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Abstract. We look at the Longest Increasing Subsequence (LIS) in the context of the
Ulam-Hammersley problem. We introduce fundamental concepts such as permutations,
increasing and decreasing subsequences, and the definitions of LIS and Longest Decreasing
Subsequence (LDS). The historical development is traced from the Erdős-Szekeres theorem
to the results of Baik, Deift, and Johansson (BDJ). We detail the Robinson-Schensted-
Knuth (RSK) correspondence, proving the equivalence of the LIS length to the length of
the first row in the resulting Standard Young Tableaux (SYT). Key results, including the
Erdős-Szekeres theorem, Hook-Length Formula, and Plancherel measure, are discussed. We
then focus on the Ulam-Hammersley problem, analyzing the asymptotic behavior of the LIS
length in random permutations, with results by Logan-Shepp and Vershik-Kerov confirming
Hammersley’s conjecture. Finally, we present the BDJ theorem, which describes the limiting
distribution of the LIS length and its connection to the Tracy-Widom distribution with a
small connection to random matrix theory.

1. Introduction

This paper discusses the Longest Increasing subsequence in the context of the Ulam-
Hammersley problem and various surrounding theorems. Let Sn denote the symmetric group
of all permutations of n distinct numbers. We write permutation σ ∈ Sn as a sequence,
σ = (σ1, σ2, . . . , σn). An increasing subsequence of σ is a subsequence σi1 , σi2 , . . . , σik that
satisfies σi1 < σi2 < . . . < σik and i1 < i2 < . . . < ik. Similarly, a decreasing subsequence of
σ is a subsequence σj1 , σj2 , . . . , σjl that satisfies σj1 > σj2 > . . . > σjl and j1 < j2 < . . . < jl.
For example for σ = (5, 6, 4, 2, 7, 1, 3), (5, 6, 7) is an increasing subsequence and (5, 4, 3) is a
decreasing subsequence.

We denote the length of the Longest Increasing Subsequence (LIS) and the Longest De-
creasing Subsequence (LDS) of σ as L(σ) and D(σ), respectively. For σ = (5, 6, 4, 2, 7, 1, 3),
L(σ) = 3 and D(σ) = 3.

The study of longest increasing subsequence began with Erdős and Szekeres [3] in 1935,
who proved that any sequence of n2 + 1 distinct numbers contains either an increasing or
a decreasing subsequence of length n + 1. Ulam [11] later conjectured about the expected
length of the longest increasing subsequence in a random permutation, leading to the Ulam-
Hammersley problem. In the 1970s, Logan-Shepp [6] and Vershik-Kerov [12] independently
showed that the expected length of LIS converges asymptotically to 2

√
n. In 1999, Baik,

Deift, and Johansson [2] determined the limiting distribution of the LIS length, linking it to
the Tracy-Widom distribution and providing a precise description of the fluctuations around
2
√
n.

In the second section of this paper we will discuss the RSK correspondance and the
bijection that Schensted presented between random permutations in Sn and pairs of standard
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Young Tableaux. In this section, we will also discuss the Erdős-Szekeres Theorem, Hook-
Length Formula, and the Plancherel Measure. In the third section we will discuss the Ulam-
Hammersley problem, and various advancements made since Ulam posed the question about
the distribution of the LIS length in a random permutation. In the fourth section we will
discuss the distribution of LIS length.

1.1. Background.

1.1.1. Longest Increasing Subsequence. The Longest Increasing Subsequence (LIS) of a se-
quence is defined as the longest such subsequence of the original sequence where the elements
are in strictly increasing order. For a given sequence A = {a1, a2, . . . , an}, a subsequence
A′ = {ai1 , ai2 , . . . , aik} is an increasing subsequence if 1 ≤ i1 < i2 < . . . < ik ≤ n and
ai1 < ai2 < . . . < aik . Longest subsequence is the longest form of such subsequence.

1.1.2. Longest Decreasing Subsequence. The Longest Decreasing Subsequence (LDS) of a se-
quence is defined analogously to the LIS, but with elements in strictly decreasing order. For
a given sequence A = {a1, a2, . . . , an}, a subsequence A′ = {ai1 , ai2 , . . . , aik} is a decreasing
subsequence if 1 ≤ i1 < i2 < . . . < ik ≤ n and ai1 > ai2 > . . . > aik .

