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Abstract. We can define an equivalence relation on primitive positive definite

binary quadratic forms, which gives rise to class groups of forms. Similarly, we

can define an equivalence relation on the ideals of a number ring, which creates
the ideal class group. A key theorem of algebraic number theory is that the

ideal class group is finite. In this paper, we investigate the connection between

class groups of binary quadratic forms and ideal class groups of quadratic
number rings with negative discriminant to prove this theorem.

1. Introduction

Binary quadratic forms were first studied extensively by Gauss in his Disquisi-
tiones Arithmeticae, of which a large portion is dedicated to this study. These forms,
which are quadratics in two variables, have been studied extensively by Lagrange
and Gauss; Gauss himself contributing greatly to the study with his formulation of
the composition of two forms. They arise naturally in the study of primes of the
form x2 + ny2, as Fermat worked on.

On the other hand, the study of quadratic number fields grew out of the study
of binary quadratic forms by Gauss. This work was later extended by Kummer to
cyclotomic fields in the efforts to prove Fermat’s Last Theorem. Finally, Dedekind
introduced the concept of ideals, unifying the concepts laid down by Gauss and
Kummer and giving rise to the ideal class group.

For a more detailed summary of the history of these concepts in number theory,
see [SO85].

The ideal class group can be obtained by defining an equivalence relation on the
ideals of a number ring. Our goal in this paper is to explain the theory of quadratic
form class groups, ideal class groups, and show the following theorem linking binary
quadratic forms and the ideal class groups of quadratic number rings:

Theorem 1.1. For a negative discriminant D, the class group for quadratic forms
with discriminant D is isomorphic to the ideal class group of the ring of integers of
Q(

√
D).

We will also show that the ideal class groups of quadratic number rings with
negative discriminant are finite.

In Section 2, we discuss binary quadratic forms and their group of equivalence
classes; in section 3, we provide a brief summary of necessary ring theory; in Section
4, we develop ideal class groups; and in Section 5, we bring binary quadratic forms
and ideal class groups to show Theorem 1.1.
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2. Binary Quadratic Forms

The first objects that we would like to study are binary quadratic forms, which
are a special type of function in two variables.

Definition 2.1. An integral binary quadratic form is a function of the form
f(x, y) = ax2 + bxy + cy2, for integers a,b,c.

We can have a, b, c /∈ Z, but this paper focuses on the integral case. We will
sometimes abbreviate “binary quadratic form” to just “form”.

Definition 2.2. A binary quadratic form represents an integer n if we have
f(x, y) = n for some x, y ∈ Z. f(x, y) properly represents n if we have f(x, y) =
n for relatively prime x, y.

Example 2.1. Suppose we have f(x, y) = x2+2xy+3y2. Then, we can say f(x, y)
represents 3 since we have f(0, 3) = 3. We can also say f(x, y) properly represents
43 since f(2, 3) = 43.

Right now, our definition of a binary quadratic form is pretty loose; we could
pull out any three integers and make a form. We will define some restrictions on
these forms so that they satisfy useful properties, and so that we can eventually
put them into equivalence classes.

Definition 2.3. A binary quadratic form ax2+bxy+cy2 is reduced if |b| ≤ a ≤ c,
and a = c or a = |b| implies b ≥ 0.

Definition 2.4. A binary quadratic form ax2+bxy+cy2 is primitive if gcd(a, b, c) =
1.

Definition 2.5. The quadratic form f(x, y) = ax2+bxy+cy@ is positive definite
if f(x, y) ≥ 0, a > 0, and f(x, y) = 0 ⇐⇒ x = y = 0.

We usually discuss primitive positive definite binary quadratic forms; we will
show later that this is equivalent to simply being reduced. Now, to further help
classify binary quadratic forms, we introduce the discriminant, and group forms
with equal discriminant together. The definition of the discriminant should be
reminiscent of quadratic polynomials.

Definition 2.6. The discriminant of a binary quadratic form f(x) = ax2+bxy+
cy2, denoted Df , is b

2 − 4ac.

And now, our sense of equivalence for forms. This will allow us to talk about
classes of equivalent forms later.

Definition 2.7. A form f(x, y) is properly equivalent to a form g if we have
f(x, y) = g(px+qy, rx+sy) and ps−qr = 1 (as opposed to ±1 for just “equivalent”)
for p, q, r, s ∈ Z.

It turns out that proper equivalence preserves the discriminant:

Proposition 2.1. If two forms f(x, y) and g(x, y) are properly equivalent, then
they have equal discriminant.
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Proof. Let f(x, y) = ax2 + bxy + cy2, and let g(x, y) = f(px + qy, rx + sy) for
integers a, b, c, p, q, r, s, and ps − qr = 1. Note that the discriminant of f(x, y) is
b2 − 4ac. We have

g(x, y) =
(
ap2 + bpq + cq2

)
x2 + (2apr+ bps+ brq + 2ps)xy +

(
ar2 + brs+ cs2

)
y2.

