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1 Introduction

This paper is an expository paper, seeking to explain some basic properties and facts re-
lated to Permutahedra in an accessible manner to readers who have little to no background
knowledge in this field of study. We also investigate some combinatorial properties they (Per-
mutahedra) hold. The goal of the paper is to rigorously define permutahedra, detail some
basic properties of Permutahedra that can be found through relatively simple methods, and
then we use these results as a base upon which we prove more advanced properties.

The major results this paper aims to prove are Rado’s theorem, the formula for the volume
of a regular permutahedron, as well as the number of each type of facets a permutahedron
has.
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2 Preliminaries

2.1 Assumed knowledge

It is assumed the reader is familiar with the representation of points in Rn with respect to
the standard basis, as well as intuition of basic properties of polytopes in R2 and R3, which
are then extended to higher dimensions.

2.2 Definitions

Now, we define some basic terms that will come up frequently in the discussion of permuta-
hedra.

1. Polytopes: Polytopes are higher-dimensional analogs of polygons, and are defined by
the convex hull of a set of points in Rn. Note that polytopes are necessarily, by
definition, convex, unlike polygons.

2. N-tuples: N-tuples are ordered sets of n numbers, where n is a positive integer. In
this paper, n-tuples will be used to represent coordinates of points in Rn, and thus its
elements will be real numbers.

3. Affine spaces: Affine spaces are, informally, vector spaces without a 0 vector in the
sense that they can give the coordinates of a point without reference to a 0 vector.
Since this paper does not focus on affine spaces, we can think of them as a subspace
of dimension Rk in Rn where k < m combined with a translation. For visualisation
purposes, consider the set of points in 3-dimensional space defined by the equation
x + y = z This is a affine subspace of dimension 2 in R3. If the affine subspace is of
dimension n− 1, we specifically refer to it as a hyperplane

4. Facets: Facets are the n-dimensional sides of a polytope. Any polytope of dimension
n will have sides of dimension 0, 1, 2, . . . n − 2, n − 1. For example, a 3 dimensional
cube has 8 facets of dimension 0 (vertices), 12 facets of dimension 1 (edges), and 6
facets of dimension 2 (sides). Similarly, higher dimensional polytopes have facets of all
dimensions strictly less than itself.

5. Convexity: A set of points S in Rn is said to be convex if A,B ∈ S −→ A+ t(B−A) ∈
S∀t ∈ [0, 1] Intuitively, this statement states that for any two points A,B that are in
set S, the line that connects the two points is also completely enclosed by set S.
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Below is a quick visual to clarify the previous statement.

As we can see, the set on the left is not convex, since it doesnt contain the indicated
line. The set on the right, however, is.

Similarly, the solid on the left is not convex, while the solid on the right is. Note that
the lines have been produced indefinitely for viewing purposes, but an accurate test of
convexity would be of line segments with endpoints in the solid. However, this would
make the contrast less visible to readers.

6. Convex hull: A convex hull is the minimum convex set containing a set of ”root” points.
In the case of polytopes, the root points must be finite in number. An alternate way
to think of the convex hull would be as the intersection of all sets containing the root
set, since the intersection of convex sets preserves convexity.

Proof. Let A,B be sets in Rn. We must prove that if A,B are convex, A∪B is convex If
points α, β ∈ A∪B −→ α, β ∈ A,α, β ∈ B. Since α, β ∈ A,A+t(B−A) ∈ A∀t ∈ [0, 1]
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and since α, β ∈ B,A + t(B − A) ∈ B∀t ∈ [0, 1]. Since A + t(B − A) ∈ A,B∀t ∈
[0, 1] , A+ t(B − A) ∈ A ∪B∀t ∈ [0, 1]

A more intuitive, yet extremely informal way, that personally helped me visualise the
convex hull of a set of points is by imagining a large balloon that completely enclosed
all the points, and then letting the air out. As the balloon shrunk, it would, beyond a
point, be blocked from further shrinking by the points, and the surface of the balloon
would represent the convex hull. Note that this explanation is highly informal, and
only serves to potentially aid with building reader intuition.

r

3 General discussion of permutahedra

3.1 Definition

Firstly, what are permutahedron? Permutahedra are defined as follows: If we have an n-
tuple, the coordinates of the corresponding permutahedron are defined by the application of
the symmetric group onto the coordinates. Note that the symmetric group of a set consists
of all possible permutations of this set.

3.2 Basic properties

Trivially, we can see the a permutahedron of degree n will have n! vertices, since a set
of n elements has n! permutations. For the sake of this paper, we ignore ”degenerate”
permutahedra, where multiple elements of the n-tuple are equal. This is due to the fact that
they are degenerate results in them not possessing the same ”neat” combinatorial properties
that non-degenerate permutahedra possess.

