in R3. If K is the
Gaussian curvature of M , then

∫
M

K dA = 2π · χ(M)

where χ(M) is the Euler characteristic of the surface.

5.2 Regular C3-surfaces

A regular C3-surface refers to a surface that is smooth and has continuous
derivatives up to the third order. Here, M is smooth up to the third deriva-
tive, which is a common requirement in differential geometry for the analysis of
curvature and other geometric properties.

5.3 Green’s Theorem

The Green’s theorem is a fundamental result in vector calculus that relates
a double integral over a two-dimensional region to a line integral around the
boundary of that region.

Let C be a positively oriented, piecewise smooth, simple closed curve in the
plane, and let D be the region bounded by C. If P (x, y) and Q(x, y) have
continuous partial derivatives on an open region that contains D, then Green’s
theorem states: ∮

C

(P dx+Qdy) =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

where:

•
∮
C

denotes the line integral around the boundary C.

•
∫∫

D
denotes the double integral over the region D.

• P and Q are functions of x and y with continuous partial derivatives.

• dA is the area element in D.

5.4 Geodesic Curvature Expression

Let M be an oriented regular C3-surface in R3 with Gauss map N : M → S2.

Consider a local parametrization X : U → X(U) of M such that X(U) is
connected and simply connected. Let γ : R → X(U) parametrize a regular,
closed, simple, and positively oriented C2-curve on X(U) by arclength. Let
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κg : R → R be its geodesic curvature. Define the orthonormal basis {Z,W}
obtained by applying the Gram-Schmidt process (refer to 3.15) on the basis
{Xu, Xv} from the local parametrization X : U → X(U).

Along the curve γ : R → X(U), we define an angle θ : R → R such that the unit
tangent vector γ̇ satisfies:

γ̇(s) = cos θ(s) · Z(s) + sin θ(s) ·W (s).

Then, for the second derivative γ̈, we have:

γ̈(s) = θ̇(s) · (− sin θ(s) ·Z(s)+cos θ(s) ·W (s))+cos θ(s) · Ż(s)+ sin θ(s) · Ẇ (s).

This implies that the geodesic curvature κg satisfies:

κg = ⟨N × γ̇, γ̈⟩ = θ̇ − ⟨Z, Ẇ ⟩.

where:

• N is the Gauss map.

• Z and W are orthonormal basis vectors.

• θ is the angle between the unit tangent vector γ̇ and the orthonormal basis
{Z,W}.

• ⟨·, ·⟩ denotes the inner product.

5.5 Theorem 5.5

Let M be an oriented regular C3-surface in R3 with a Gauss map N : M → S2.

Consider a local parametrization X : U → X(U) of M such that X(U) is
connected and simply connected. Let γ : R → X(U) parameterize a positively
oriented, simple, piecewise regular C2-polygon on M by arclength. Let Int(γ)
denote the interior of γ and let κg : R → R be its geodesic curvature on each
regular piece. If L ∈ R+ is the period of γ, then:

∫ L

0

κg(s) ds =

n∑
i=1

αi − (n− 2)π −
∫
Int(γ)

K dA.

Here, K is the Gaussian curvature of M and α1, . . . , αn are the interior angles
at the n corner points [23].
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5.6 Proof of Theorem 5.5

Let {Z,W} be the orthonormal basis obtained by applying the Gram-Schmidt
process on the basis {Xu, Xv}, derived from the local parametrization X : U →
X(U) of M . Let D be the discrete subset of R corresponding to the corner
points of γ(R). Along the regular arcs of γ : R → X(U), we define an angle
θ : R \D → R such that the unit tangent vector γ̇ satisfies:

γ̇(s) = cos θ(s) · Z(s) + sin θ(s) ·W (s).

We have earlier seen that in this case the geodesic curvature is given by κg =

θ̇ − ⟨Z, Ẇ ⟩ and integration over one period gives:∫ L

0

κg(s) ds =

∫ L

0

θ̇(s) ds−
∫ L

0

⟨Z(s), Ẇ (s)⟩ ds.

Using Green’s theorem (refer to 5.3), we have:∫ L

0

⟨Z(s), Ẇ (s)⟩ ds =
∫
Int(γ)

K dA.

The integral over the derivative θ̇ splits into integrals over each regular arc:∫ L

0

θ̇(s) ds =

n∑
i=1

∫ si

si−1

θ̇(s) ds.

This measures the change of angle with respect to the orthonormal basis {Z,W}
along each arc. At each corner point, the tangent jumps by the angle (π − αi)
where αi is the corresponding inner angle. When moving around the curve once,
the changes along the arcs and the jumps at the corner points add up to 2π.