After a lot of algebra, we can indeed verify that the discriminant of g(x, y) is also
b2 − 4ac. □

Now, all of these conditions for primitive, reduced, and properly representing
quadratic forms seem sort of arbitrary, but it turns out that these restrictions are
enough for some very convenient results.

Theorem 2.1. Primitive positive definite forms are properly equivalent to a unique
reduced form.

Proof. First, show that we can find a reduced form that f(x, y) equivalent to. That
is, we will show the existence of such a form.

(1) We can find f(x, y) = ax2 + bxy + cy2 with minimal |b|.
(2) We can verify that a ≥ |b| and c ≥ |b| via contradiction.
(3) Now, if a > c, we preform the transformation (x, y) 7→ (−y, x) (proper

equivalence), which swaps a and c, and changes the sign of b. This works
since x2 and y2 are nonnegative anyways.

We still need to verify that if |b| = a or a = c we can guarantee b ≥ 0. So if
we have a not reduced form, we have b < 0 and a = −b or a = c; in either case
ax2 − bxy + cy2 is reduced. So we just need to show that ax2 ± bxy + cy2 are
properly equivalent (via more transformations, one for each case):

• If we have a = −b, then we have f(x, y) = ax2 − axy + cy2. We apply
(x, y) 7→ (x+ y, y) to flip the sign on xy.

• If we have a = c, then we have f(x, y) = ax2 + bxy + ay2. Applying
(x, y) 7→ (−y, x) flips the sign on xy.

We will make a few key observations before we show uniqueness.
Let f(x, y) = ax2 + bxy + cy2 be reduced, so |b| ≤ a ≤ c. We claim that

(2.1) f(x, y) ≥ (a− |b|+ c)min
(
x2, y2

)
.

Note that we have x2 ≥
(
x2, y2

)
, y2 ≥

(
x2, y2

)
, and |xy| ≥

(
x2, y2

)
, so we have

f(x, y) ≥ (a+ |b|+ c)min
(
x2, y2

)
≥ (a− |b|+ c)min

(
x2, y2

)
as claimed.

Now, we have f(x, y) ≥ a− |b|+ c whenever neither x nor y are zero. Then, we
know that a is the smallest positive value properly represented by f , since we have
f(1, 0) = a. In the case that c > a, we also have c = f(0, 1) be the next smallest
properly represented number.

Suppose that f(x, y) is reduced and satisfies |b| < a < c. We know that a < c <
a− |b|+ c are the three smallest numbers that are properly represented by f(x, y),
since f(x, y) ≥ (a− |b|+ c)min

(
x2, y2

)
and we know that a, c are the two smallest

values properly represented by f(x, y). We claim that

f(x, y) = a, gcd(x, y) = 1 ⇐⇒ (x, y) = (±1, 0).

Note that f(±1, 0) = a trivially. Now, suppose that f(x, y) = a. By Equation 2.1,
we have a ≥ (a−|b|+c)min

(
x2, y2

)
. Furthermore, since c > |b|, we have a−|b|+c >
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a, so we must have min
(
x2, y2

)
= 0, so one of x and y must be zero. x must be

nonzero, so we must have x = ±1, y = 0. Similarly, we can show that

f(x, y) = c, gcd(x, y) = 1 ⇐⇒ (x, y) = (0,±0).

We now show uniqueness when the above strict inequality holds; the proof with
nonstrict inequalities is a bit more involved with edge cases.

Suppose g(x, y) is reduced and equivalent to f(x, y). Then, they represent the
same numbers, so in particular, their first coefficients must be equal to a. Then,
we look at the last coefficient of g(x, y); let it be c′. Since g(x, y) is reduced, we
have a ≤ c′. However, if we have a = c′, then we would have

g(x, y) = a ⇐⇒ (x, y) = (±1, 0), (0,±1).

This is a contradiction since we know f(x, y) is equivalent to g(x, y), and we must
have f(x, y) = a ⇐⇒ (x, y) = (±1, 0) only. Therefore a < c′, and c = c′. Thus
we have g(x, y) = ax2 ± bxy + cy2 since f(x, y) and g(x, y) must have the same
discriminant. □

This tells us that the number of classes of primitive positive definite forms with
discriminant D under proper equivalence is also the number of reduced forms with
discriminant D. We have a special name for this.

Definition 2.8. The class number of D, denoted h(Df ), is the number of prim-
itive, positive definite, binary quadratic forms with discriminant Df .

Example 2.2. We have h(−4) = 1 since the only reduced, positive definite form
with discriminant −4 is x2 + y2.

On the other hand, h(−20) = 2; we have x2 + 5y2 and 2x2 + 2xy + 3y2 with
discriminant −20.

