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Motivation

The idea is as follows: a common question in combinatorics is
“How many objects of a given size are there in a combinatorial
class?” In analytic combinatorics, when we cannot answer this, we
ask, “Approximately how many are there? Can we bound the error?
If not, how does the error grow?”
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Preliminaries: Generating Functions and Asymptotics

Asymptotics:

f (x) ∼ g(x) ↔ limx→∞
f (x)
g(x) = 1 (asymptotic equivalence)

limx→∞
O(f (x))
f (x) = c for a constant c that is not ∞ (Big O Notation)

limx→∞
o(f (x))
f (x) = 0 (Little o notation)

Generating Functions: Given a sequence an for non-negative
integral n, we can encode this sequence into a generating function, f ,
which satisfies

(OGF) f (x) =
∑∞

n=0 x
n · an,

(EGF) f (x) =
∑∞

n=0
xn·an
n! ,

Stirling’s Formula:
n! ∼

√
2πn · (ne )

n.
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Preliminaries: Complex Analysis Part 1

In the next 3 slides, we will discuss various aspects of complex
analysis related to analytic combinatorics.

Think of a complex function f (z) as a transformation of space.

f ′(z) = limh→0
f (z+h)−f (z)

h (h is complex).

(Cauchy-Reimann Equations) If f is holomorphic, and
f (x + yi) = p(x , y) + iq(x , y), then

∂p

∂x
=

∂q

∂y
and

∂q

∂x
= −∂p

∂y
.

f is holomorphic iff it is analytic, meaning that it can be expressed as
a power series that locally converges to the function.

(Cauchy-Hadamard’s Theorem) A power series converges in the
interior of a circle with radius 1/lim supn→∞ |an|1/n.
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Preliminaries: Complex Analysis Part 2

The analytic continuation of a function f (z) over a domain where f is
undefinied is the unique function g(z) that is holomorphic on this
domain and f ’s and equal f when their domains intersect.

A singularity is a point that must be excluded from any analytic
continuation. A pole is a singularity (locally) of the form 1/(z − a)n

for positive integral n.

For some singularities, for example, of the form
√
z − a, a branch cut

is necessary.

There must be at least 1 singularity on the boundary of convergence
of a function’s power series.

(Vivanti-Pringsheim Theorem) If the power series of f has
non-negative coefficients, the closest (or one of the closest)
singularity is on the positive half line.

(Laurent Series) Many complex functions can be represented by a
power series plus a sum of the form

∑m
n=1

bn
(z−a)n .
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Preliminaries: Complex Analysis Part 3 - Contour
Integration + Gamma Function

A contour integral is of the form
∫
γ f (z)dz , where γ(t) ∈ C,

t ∈ [a, b].

Cauchy’s Coefficient Formula: an = 1
2πi

∫
γ

f (z)
zn+1 dz where γ is a closed

contour inside f ’s domain where it is analytic.

The Gamma Function, defined as Γ(z) =
∫∞
0 t(z−1)e−tdt, is a

contiuous representation of (n − 1)!, and though converges for
Re(z) > 0, can be analytically continued to the entire complex
domain, except for poles at 0 and the negative integers.
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Exponential Estimates

By the Cauchy-Hadamard Theorem, the location of singularities
(specifically the dominant, or closest ones) provides important information
about the asymptotic scale of coefficients.

If r is the distance from the origin to the nearest singularity, then

an = (1/r)n · θ(n),

where θ(n) is a sub-exponential function satisfying
lim supn→∞ |θ(n)|1/n = 1
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Meromorphic Aymptotics Approach

Given a generating function f (z), which has no singularities in the
complex plane on the circle centered at the origin with radius r , and only
pole singularities within this circle, assume that there are j poles inside,
and the kth pole is located at pk . Assume that the pole is of multiplicity
βk , and the Laurent series expansion of the f at pk is
f (z) = F (z) +

∑β
m=1(

ck,m
(z−pk )m

), where F is analytic. Then the coefficient
of zn in the Maclaurin expansion of f , an, satisfies

an ∼
j∑

k=1

βk∑
m=1

ck,m
(−1)m(pk)m+n

·
(
n +m − 1

n

)
= h(n)

(this is an exponential-polynomial on n) with error ϵn = |h(n)− an| ≤ M
rn

where M = supz∈γ |f (z)|, where γ is the contour of the counterclockwise
oriented circle with radius r surrounding the origin.
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Example - Zag Numbers Part 1