1.1.3. Permutation. A permutation of a set is an arrangement of its elements in a specific
order. For instance, possible permutations of the set {1, 2, 3} are:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

1.1.4. Young Diagram. For n ∈ N , we define a partition of n is a way to represent n as a sum
of positive integers. Various summands represent the partition of n. When the summands
are arranged in a decreasing order, the summands constitute parts of a Young Diagram. For
instance, one possible partition when n = 10 is (5, 3, 1, 1) and the corresponding Young
Diagram is shown below.

1.1.5. Young Tableaux. A Young Tableaux, referred to as Standard Young Tableux or SYT,
is a Young Diagram where the cells of the diagram have been filled with distinct numbers.
These numbers are arranged in an increasing order in each row and column. For instance,
below we have a Young Tableaux where the cells have been filled with 9 consecutive numbers
arranged in a non-consecutive permutation.

1 3 5 8
2 6 9
4 7
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1.1.6. Robinson-Schensted-Knuth (RSK) Correspondence. The RSK correspondence is a
combinatorial algorithm that converts any permutation to a pair of Standard Young Tableaux
(SYT). The length of the LIS of the permutation is equal to the length of the first row of
the SYT and length of LDS is equal to the length of the first column of the SYT.

Example 1.1.1. Consider the permutation σ = (4, 3, 1, 2). Using the RSK correspondence,
we obtain the Young tableaux:

1 2
3
4

The length of the LIS is 2, corresponding to the first row of the tableau. The length of
the LDS is 3, corresponding to the first column of the tableau.

1.2. Airplane Boarding. In the context of airplane boarding, a naive model can be con-
structed where passengers board the plane in a specific order, represented by the sequence
w = a1a2 · · · an for seats 1, 2, . . . , n. Each passenger takes one time unit to be seated after
arriving at their seat. The boarding process can be analyzed using the concepts of increasing
and decreasing subsequences. For instance, the total waiting time for all passengers is the
length of the longest increasing subsequence (LIS) of the boarding sequence.

For a more sophisticated analysis, [1] demonstrated that the usual system of boarding from
back-to-front does not significantly outperform a random boarding process. Instead, a more
efficient method involves boarding passengers in the order of window seats first, followed by
center seats, and finally aisle seats. This method minimizes the waiting time and congestion
during the boarding process.

1.3. Notations. We use the following notations used in this paper.

• Sequences are denoted by σ.
• The length of a sequence σ is denoted by |σ|.
• Subscripts are used to indicate elements of a sequence, e.g., σi is the i-th element of
the sequence σ.

• The Length of the LIS of a sequence σ is denoted by L(σ).
• The Longest Decreasing Subsequence (LDS) of a sequence σ is denoted by D(σ).
• The expected length of the LIS for a random permutation of n elements is denoted
by ln.

• Sn denotes the symmetric group of all permutations on n elements.
• λ represents shape of a Young Tableau.

2. The RSK Correspondence

The Robinson-Schensted-Knuth (RSK) algorithm constructs a bijection between a permu-
tation and a pair of standard Young tableaux (SYT) that have the same shape.

2.1. Algorithm. Given a permutation σ = (σ1, σ2, . . . , σn), the RSK algorithm works as
follows:

(1) Start with an empty tableau.
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(2) For each element σi in the permutation, insert it into the tableau using the following
row insertion method:
(a) Place σi in the first row, replacing the first element greater than σi. If σi is the

largest element, place it at the end of the row.
(b) The replaced element is bumped to the next row.
(c) Continue the above two steps using the bumped element to be inserted in the

subsequent rows.
This process constructs the P-tableau (insertion tableau).

(3) Simultaneously, construct the Q-tableau (recording tableau) to record the order of
insertions. Each square in the Q-tableau is given the number of the time step the
square was created.

2.1.1. Example Execution. Consider the permutation σ = (3, 5, 4, 9, 8, 2, 7):

Time Step 1 2 3 4 5 6 7

Insertion 3 5 4 9 8 2 7

P-tableau 3 3 5 3 4

5

3 4 9

5

3 4 8

5 9

2 4 8

3 9

5

2 4 7

3 8

5 9

Q-tableau 1 1 2 1 2

3

1 2 4

3

1 2 4

3 5

1 2 4

3 5

6

1 2 4

3 5

6 7

The length of the first row of the P-tableau is 3, which corresponds to the LIS of the
permutation σ. The length of the first column of the P-tableau is 3, which corresponds to
the LDS of the permutation σ.