Keep the class number in mind; it will come up again very soon. It turns out
that reduced forms with discriminant D form a group. The group operation is
known as composition, and it turns out to be quite involved.

Definition 2.9. Given two primitive positive definite binary quadratic forms f(x, y)
and g(z, w), a form F (x, y) is their composition given that there exist bilinear
forms

Bi(x, y : z, w) = aixz + bixw + ciyz + diyw

such that

f(x, y)g(z, w) = F (B1(x, y : z, w), B2(x, y : z, w)),

for integers ai, bi, ci, di.

It turns out that this definition is a bit too loose; given two forms, there are many
ways we can compose them together. Therefore we must restrict composition. In
practice, we use a direct formula known as Dirichlet composition.

Definition 2.10. Let f(x, y) = ax2+ bxy+ cy2 and g(x, y) = a′x2+ b′xy+ c′y2 be
primitive positive definite quadratic forms with negative discriminant D. Further,

let gcd
(
a, a′, b+b′

2

)
= 1.
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It turns out that there is a unique integer B modulo 2aa′ such that

B ≡ b (mod 2a),

B ≡ b′ (mod 2a′),

B2 ≡ D (mod 4aa′).

To see this, convert and multiply the first two congruences modulo 4aa′, then
substitute into the third. We can then simplify the resulting congruence, modify
the first two congruences, and then use the Chinese Remainder Theorem to solve
the system uniquely [Cox22, Chapter 3].

Then, the Dirichlet composition (which we will abbreviate to “composition”
when it is clear) of f(x, y) and g(x, y) is

aa′x2 +Bxy +
B2 −D

4aa′
y2.

Despite having restrictions on the coefficients of our quadratic forms, Dirichlet
composition is much more useful than the more general (and much more complex)
Gauss composition. Furthermore, we can usually find properly equivalent forms
that Dirichlet composition works on. Dirichlet and Gauss compositions are also
identical on forms they are defined on. Apart from the equivalence with Gauss
composition, Dirichlet composition also satisfies some properties that we should
expect.

Proposition 2.2. Define f(x, y) and g(x, y) as in Definition 2.10. Let F (x, y) be
the Dirichlet composition of f(x, y) and g(x, y). Then, F (x, y) is primitive, positive
definite, and has the same discriminant D as f(x, y) and g(x, y).

Proof. We can directly compute the discriminant of F (x, y) to be D using a lot of
algebra. Let f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2b′xy + c′y2. Then, we

have F (x, y) = aa′x2 +Bxy + B2−D
4aa′ y2, so its discriminant is

B2 − 4aa′
B2 −D

4aa′
= D.

It follows that F (x, y) is positive definite. As a lemma,

Lemma 2.1. If a binary quadratic form f(x, y) = ax2 + bxy + cy2 is positive
definite, its discriminant b2 − 4ac is negative.

Proof. We will first show that a positive definite form has negative discriminant.
Consider f(x, 0) = ax2, f(0, y) = cy2, and

f(x, kx) = ax2 + bkx2 + k2x2 = (a+ bk + ck2)x2

for nonzero integers x, y, k. Since f(x, y) is positive definite, we must have c > 0
and a+ bk + k2 > 0. In particular, this means that we must have b2 − 4ac for the
second inequality to hold. This completes the proof of the lemma. □

This tells us that we have D < 0. We now return to the proof of Theorem 2.2.
Note that

F (ky, y) =

(
aa′k2 +Bk +

B2 −D

4aa′

)
y2

for arbitrary integers k, and that the portion inside parentheses is either all positive
or all negative. Further, since aa′ > 0, it must be positive. Also, note that F (0, 0) =
0 and F (x, 0) = aa′ > 0. Thus F (x, y) is positive definite.
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Finally, we show that F (x, y) is primitive. Note that F (x, y) takes the form
f(x, y) · g(z, w). Since both f(x, y) and g(w, z) are primitive, the greatest common
divisor of numbers they represent is 1.

We claim that the greatest common divisor of the numbers represented by
f(x, y) · g(z, w) is also one. Suppose not; then there is some prime p that di-
vides either f(x, y) or g(z, s) for all pairs (x, y) and (w, z). Since (x, y) and (w, z)
are independent, we must have p divide f(x, y) for all (x, y), contradicting the fact
that f(x, y) is primitive.

Then, the greatest common divisor of the numbers represented by F (x, y) is
one. If F (x, y) was not primitive, then note that some prime q must divide each
coefficient. Then, q would divide all numbers represented by F (x, y), contradicting
the fact that their greatest common divisor is 1. Thus F (x, y) is primitive. □

Theorem 2.2. Let the set of reduced forms with discriminant D be C(D) with
D ≡ 0, 1 (mod 4) negative. Then C(D) forms an abelian group of order h(D)
under composition, known as the class group for binary quadratic forms with
discriminant D.