Hence:

2π =

∫ L

0

θ̇(s) ds+

n∑
i=1

(π − αi).

This proves the statement made in theorem 5.4.

5.7 Proof of the Gauss-Bonnet theorem

A geodesic polygon is a polygon on a curved surface where each side is a geodesic
segment. Recall our definition of geodesics in section 3.12.

Let T = {T1, . . . , TF } be a division of the surface M such that each Tk is
a geodesic polygon contained in the image Xk(Uk) of a local parametrisation
Xk : Uk → Xk(Uk) of M . Then the integral of the Gaussian curvature K over
M splits as follows:
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Geodesic triangulations [26]

∫
M

K dA =

F∑
k=1

∫
Tk

K dA

into the finite sum of integrals over each polygon Tk ∈ T . According to the
theorem in Section 5.5, we now have:∫

Tk

K dA =

nk∑
i=1

αki + (2− nk)π

for each of the geodesic polygons Tk. By adding these relations we then obtain:∫
M

K dA =

F∑
k=1

(
(2− nk)π +

nk∑
i=1

αki

)

= 2πF − 2πE +

F∑
k=1

nk∑
i=1

αki

= 2π(F − E + V )

This proves the Gauss-Bonnet theorem for surfaces with no boundary.

6 Applications

6.1 Mathematical Applications:

This fundamental result in differential geometry, has profound applications in
pure mathematics. In this study, we discuss 4 specific mathematical applications
with the theorem and expanded versions of it.



The Gauss-Bonnet Theorem 16

6.1.1 The Chern-Gauss-Bonnet theorem

The Chern-Gauss-Bonnet theorem extends the Gauss-Bonnet theorem to higher-
dimensional manifolds, relating the topology of a manifold to its curvature
through characteristic classes, which are used to study vector bundles and their
properties. The theorem states:

∫
M

Pf(R) = (2π)n/2χ(M),

where

• Pf(R) is the Pfaffian of the curvature form R.

• M is an even-dimensional compact orientable manifold.

This theorem is crucial in characteristic classes and index theory, forming the
basis for results like the Atiyah-Singer Index Theorem.

6.1.2 Spectral Geometry & The Hodge Theorem

Moreover, the Gauss-Bonnet theorem finds applications in the study of spectral
geometry, where it extends to a broader class of spectral triples, demonstrating
its versatility in diverse mathematical contexts. This extension highlights the
theorem’s capacity to provide insights into the geometric and spectral properties
of various mathematical structures. The theorem serves as a foundational tool
for proving essential results, such as the Hodge Theorem. The Hodge Theorem
states:

∆ω = 0 ⇔ ω = dα+ δβ + γ

where

• ∆ is the Laplace operator.

• ω is a differential form.

• d is the exterior derivative.

• δ is the codifferential.

• γ is the harmonic component of ω.

This theorem is crucial for decomposing differential forms and connecting the
topology of a manifold with its geometry.
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6.1.3 Moduli Spaces of Riemann Surfaces

In algebraic geometry, moduli spaces are geometric spaces that parameterize a
class of objects, such as algebraic curves or Riemann surfaces, up to an equiv-
alence relation. The Gauss-Bonnet theorem has been instrumental in deriving
formulas for these moduli spaces, offering insights into their geometric struc-
ture. For example, the theorem can be used to compute the Euler characteristic
of moduli spaces of Riemann surfaces. This application is crucial because it
connects the geometric properties of the surfaces (through curvature) to topo-
logical invariants (like the Euler characteristic), facilitating the study of complex
geometric objects.

The theorem’s relevance in this context lies in its ability to relate local geomet-
ric properties (curvature) to global topological features, which is essential for
understanding the overall shape and structure of the moduli spaces.

6.1.4 Finsler Geometry

In the study of Finsler geometry, the theorem forms the basis for establishing
Gauss-Bonnet-Chern theorems for complex Finsler manifolds. This applica-
tion highlights the theorem’s significance in non-Riemannian geometries and its
ability to generalize to complex geometric settings. The Gauss-Bonnet-Chern
theorem for Finsler manifolds can be stated as:

∫
M

KF dVF = 2πχ(M),

where

• KF is the flag curvature in Finsler geometry, and

• dVF is the volume form associated with the Finsler structure.

By exploring the implications of the Gauss-Bonnet theorem in Finsler geome-
try, mathematicians have been able to derive essential results that deepen our
understanding of geometric structures beyond traditional Riemannian settings.