For odd n, consider the number of permutations of size n such that
each element is alternatingly greater than or less than the previous (let
this be an) (we start with an increase (up-down)). For example, if n = 5,
then 2, 4, 1, 5, 3 is an alternating permutation. One can see that the
number of down-up alt. permutations is equivalent to up-down, by
subtracting each element from n + 1, so we can get the recurrence
2an+1 =

∑n
k=0

(n
k

)
akan−k by iterating on the location of the largest

element. If f (x) is the EGF, 2 df
dx = (f (x))2 + 1 (the +1 because

2 ∗ a1 = 2 = 1 + a20 = 2) Solving this differential equation by separation of
variables with I.C. a0 = 1, we get f (x) = tan(x/2 + π/4) = tanx + secx .
Since n is odd, we care about the coefficients of the Maclaurin expansion
of tanx multiplied by n!.

Neil Sriram Analytic Combinatorics - Singularity Analysis July 15, 2024 9 / 17



Example - Zag Numbers Part 2

Notice that tan(a+ bi) only has singularities when
cos(a+ bi) = cos(a)cos(bi)− sin(a)sin(bi) =
(eb + e−b)cos(a)/2− i(eb − e−b)sin(a)/2 = 0, which only occurs at
a+ bi = π/2 + kπ for any k ∈ Z. These singularities are poles, since sin
and cos are entire (analytic on all C), so meremorphic asymptotics applies.
sin(π/2) = 1, and cos(x) = cos((x − π/2) + π/2) = −sin(x − π/2) =
−(x − π/2)(1 + (x − π/2)2F (x − π/2)), where F is an analytic function
at 0. Therefore, tanx = −1

x−π/2 + G1(x − π/2) for some analytic G1 at 0,

and similarly tanx = −1
x+π/2 + G2(x + π/2) for analytic G2. The rational

approximation for tanx at these singularities is 2/π
1−x ·2/π − 2/π

1+x ·2/π .

Therefore, an
n! ∼ 2 · ( 2π )

n+1 for odd n, or by Stirling’s Formula,

an ∼ 4
√
2πn

π
· ( 2n
πe

)n , with a possible error bound M
πn , where

M = supγ tan(z) for γ being the circle centered at the origin with radius π.
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Singularity Analysis Theorems Page 1

Singularity Analysis is a more robust extension of Meromorphic
Asymptotics which can analyze various types of singularities that are not
poles. Here, we present the fundamental theorems and will discuss the
proofs. We denote the nth coefficient of f (z) as [zn]f (z). Note that we
assume singularities are at 1, because, based on the exponential factor
theory reviewed in slide 7, we can analyze the location and nature of a
singularity seperately.

[zn](1− z)−α =
∏n−1

k=0 (α+k)
n! ∼ nα−1

Γ(α) · (1 +
∑j−1

k=1
ek
nK
), α ∈ C, ek =∑2k

l=k γk,l
∏l

m=1(α−m), γk,l := [vkt l ]e−t(1− vt)−1− 1

v with error

O( 1
nj
).

[zn](1− z)−α(1z ln(
1

1−z ))
β ∼ nα−1

Γ(α) (ln(n))
β · (1 +

∑j−1
k=1

Ck

(ln(n))k ) =

h(n),Ck =
∏k−1

m=0(β−m)
k! Γ(α) · ( dk

dsk
( 1
γ(s)))|s=α with error O(1/(ln(n))j).

If α is a negative integer k or 0, consider the limit as α → k (or 0), to
see only a slight alteration in the formula. Also, one can derive better
error estimate of the scale O(1/nm) if β is a positive integer, which is
relatively simple by following a similar process to the proof of the
original asymptotic, but we will not go into details now.
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Singularity Analysis Theorems Page 2

(HLK Tauberian Theorem) If A(n) satisfies limn→∞ A(cn)/A(n) = 1,
for c > 0, then A is slowly varying, and
[zn](1− z)−αA( 1

1−x ) ∼
nα−1

Γ(α) A(n).

If f (z) = O((1− z)−α(ln( 1
1−z ))

β), then [zn]f (z) = O(nα−1(ln(n))β),

and similarly, if f (z) = o((1− z)−α(ln( 1
1−z ))

β), then

[zn]f (z) = o(nα−1(ln(n))β). A similar result holds for the HLK
Tauberian Theorem.