Proof. Let f(x, y) = ax2+ bxy+ cy2 and g(x, y) be representatives of two classes in
C(D). We will show that g(x, y) is properly equivalent to another form such that
we can use Dirichlet composition on it and f(x, y).

Lemma 2.2. Given a reduced form f(x, y) and M ∈ Z, f(x, y) can properly rep-
resent at least one integer relatively prime to M .

Proof. Let f(x, y) = ax2 + bxy+ cy2. Then, note that f(1, 0) = a, f(0, 1) = c, and
f(1, 1) = a+ b+ c.

Let p be any prime. We will show that p must be relatively prime to at least
one of f(1, 0), f(0, 1), and f(1, 1). Suppose not. Then there exists some prime
q such that q | a, q | c, and q | (a + b + c). In particular, this implies that
q | ((a+b+c)−a−c) =⇒ q | b, so we do not have gcd(a, b, c) = 1, a contradiction.

Now, let q be a prime such that q ∤ M , so q and M are relatively prime. Then,
we showed above that q must be relatively prime to one of f(1, 0), f(0, 1), and
f(1, 1), so f(x, y) indeed properly represents an integer (in fact, a prime) relatively
prime to M . □

Lemma 2.3. A form f(x, y) properly represents m ∈ Z if and only if we have
f(x, y) properly equivalent to mx2 + b′xy + c′y2 for some integers b′, c′.

Proof. First, note that if mx2+ bxy+ cy2 properly represents m by taking (x, y) =
(1, 0).

Now, suppose that f(p, q) = m for some relatively prime p, q. Then, we can find
r, s ∈ Z such that ps − qr = 1 (so that we have proper equivalence). Substituting
the proper equivalence yields:
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f(px+ ry, qx+ sy) =a(px+ ry)2 + b(px+ ry)(qx+ sy) + c(qx+ sy)2,

=
(
ap2 + bpq + cq2

)
x2

+ (2apr + bps+ brq + 2ps)xy

+
(
ar2 + brs+ cs2

)
y2,

=f(p, q)x2 + (2apr + bps+ brq + 2ps)xy + f(r, s)y2,

=mx2 + b′xy + c′y2,

completing our proof of this lemma. □

We return to the proof of Theorem 2.2.
By Lemma 2.2, we can find an integer a′ that g(x, y) represents such that a′ is

relatively prime to a. Then, by Lemma 2.3, we know g(x, y) is in fact properly
equivalent to some form a′x2 + b′xy + c′y2.

Now, Dirichlet composition applies to the pair of forms f(x, y) and a′x2+ b′xy+

c′y2 since gcd(a, a′) = 1 =⇒ gcd
(
a, a′, b+b′

2

)
= 1. Since we have found a way to

convert forms in C(D) to properly equivalent forms that allow Dirichlet composi-
tion, we have shown that composition in general is defined for any two classes in
C(D).

We can check that Dirichlet composition is both well-defined for classes from
Proposition 2.2. We can easily verify identity and inverses. □

The following theorem demonstrates that we have finitely many reduced forms
with a given negative discriminant.

Theorem 2.3. h(D) is finite for D < 0.

Remark. We have D < 0 for all reduced forms. If f(x, y) = ax2 + bxy + cy2 is
reduced, then we have |b| ≤ a ≤ c, so b2 − 4ac ≤ ac − 4ac = −3ac ≤ 0. Observe
that a ≤ c, so we have −3ac < 0. Thus b2 − 4ac < 0.

As a result, h(D) is only defined if D < 0. Thus, we can restate Theorem 2.3 as
“h(D) is finite for D such that it is defined”.

Proof. Let ax2+bxy+c be reduced, and letD < 0. Then, we have |b| ≤ a =⇒ b2 ≤
a2. So, −D = 4ac−b2 ≥ 4ac−a2. Since a ≤ c, we can say that−D ≥ 4a2−a2 = 3a2,
which implies

a ≤
√

−D

3
.

Now, note that |b| ≤ a and that a, b, c are all integers. Therefore, we have finitely
many choices for a and b. Once we nail down a and b, D = b2 − 4ac allows us to
determine c. Thus, the number of reduced forms with discriminant D is finite, and
the above theorem also guarantees that the number of equivalence classes (under
proper equivalence) is finite. □

We can use binary quadratic forms to study quadratic number rings; those that
take the form Z[

√
D].
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3. A Primer on Ring Theory

We will need some basic definitions from ring theory to explain the ideal class
group.

Definition 3.1. A ring (specifically, a commutative ring) is a set R along with
two binary operations, known as addition (+) and multiplication (·), satisfying the
following:

(1) (R,+) forms an abelian group. The additive identity is called 0.
(2) Multiplication is associative and commutative.
(3) There exists a multiplicative identity 1.
(4) The distributive law applies: a · (b+ c) = (a · b) + (a · c).
Note that we do not require multiplicative inverses to exist.