6.2 Physics Applications:

The Gauss-Bonnet theorem also finds extensive applications in various branches
of physics. In this study, we talk about 2 specific applications in general rela-
tivity and black hole thermodynamics.
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6.2.1 General Relativity

In general relativity, the fabric of spacetime is described by a four-dimensional
Lorentzian manifold, whose curvature is determined by the Einstein field equa-
tions. The Gauss-Bonnet theorem, originally formulated for two-dimensional
surfaces, has been extended to higher dimensions and plays a crucial role in un-
derstanding the interplay between curvature and topology. The Gauss-Bonnet
theorem in its higher-dimensional form is part of the Gauss-Bonnet-Chern the-
orem, which relates the integral of the curvature of a manifold to its Euler char-
acteristic, a topological invariant. For a four-dimensional Riemannian manifold,
the theorem is expressed as:

∫
M

(
RabcdR

abcd − 4RabR
ab +R2

)
dV = 32π2χ(M)

• Rabcd is the Riemann curvature tensor.

• Rab is the Ricci curvature tensor.

• R is the scalar curvature,

• χ(M) is the Euler characteristic of the manifold M.

• dV is the volume element of the manifold.

This relationship shows how the integral of certain curvature invariants over
the entire manifold is related to a purely topological quantity, the Euler char-
acteristic. In general relativity, this helps in understanding how the curvature
induced by the presence of mass and energy (as described by the Einstein field
equations) affects the global properties of spacetime.

The implications of the Gauss-Bonnet theorem for spacetime solutions are pro-
found. For instance, it provides insight into the global topology of the Schwarzschild
and Kerr solutions, which describe non-rotating and rotating black holes, re-
spectively. It is essential for studying the spatial behavior of the Gauss-Bonnet
curvature invariant of rapidly-rotating Kerr black holes. By analyzing the phys-
ical and mathematical properties of the Gauss-Bonnet curvature invariant in the
vicinity of spinning black holes, researchers have uncovered nontrivial behaviors
that provide insights into the dynamics of black hole spacetimes [3].
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6.2.2 Black Hole Thermodynamics

Black hole thermodynamics is a field that explores the analogy between the
laws of thermodynamics and the properties of black holes. In the realm of
higher-dimensional theories of gravity, the Gauss-Bonnet curvatures are utilized
to describe gravity in scenarios beyond the standard four dimensions. The
curvatures play a significant role in theories such as Lovelock gravity, Gauss-
Bonnet Gravity, and Lanczos gravity, providing a framework to understand
gravitational interactions in higher-dimensional spaces [6]. The Gauss-Bonnet
term is the second-order term in the Lovelock series and is given by:

LGB = RabcdR
abcd − 4RabR

ab +R2

The action incorporating the Gauss-Bonnet term in D-dimensional spacetime
is:

S =

∫
dDx

√
−g (R+ αLGB + · · · )

where

• α is a coupling constant.

The entropy of a black hole in higher dimensions can be computed using the
Wald entropy formula, which incorporates the contributions from higher-order
curvature terms. For a black hole solution in a theory with the Gauss-Bonnet
term, the entropy S is given by:

S =
A

4G

(
1 +

2α

(D − 3)(D − 4)
RH

)

where

• A is the area of the event horizon.

• G is the gravitational constant.

• RH is the Ricci scalar evaluated on the horizon.

The Gauss-Bonnet term thus modifies the usual Bekenstein-Hawking entropy
formula by adding a correction term dependent on the curvature of the horizon.
This modified entropy expression influences the stability and phase transitions of
black holes in higher-dimensional spacetimes, leading to richer thermodynamic
behavior compared to four-dimensional black holes.
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Furthermore, in the context of black hole physics, the theorem is linked to the
optical Berry phase and the emergence of black hole entropy through dimen-
sional continuation [1]. By exploring the inner structure of the Gauss-Bonnet-
Chern theorem and its connection to the optical Berry phase, researchers have
uncovered deep relationships between geometric properties and physical phe-
nomena associated with black holes.

7 Conclusion

The Gauss-Bonnet theorem stands as an elegant theorem, bridging the powerful
fields of algebraic topology and differential geometry.

Through various proofs and interpretations, the Gauss-Bonnet theorem contin-
ues to reveal the deep connections between geometry and topology, demonstrat-
ing how local geometric properties can dictate global topological outcomes. Its
influence spans multiple disciplines, proving its timeless relevance and ongoing
utility in advancing mathematical and physical theories.
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