The first interesting property of permutahedra is that n-dimensional permutahedra are
in fact objects of dimension n − 1. That is to say, they are entirely contained by an affine
space of dimension n−1. In fact, we can make a slightly stronger claim that this affine space
which the permutahedron lies on will intersect all the axes at the same value.

Corollary 3.1. Permutahedra of degree n are objects of dimension n− 1, and the

formula of the plane they lie on is of the form

∑n
i=0 xi

m
= 1

Proof. Hyperplanes in Rn can be defined as equations of the form

c1x1 + c2x2 + c3x3 · · ·+ cnxn = 1

Or, equivalently, in the more compact form

n∑
i=0

cixi = 1
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. If we can find a set C = {c1, c2 · · · cn} such that the above equation holds true for the
coordinates of all the vertices of the permutahedron, we can prove it lies on a n−1 dimensional
hyperplane and thus, is an n− 1 dimensional object.

‘If we set c1 = c2 . . . = cn = 1
m
, we can factor it out of the sum to obtain

∑n
i=0 xi

m
= 1 and

thus
∑n

i=0 xi = m Now, regardless of the exact permutation of the n-tuple, the LHS is always
constant. Therefore, we can simply compute the sum of the elements of the n-tuple, and set
the coefficients to its reciprocal. Thus, the equation for the plane on which a permutahedron
lies is given by

∑
xi =

∑
Ni where Ni is the ”i”th member of the n-tuple when arranged in

decreasing order.

Note that the order does not matter in this case, but this convention is useful to adopt
for other proofs within this topic.

In addition to that the centre of a permutahedron also has quite a neat expression.

Corollary 3.2. The centre of a permutahedron lies at the coordinates

xn =

∑
Ni

n

Proof. We define the ”centre” as the point within the permutahedron which is equidis-
tant from all the vertices. Consider the two vertices A = (a, b,N1, N2 · · ·Nn−2) and B =
(b, a,N1, N2 · · · , Nn−2)

Clearly the centre O = c, d, x1, x2 · · · , xn−2 must be equidistant from A and B.
By considering the Euclidean metric and ignoring terms that are the same for OA and

OB, we obtain the equation (a− c)2 + (b− d)2 = (a− d)2 + (b− c)2. By expanding both
brackets and subtracting the second equation from the first one, we obtain the equation
c2 − d2 + 2ad − 2ac = c2 − d2 + 2bd − 2bc. By subtracting (c2 − d2) from both sides and
factorising, we obtain 2a(d − c) = 2b(d − c). Now, either a = b, or d − r = 0. Since a
and b are members of our n-tuple, any arbitrary permutahedron can be constructed such
that a ̸= b. Thus, we must conclude that d − r = 0, d = r. Since this exact process can
be repeated by swapping two elements of any xi, we conclude that any two coordinates
must be equal, thus every two coordinates must be equal, and the centre has the equation
x1 = x2 = · · · = xn = k. Since we know the centre of the permutahedron must lie on the
plane of the permutahedron itself,

k + k · · ·+ k = nk =
∑

Ni =⇒ k =

∑
Ni

n

Alternatively, this value k can be thought of as the mean of the n-tuple.

3.3 Alternate definition

Although it appears relatively self explanatory, it is important to note that permutahedra are
defined as the convex hull of the set of all permutations of their root n-tuple. Although this
definition follows directly from their definition, and the definition of polytopes, it’s extremely
important to conceptualise.
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3.4 Rado’s theorem

An extremely important result in the discussion of polyhedra is Rado’s theorem, which
characterises whether any given point lies within a certain permutahedron. We now explain
this characterisation, as well as provide a proof for Rado’s theorem.

Rado’s theorem states that a certain point lies inside a permutahedron if and only if two
criteria are fulfilled. Let yi denote the xi coordinate of the point we are testing for, and
recall the Ni convention we adopted earlier. The two criteria are as follows; firstly,∑

yi =
∑

Ni

and secondly, ∑
i∈S

yi ≤
|S|∑
i=1

Ni

The first statement simply states that the sum of the coordinates of the point must
be equal to the sum of the n-tuple, which is a result we have already covered in sufficient
detail in 3.1. This statement simply states that a point must lie on the plane that defines
a permutahedron to be inside a permutahedron, which seems quite intuitively true. For
example, if one has a certain solid in R3, for a point to be inside that solid, it must first
be in 3 dimensions. Any point with non-zero vector components of higher dimensions will
obviously, no matter what, not lie in this solid.