Note that a ring with multiplicative inverses of nonzero elements is just a field.

Example 3.1. The integers Z under addition and multiplication form a ring. This
is since (Z,+) forms an abelian group, and the usual multiplication is associative
and commutative. Note that multiplication does not need to be invertible, so we
are fine.

Example 3.2. On the other hand, Q under addition and multiplication forms not
only a ring, but a field, since multiplication is invertible for all nonzero rationals.

Something important we’d like to define are ideals:

Definition 3.2. Let R be a ring. A nonempty subset I ⊆ R is an ideal of R if:

(1) I is closed under addition: for all a, b ∈ I, we have a+ b ∈ I.
(2) I is closed under multiplication with elements of R: for all a ∈ I, r ∈ R,

we have ar ∈ I.

A specific kind of ideal is a principal ideal:

Definition 3.3. The principal ideal generated by a ∈ R is the ideal (a) = {ar :
r ∈ R}. If every ideal of R takes this form, then we say that R is a principal ideal
domain, or a PID for short.

As always, it is helpful to think about Z as an example of a ring.

Example 3.3. The multiples of 2 form an ideal in the ring Z. This is since the
sum of two even integers is even, and the product of any integer and an even integer
is even. It turns out that this is also a principal ideal, since it is generated by the
element 2 ∈ Z.

We care about our number rings being PIDs since they have unique factorization,
which we will show after we introduce ideals. Here are a few examples demonstrat-
ing unique and non-unique factorization.

Example 3.4. Consider the ring Z[
√
−5]. This ring does not have unique factor-

ization, as we can write

6 = (1−
√
−5)(1 +

√
−5) = (2)(3),

where all four factors are irreducible.
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Example 3.5. On the other hand, the ring Z[ω], where ω = 1
2 +

√
3
2 i (known as the

Eisenstein Integers), does indeed have unique factorization. This fact follows from
the fact that we can define a division algorithm, from which unique factorization
follows.

We typically denote ideals using Gothic/Fraktur letters. The reasoning behind
ideals is that they just work better than individual elements.

The idea of a prime ideal is very natural to come up with, as ideals are already
related to the idea of “is a multiple of”.

Definition 3.4. An ideal p ⊊ R is a prime ideal if whenever ab ∈ p, then we
have a ∈ p or b ∈ p.

We require that p ⊊ R so that we cannot identify R as a prime ideal of itself.

Something very similar to prime ideals is the idea of a maximal ideal. In fact,
maximal ideals are prime as well.

Definition 3.5. A maximal ideal m ⊊ R is an ideal such that there are no ideals
a or R such that m ⊊ a ⊊ R. In other words, there are no ideals “between” m and
R.

We are now ready to prove that principal ideal domains have unique factorization.

Proposition 3.1. Elements of a principal ideal domain factor uniquely into irre-
ducibles; it is a unique factorization domain.

Proof. Let S be a PID. We will first show existence of a factorization into irre-
ducibles.

Let a0 ∈ S be both nonzero and not a unit. If a is irreducible, then we have
factored a0 into irreducibles. Otherwise, we have a0 = a1b1 for a1, b1 not units.
Note that we have (a0) ⊊ (a1); if we had (a0) = (a1), then we must have b1 a
unit. We can then continue the procedure, resulting in a strictly increasing chain
of ideals

(a0) ⊊ (a1) ⊊ (a2) ⊊ · · · .
We will show that this chain must end at some (an).

One can verify that A = ∪(ai) is itself an ideal of S. Since S is a PID, we have
A = (a) for some a ∈ S, and a ∈ (ar) for r a positive integer. Note that, for any
s ≥ r, (a) ⊆ (ar) ⊆ (as) ⊆ A = (a). This implies that (ar) = (as). Therefore, at
some point, our chain of (ai) becomes constant, so it must terminate. This final
principal ideal is an irreducible factor of a0. Thus we have shown that a0 = p1c1
for irreducible p1 and c1 not a unit.

We can follow a similar procedure for c1 to eventually demonstrate that a0 can
be factored into irreducibles.

We will now show that this factorization into irreducibles is unique.
Suppose to the contrary that we have n ∈ S such that

n = p1p2 · · · pt = q1q2 · · · qs
for irreducibles pi, qi, and without loss of generality let t ≤ s. Then, we have
p1 | (q1q2 · · · qs), which implies that p1 | qj for some j. Without loss of generality
assume that we have p1 | q1. Since p1 and q1 are both irreducible, we have q1 = p1u1

for a unit u1. Substituting for q1 and cancelling out p1 yields

p2p3 · · · pt = u1q2q3 · · · qs.
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We can repeat this process with p2, p3, and so on, yielding

1 = u1u2 . . . utqt+1 . . . qs.