2.2. Bijection and SYT. The RSK algorithm ensures that both the P-tableau and Q-
tableau are standard Young tableaux (SYT) of the same shape. The length of the first row
of the P-tableau corresponds to the length of the LIS of the permutation and the height of
the first column corresponds to the length of the LDS of the permutation.

Now we prove that the RSK correspondance results in a SYT whose first row’s length is
equal to the length of LIS. [8]

Definition 2.2.1. The jth basic subsequence of a permutation is the collection of numbers
which are inserted into the jth column in the first row of the P-tablaeu

Lemma 2.2.2. Each basic subseqence is a decreasing sequence

Proof. Every time a number is inserted in the jth place in the first row of the P-tablaeu it
must be less than the number that it displaces. ■

Lemma 2.2.3. For any element in the j-th basic subsequence, there exists an element in the
(j-1)-th basic subsequence that is smaller and appears earlier in the given sequence.
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Proof. The number in the (j-1)-th position of the first row, after inserting the given element
of the j-th basic subsequence, is that element of the (j-1)-th basic subsequence. ■

Theorem 2.2.4. The number of columns in the P-tableau matches the length of the longest
increasing subsequence of the related sequence.

Proof. The number of columns is equal to the number of basic subsequences. As per Lemma
2.2.2, an increasing subsequence can have no more than one element from each basic subse-
quence. Lemma 2.2.3 shows that we can form an increasing subsequence with one element
from each basic subsequence. ■

Theorem 2.2.5. The number of rows in the P-tableau matches the length of the longest
decreasing subsequence of the related sequence.

This theorem can be proven using symmetrical property of RSK, which states that running
the RSK algorithm on the reverse sequence of a permutation of n numbers will result in a
SYT that is the transpose of the SYT generated by running RSK algorithm on the original
permutation.

2.3. Erdős-Szekeres Theorem. Erdős and Szekeres produced the first results concerning
increasing and decreasing subsequences.

Theorem 2.3.1. Let σ ∈ Sn where n > r · s and r, s ∈ N. Then, either the length of
the longest increasing subsequence L(σ) exceeds r or the length of the longest decreasing
subsequence D(σ) exceeds s.

Proof. Suppose σ is a permutation of n elements, and assume for contradiction that both
L(σ) ≤ r and D(σ) ≤ s. Consider a Young tableau constructed from σ such that the tableau
fits within a rectangle of width r and height s, thus containing r · s boxes.

We illustrate the SYT below:

σ(1) σ(2) · · · σ(r)
σ(r + 1) σ(r + 2) · · · σ(2r)

...
...

. . .
...

σ((s− 1)r + 1) σ((s− 1)r + 2) · · · σ(rs)

Since n > r · s, there must be at least r · s + 1 elements to place in the tableau. By
the pigeonhole principle, inserting one more element into this already full tableau forces an
increase in either the number of rows or the number of columns.

This implies that the tableau must have either more than r columns or more than s rows,
which contradicts our assumption. Therefore, we must have either L(σ) > r orD(σ) > s. ■

2.4. The Hook Length Formula.

2.4.1. Definition. Let fλ denote the number of Standard Young Tableaux (SYT) of shape
λ. Where λ represents a partition of a positive integer n, we can express this as:

λ = (λ1, λ2, . . . , λk)

where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and
∑k

i=1 λi = n.
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The RSK correspondence provides a bijection from permutations to pairs of Standard
Young Tableaux (SYT), P and Q, both of which have the same shape represented using λ.
The term fλ represents the number of such tableaux, and therefore (fλ)2 represents all the
permutations covered by λ. The summation over all these, for all possible shapes λ, is equal
to the total number of permutations: n!:

(2.4.1)
∑
λ⊢n

(fλ)2 = n!.

MacMahon initially provided a formula for fλ (the Young–Frobenius formula at that time)
in 1916 using difference methods. This formula was later simplified by Frame, Robinson,
and Thrall.

Let u represent a cell in the Young diagram of λ, denoted as u ∈ λ. The hook length h(u) of
a cell u is defined as the total number of cells that are directly to the right of u and directly
below u, including the cell u itself. For instance, for the partition λ = (3, 2, 2), the hook
lengths are:

5 4 1

3 2

2 1

Theorem 2.4.1. The hook-length formula given by Frame, Robinson, and Thrall states that
if λ ⊢ n, then

fλ =
n!∏

u∈λ h(u)
=

n!

H(λ)

Proof. For λ = (3, 2, 2), we have

f (3,2,2) =
7!

5 · 4 · 1 · 3 · 2 · 2 · 1
= 21.