However note that this is merely an only if condition. That is to say- it’s a check for
whether a point is in a permutahedron. We know that any point that doesnt satisfy this
check is not within the permutahedron. However, it doesn’t ensure that every point that
satisfies this test does lie within the permutahedron. That’s where the second part of Rado’s
theorem comes into play

The second statement, although appearing somewhat difficult to digest, can be equiv-
alently expressed in the following manner: For any number ”S” less than n, the sum of
the S greatest members of the n-tuple must be greater than or equal to the sum of any S
coordinates of the point. Although this definition may at first seem quite arbitrarily chosen,
the proof can be explained with the techniques and ideas introduced so far, albeit with some
difficulty.

If we consider two points A & B that satisfy this second condition, it is (with some
consideration) easy to see that tA + t′B also satisfies these conditions, where t, t′ are real
numbers that sum to 1. Therefore if A,B lie within the permutahedron, every point between
them also lies within the permutahedron, since we have simply restated the definition of
convexity, and the permutahedron is merely the convex hull of its vertices. Now, we can
simply induct on the number of dimensions to prove that every point satisfying this linear
inequality must lie within the permutahedron, completing the if condition of the proof,
proving Rado’s Theorem in both directions.

If a point (y1, y2) lies on this line segment, y1 < x1 and y2 > x2
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4 Properties of Regular permutahedra

4.1 Definition

So what are regular permutahedra? Like regular polygons, regular permutahedra are defined
as permutahedra with all side lengths equal to each other.

4.2 Elaborating further

Recall that sides of a permutahedra are between vertices that have identical coordinates, ex-
cept with the relative positions of two vertices, Nk and Nk+1, swapped (recall our convention
of numbering elements of the n-tuple based on ordering). Note that this implies the pair of
vertices swapped must be consecutive when arranged in decreasing order.

4.3 Properties of n-tuple

One interesting aspect of regular polytopes, is that the property of regularity allows us to
infer certain information about the root n-tuple. For all sides to be equal, the distance
between the points with Nk and Nk+1 swapped must be the same. Since all the coordinates
except two are the same, all the terms in the Euclidean metric cancel out, and we’re left
with the expression

√
2 (Nk −Nk+1) For this expression to be constant for all choices of k,

it’s obvious that the difference of successive terms of the n-tuple must be constant, and the
members of the n-tuple must form an arithmetic progression.

4.4 Non-applicability to higher dimensional facets

Unfortunately, this notion of regularity can’t be applied to the higher dimensional facets of
the permutahedra. That is to say, the volumes/hypervolumes of 2-D, 3-D· · · facets are not
all equal

The proof of this is simple: Note that a non-degenerated permutahedron generated by a
4-tuple (also known as P4) is in fact a truncated octahedron - a 3-D solid with 6 square and 8
hexagonal faces. Since the square faces and hexagonal faces have the same side length, they
trivially dont have the same area . To extend this idea to higher-dimensional facets, one can
simply notice that permutahedra have more than one type of polytope as higher-dimensional
facets, indicating that they have different volumes since they have the same sidelength.

5 Combinatorial properties of permutahedra

5.1 Counting facets

This section is, in my opinion, the most interesting aspect (so far) of permutahedra, and it
characterises the exact combinatorial structure given by a permutahedron’s facets. Similarly
to how we characterised the edges of a permutahedron as necessarily having vertices differing
by only one swap, faces of dimension n− k can be characterised as being in bijection with
the subdivision of {1, 2, 3 · · ·n} into k disjoint, non-empty blocks. The number of ways to
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perform this subdivision of the first n numbers into k disjoint sets is given by the Stirling

numbers of type 2, denoted by
{n

k

}
. However, note that these Stirling numbers only relate

to the exact subsets/blocks made, whereas the faces of a permutahedron are given by all
possible permutations as well. One can observe that each partition of the first n numbers
into k subsets, will also have k! permutations (since all the subsets are distinct). Therefore,
we notice that the number of facets of dimension n − k is given by the extremely compact
equation

T (n− k) = k!
{n

k

}
5.2 Volume

An extremely interesting fact about permutahedra is that if we project the regular permuta-
hedron given by P (0, 1, · · ·n− 1) onto dimension n− 1 (by replacing the coordinate of any
one of the axes with 0 in all the vertices) the volume of this projected solid will always be
nn−2. Although a proof is not provided, since it is outside the scope of explanation of this
paper, it’s a fact that some reader might find particularly interesting, and could potentially
incite the desire for further research on this topic.
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involves graph theory, a more formal definition of features using the minimisation of the dot
product, and perhaps some research into degenerate polytopes as well.
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