Now, since each of the qi are irreducibles, we must have t = s, so the two factor-
izations are indeed equal. □

Finally, we will distinguish between primes and irreducibles.

Definition 3.6. A unit is an element that divides 1. For instance, in Z, the units
are ±1, and in Z[i], the units are ±1,±i.

We say n ∈ R is irreducible if whenever n = ab, either a or b must be a unit.
On the other hand, x ∈ R is prime if it is not a unit and whenever x|ab, we

have x|a or x|b. That is, if ab is a multiple of x, then either a or b is already a
multiple of x.

4. The Ideal Class Group

With basic ring theory out of the way, we can not begin setting up the ideal
class group. The key objects of interest are number rings and number fields.

We first define algebraic numbers and algebraic integers.

Definition 4.1. A number α is integral over the rationals or the integers if it is
the root of some irreducible (not factorable) polynomial with rational or integral

coefficients. For instance,
√
2 is integral over Z since it is a root of x2 − 2.

As a special case, we say a complex number is an algebraic integer if it is the
root of a monic polynomial with integral coefficients.

Now that we have the proper setup, we can now discuss number fields, which
are like extended rational numbers.

Definition 4.2. A number field is a subfield of C, with finite degree as an
extension of Q. One can show that all number fields uniquely take the form Q(α)
for algebraic α ∈ C. So if α is the root of a degree n polynomial, we have

Q(α) = {a0 + a1α+ · · ·+ an−1α
n−1 : ai ∈ Q}.

We can adjoin more α, but it’s equivalent to adjoining one element.

Of particular interest to us are quadratic fields, those that take the form of
Q(

√
m), for m ∈ Z squarefree. However, we would like to talk about rings that

look like Z[
√
m] or Z

[
1+

√
m

2

]
, which are known as quadratic number rings.

Definition 4.3. The ring of integers or number ring OK of a number field K
is the set of algebraic integers in K.

Equivalently, letting A be the set of algebraic integers in C, we can write OK =
K ∩ A.

It’s called a ring, but is it? We will first show this for quadratic number rings,
then in general.

Theorem 4.1. If f is a monic polynomial with integral coefficients, with an alge-
braic integer as a root, then f is irreducible over Q.

As a corollary, we have:

Corollary 4.1. Algebraic integers in Q are just Z.
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The following corollary is extremely important, as it characterizes the ring of
integers.

Corollary 4.2. Let m be a squarefree (not divisible by the square of a prime)
integer. Then, the set of algebraic integers in Q(

√
m) is:

Z[
√
m] = {a+ b

√
m : a, b ∈ Z},m ≡ 2, 3 (mod 4),

Z
[
1 +

√
m

2

]
=

{
a+ b

√
m

2
: a, b ∈ Z, a ≡ b (mod 2)

}
,m ≡ 1 (mod 4).

Proof. Suppose α = r + s
√
m for rational r and s. Then, note that f(x) = (x −

α)(x+ α) = x2 − 2rx+ r2 −ms2 is a monic polynomial that is irreducible over Q
with α as a root. If 2r and r2 −ms2, f(x) in fact has integral coefficients, so α is
an algebraic integer in that case. What is left is to find the non-integral r and s
such that the above condition holds.

If r, s ∈ Z, then α is clearly an algebraic integer. Otherwise, we must have r = n
2

for some n ∈ Z since we want 2r ∈ Z. Also rewrite s = k
2 for some k ∈ Z. So we

would like r2 −ms2 = n2

4 − mk2

4 ∈ Z. Thus n2 −mk2 ≡ 0 (mod 4). We proceed by
cases on m (mod 4). Note that m ̸≡ 0 (mod 4) as m is squarefree.

Suppose m ≡ 1 (mod 4). Then, we have

n2 − k2 ≡ 0 (mod 4) =⇒ n2 ≡ k2 (mod 4) =⇒ n ≡ k (mod 2).

This implies that, in this case, the set of algebraic integers in Q(
√
m) is indeed{

a+ b
√
m

2
: a, b ∈ Z, a ≡ b (mod 2)

}
.

Now, suppose m ≡ 2 (mod 4). Then, we have n2 ≡ 2k2 (mod 4). Recalling that
x2 ≡ 0, 1 (mod 4) for integer x, we must have n2 ≡ k2 ≡ 0 (mod 4), so n, k are
even, so we just have r, s ∈ Z.

Finally, suppose m ≡ 3 (mod 4). Then, we have n2 ≡ 3k2 (mod 4). We also
must have n2 ≡ k2 (mod 4), so as in the 2 (mod 4) case, we have r, s ∈ Z. These
two cases complete our proof. □

This gives us a specific set for the algebraic integers of Q(
√
m), and it is easy to

check that they also form a ring. To show that the algebraic integers of any number
field form a ring, we need to establish that the sum and product of algebraic integers
are themselves algebraic integers. We will do this a a corollary of this next theorem.