If f (z) ∼ (1− z)−α · (1z ln(
1

1−z ))
β, then [zn]f (z) ∼ nα−1

Γ(α) (ln(n))
β and

a similar result holds for the HLK Tauberian Theorem (this collorary
follows directly from the previous bullet and the fact that
f (x) g(x) ↔ f (x) = g(x) + o(g(x))).
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Example Part 1

Problem: Define a Dyck-extension object to be an object of size n
which is composed of a Dyck word (a permutation of an equal number of
As and Bs where at no point there are more Bs than As) of length 2n − 2
and a permutation of the integers from 1 through n. Find an asymptotic
approximation for the number of sets of Dyck-extension objects that have
a sum of lengths of n. Solution: Notice that regular Dyck words are all of
the form A”dyck word”B”dyck word,” giving Segner’s reccurence
cn+1 =

∑n
k=0 ck−nck , c0 = 1 for cn as the number of Dyck words of length

2n. The OGF of cn, satsfies c(x) = 1 + x(c(x))2, and therefore

c(z) = 1−
√
1−4x
2x , but since we care about the number of Dyck words of

length 2n − 2, our generating function is 1−
√
1−4x
2 . Since we are adding a

permutation of n integers to each object, we are multiplying each
coefficient by n!, so it suffices to treat our function as an EGF. We have to
compose our EGF with ex , as we are considering a set of Dyck-extension

objects, so we end up with the EGF e
1−

√
1−4z
2 = f (z).
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Example Part 2

Now, we begin the analytic combinatorics stage. f (z) =
√
e · (1−

√
1−4z
2 + 1−4x

8 − ...) = −
√
e ·

√
1−4z
2 + F1(z)+ (1− 4z)3/2 · F2(z),

where F1,F2 are analytic at the singularity z = 1/4. Therefore, we have

that the desired coefficient is ∼ 4n · −
√
e

2 · 1
n1.5Γ(−0.5)

= 4n−1
√

e
π · n−1.5

with error O(n−2.5). Using Stirling’s formula, we get that the desired
quantity is ∼ 4n−1√e · n−1.5 ·

√
2n · (n/e)n.
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Overview of Saddle Point Method Approach

The saddle point method is an alternate approach to determining
asymptotics, which greatly differs from singularity analysis.

The idea is as follows: By Cauchy’s Coefficient Formula,

[zn]f (z) = 1
2πi

∫
γ

f (z)
zn+1 dz , which, by substitution, can be expressed as an integral

with real bounds and complex integrand. Then, we can write the integrand as
eF (z) for some function F , and after determining the maximum (called the saddle
point because, in the complex plane, the only stationary points are saddle points
(can be proven by considering directional derivatives of the function mapping
complex value to magnitude of the function)), F , can locally be approximated by
a constant, a squared term, and a function on the scale of O((n − a)3). This
allows us to approximate the integral as a gaussian integral, provided that we can
complete the tails of the gaussian integral (1), ignore the tails of the original
integral (2), and that the cubic term can be ignored. We choose the main part of
the contour (not the removed tails) to be large enough such that (1, 2) are
satisfied (a heruistic is limn→∞ l2 · f ′′(a) = +∞, where a is the saddle point and l
is the main contour length), but small enough such that (3) is satisfied
(limn→∞ l3 · f ′′′(a) = 0).
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Outline of an Example

We will determine an asymptotic for [zn]ez , which, when taking the

reciprocal, proves Stirling’s formula. [zn]ez = [zn]f (z) = 1
2πi

∫
γ

f (z)
zn+1 dz (γ

is a counter-clockwise oriented circle with radius r,) which, by substitution,

= en

2πnn ·
∫ π
−π e

n(e iθ−1−iθ)dθ (we set r = n, because, in this integral, it
places the saddle point (where the first derivative of the integrand is 0) on
the real line (at θ = 0)). We shift the interval of integration and split it
into the dominant part, on the interval [−θ0, θ0], and the part that tends
to 0 θ0, 2π − θ0. In order to satisfy the heruistic mentioned in the previous
slide, we set θ0 = n−2/5 (nα would work for α ∈ [−1

2 ,−
1
3 ]). By Taylor

approximation of n(e iθ − 1− iθ), and u-substitution, we can transform the
integral into an approximate Gaussian integral, which leads us to the
asymptotic [zn]ez = 1

n! ∼
en

nn
√
2πn

. We can then rigorously show that the

other integral approaches 0 as n → ∞, that the tails of the Gaussian
Integral tend to 0 (so we can add them), and that the non-quadratic part
of the Taylor Expansion approaches 0 when considered in the integral.
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End

Thanks for your attention!
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