Definition 4.4. A group G is finitely generated if there is some finite set S
(known as the generating set) such that every element in G can be written as the
combination of elements in S and their inverses.

Theorem 4.2. For α ∈ C, the following statements are equivalent:

(1) α is an algebraic integer,
(2) The additive group for Z[α] is finitely generated,
(3) α is in some subring of C with a finitely generated additive group,
(4) αA = {αa : a ∈ A} ⊆ A for a finitely generated additive subgroup A ⊆ C.

Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).
To show that (1) =⇒ (2), note that α is the root of some polynomial in Z

with degree n, so the additive group of Z[α] can be generated with the values
1, α, . . . , αn−1.
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Note that (2) =⇒ (3) trivially, as Z[α] is a subring of C.
Similarly, (3) =⇒ (4) trivially, as we can let A be the subring with finitely

generated additive group that α is a member of.
Finally, we show (4) =⇒ (1). Let A be generated by a1, . . . , an. Then, we can

write the αai as some linear combination of a1, . . . , an with integral coefficients.
Rewriting this in matrix and vector notation, we have

α

a1
...
an

 = M

a1
...
an


for an n × n matrix M over Z that encodes the linear combinations for each αai.
We can rewrite this equation as

(αI −M)

a1
...
an

 = 0,

where I is the n × n identity matrix. Since we know the ai are not all zero, we
know αI −M must have zero determinant. Evaluating this determinant gives

αn + lower-degree terms = 0,

which is a monic polynomial with integral coefficients with α as a root. □

Example 4.1. To clarify the proof of (4) =⇒ (1), suppose we have A = Z[
√
2]

and α = 3 +
√
2. Note that αA ⊆ A and that A is generated by 1,

√
2. Then, we

can write

α

(
1√
2

)
=

(
3 1
2 3

)(
1√
2

)
.

Moving everything to one side, we have((
α 0
0 α

)
−
(
3 1
2 3

))(
1√
2

)
=

(
α− 3 −1
2 α− 3

)(
1√
2

)
=

(
0
0

)
.

Taking the determinant of the matrix gives α2 − 6α+ 11 = 0, which we can verify
has 3 +

√
2 as a root via the quadratic formula.

This theorem implies that the algebraic integers of any number field do indeed
form a ring.

Corollary 4.3. If α, β are algebraic integers, then so are α+ β and αβ.

Since addition and multiplication are commutative and associative, and this
result tells us that addition and multiplication are indeed binary operations, we
know that the ring of integers is indeed a ring.

Proof. Note that Z[α] and Z[β] have finitely generated additive groups by charac-
terization (1). Then, so does Z[α, β], since it is generated by linear combinations
of products of the generators for Z[α] and Z[β].

Now, we note that Z[α, β] must contain α + β and αβ in order to be a ring
extension, so by characterization (3), they are both algebraic integers. □

We will now set up Dedekind domains, which satisfy very useful properties. To
do that, we will first set up integral domains.
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Definition 4.5. An integral domain is a ring where the product of any two
nonzero elements is nonzero.

Definition 4.6. A Dedekind domain R is an integral domain satisfying the
following:

(1) Ideals are finitely generated,
(2) Nonzero prime ideals are maximal,
(3) R is integrally closed in its field of fractions K = {α/β : α, β ∈ R, β ̸= 0}.

So if α/β ∈ K is a root of a monic polynomial with coefficients in R, then
we have α/β ∈ R.

It turns out that the first condition is equivalent to the following:

• Every increasing sequence of ideals I1 ⊆ I2 ⊆ · · · is eventually constant; all
In are equal for sufficiently large n.

• Every nonempty set of ideals has a (not necessarily unique) maximal mem-
ber. That is, there is some M ∈ S such that whenever M is a subset of an
ideal I, then M = I.

Example 4.2. Again, Z is a Dedekind domain.
Ideals are finitely generated since all ideals are principal.
Prime ideals are also maximal, since for each prime p there is no set {kn : k ∈ Z}

for some n ∈ Z that is a subset of (p).
Finally, Z is closed over its field of fractions Q. Let f(x) be a polynomial with

integer coefficients with α ∈ Q as a root. Then, we must have α ∈ Z by the rational
root theorem.

It turns out that all number rings are Dedekind domains, so our statements about
Dedekind domains also apply to number rings. We will now set up the definition
of the ideal class group.

Definition 4.7. Define an equivalence relation ∼ on the set of ideals of O by a ∼ b
if and only if αa = βb for some α, β ∈ O. The number of equivalence classes of
ideals under ∼ is the class number of O, denoted h. These equivalence classes
also form a group under multiplication of ideals, which is known as the ideal class
group. Its elements are known as ideal classes.

We also have a second, equivalent definition, involving fractional ideals.

Definition 4.8. A fractional ideal of a number ring R takes the form αa for α
in the field of fractions of R, which takes the form {β/γ : β, γ ∈ R, γ ̸= 0}, and a
an ideal of R, with α, a nonzero.

We can think of a fractional ideal as representing fractions with denominators
in a.

And now, the definition itself.

Definition 4.9. The ideal class group of an algebraic number field K is the
quotient group JK/PK , where JK is the the group of fractional ideas of the ring of
integers of K, and PK is the subgroup of the principal ideals of JK . Its elements
are also known as ideal classes.

Let’s break down the second definition of the ideal class group.
We take the fractional ideals and mod out by the principal ideals PK , so the

elements of JK/PK are cosets of the form αaPK for all fractional ideal αa ∈ JK .
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Each of our cosets can be thought of as the products of a fractional ideal with all
principal ideals.

It turns out that Definitions 4.7 and 4.9 are equivalent. This mostly boils down
to the cosets in Definition 4.9 in fact being the equivalence classes in Definition
4.7. For instance, let’s just consider the identity element of both groups. Under
the equivalence relation, they are simply the principal ideals (proved later). The
identity element of our quotient group is the “denominator” of the quotient group,
which are the principal ideals.

Now, why do we care about this ideal class group so much? Well, if our ideal
class group is trivial, our number ring has unique factorization.

Theorem 4.3. If a number ring R has a trivial ideal class group, then it has unique
factorization.

Proof. Recall that a trivial group consists of the identity and nothing else. Further,
recall that the principal ideals form the identity for the ideal class groups. Thus,
a trivial ideal class group implies that all ideals are principal, so R is a principal
ideal domain, and thus has unique factorization. □

We also have the following theorem that implies the ideal classes of a Dedekind
domain form a group.

Theorem 4.4. For every ideal a of a Dedekind domain R, there exists an ideal b
such that ab is principal.

See [Mar18, Chapter 3] for a complete proof of this theorem.

Corollary 4.4. The ideal classes in a Dedekind domain form a group under mul-
tiplication of ideals.

Proof. Let R be a Dedekind domain.
Observe that multiplication is associative since normal multiplication (on real

numbers) is. Similarly, the identity is the class containing (1), the principal ideal
generated by the multiplicative identity.

We claim that all principal ideals are in the same class. This is true since for
α, β ∈ R, we have β(α) = α(β).

Now, we show inverses exist. Let a be an ideal that represents an equivalence
class. Then, by Theorem 4.4, there exists some ideal b such that ab is a principal
ideal, which we showed above is a representative of our identity element. □

5. Putting it together

It is possible to prove that the ideal class group is finite for all number rings;
this proof involves thinking about number rings as lattices and volumes on that
lattice. However, we choose to prove the case with quadratic rings, as they have a
nice connection with binary quadratic forms.

First, we will define a discriminant for quadratic number ring, which is an in-
variant related to an integral basis of the ring.

Definition 5.1. Let R be the ring of integers of a number field K. An integral
basis of R is a set {β1, . . . , βn} ∈ R such that every α ∈ R can be uniquely
represented by

m1β1 + · · ·+mnβn,mi ∈ Z.
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The set {β1, . . . , βn} is also known as a basis for R over Z, or a basis for K over
Q.

Also, we have the discriminant of the integral basis be

disc(β1, . . . , βn) = |σi(αj)|2,
where the σi denote embeddings of K ∈ C, and σi(αj) is the matrix where the
entry in the ith row and jth column is σi(αj).

Definition 5.2. The discriminant of a number ring is the unique discriminant
of its integral bases. In the case of the number ring being A ∩ Q(

√
D), it can be

shown to be {
d, d ≡ 1 (mod 4),

4d, d ≡ 2, 3 (mod 4).

See [Mar18, Chapter 2] for an in-depth explanation of integral bases and the
equivalence claimed in this definition.

Theorem 5.1. The class group for quadratic forms with discriminant D is iso-
morphic to the ideal class group of the ring of integers of Q(

√
D) for D < 0.

In particular, the isomorphism takes the primitive positive definite binary qua-

dratic form ax2 + bxy + cy2 to the ideal generated by the set
{
a, −b+

√
D

2

}
.

Proof. See [Cox22, Chapter 5]. □

Corollary 5.1. The ideal class group of the ring of integers of the quadratic number
field Q(

√
D) is finite for D < 0.

Proof. Let the ring of integers of Q(
√
D) be O. By Theorem 5.1, we know the ideal

class group of O has the same cardinality as the class group for quadratic forms
with discriminant D, which we know by Theorem 2.3 to be finite. □
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