For f (3,2) here are the possible SYTs:

1 2 3

4 5

1 3 5

2 4

1 2 4

3 5

1 3 4

2 5

1 2 5

3 4

f (3,2) =
5!

4 · 3 · 2 · 1 · 1
= 5.

Greene, Nijenhuis, and Wilf, [4], proved the hook length formula using probabilistic hook
walks. Given a standard young tableau with n boxes, n has to be in one of corner boxes (v)
that have the hook length of 1. Removing this corner box leaves us with another standard
young tableau with 1 less box. For instance, in the tableau below n can only appear in one
of the yellow boxes.
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f (5,3,1,1) = f (4,3,1,1) + f (5,2,1,1) + f (5,3,1)

We can prove the hook length formula using induction for all corners v of λ.

fλ =
∑
v

f (λ−v)

For the base case when there are no boxes or just one box, f∅ = 1 and f1 = 1. For the
inductive step, we need to demonstrate that

(2.4.2)
n!

H(λ)
=

∑
v corner of λ

(n− 1)!

H(λ− v)
.

Or

1 =
∑

v corner

1

n

H(λ)

H(λ− v)
.

The above can be thought of as a probability problem where several non-negative real num-
bers sum to 1. The following represents probability of ”hook walk” to the corner v of λ from
any point in λ. ∑

u

P (u, v) =
H(λ)

H(λ− v)

In developing the proof for the hook length formula, we referenced [9].

Hook Walk: Starting at u in the following SYT, jump from u to any square in the hook
of u with equal probability. Repeating this process until you reach a corner box, in this case
v, represents hook path from u to v.

u u1

u2

u3 u4

u5 v

Observation: For a fixed v, the hook walk stays within the top left corner and v. Also, for
any rectangle with corners a, b, c, d, similar to that shown in the picture below
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a b

c d

following is true.

h(a) + h(d) = h(b) + h(c) =⇒ h(a)− 1 + h(d)− 1 = h(b)− 1 + h(d)− 1

Specifically, if d is a corner cell h(d)− 1 = 0.

We will represent h(i)−1 as xi along x axis and as yi along the y axis. The diagram below
shows probability of a random hook step in each box. For instance, each box in the hook
path of top-left box has 1

x1+y1
probability.

1
x1+y1

... 1
x3+y1

1
y1

1
x1+y2

... ... 1
y2

... ... ... 1
y3

1
x1

1
x2

1
x3

?

Before calculating the total probability of all hook-walks, we will calculate the probabilities
of all ”lattice-paths”, that involves moving down or moving right one box in each step.

For a Young diagram involving 2 by 2 grid, the boxes have probabilities as follows.

1
x1+y1

1
y1

1
x1

?

The total probability of using all lattice path from top-left to the bottom-right box is

1

x1 + y1
.
1

y1
+

1

x1 + y1
.
1

x1

=
1

x1.y1

By induction, for a Young diagram λ involving (k + 1) x (l + 1) rectangle, the sum of all
the probabilities using all lattice paths from top-left (A) to bottom-right (B) is

∑
P :A−>B

w(P ) =
1

x1.x2...xk.y1.y2...yl

Replacing ”lattice path” with ”hook-walk” in the above equation, gives us sum of all the
probabilities of hook-walks from any box in λ to B.
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∑
P :hook−walk−>B

w(P ) = (1 +
1

x1

).(1 +
1

x2

)...(1 +
1

xk

).(1 +
1

y1
).(1 +

1

y2
)...(1 +

1

yl
)

Expanding the product shows us various hook paths from various boxes in λ to B. For
instance 1 represents the start at B, and 1

x1.y1
represents start from top-left to reach B in

two hops via boxes labeled either x1 or y1.

Calling the boxes above or to the left of v the ”co-hook of v”, the above formulation for
hook-walk can also be expressed as

∑
u

P (u, v) =
∏

t∈co−hook(B)

(1 +
1

h(t)− 1
)

Since on removal of v, all the hook length for boxes in co-hook of v decrease by 1 and other
terms in the rectangle (λ - (all the boxes in co-hook)) cancel out, the above is equal to

∑
u

P (u, v) =
H(λ)

H(λ− v)

For any fixed u, since any hook walk will end at some corner.

∑
v

P (u, v) = 1

Adding over all u ∈ λ and all corner boxes v, since there are n boxes in λ.

∑
u∈λ

∑
v

P (u, v) = n

Or

∑
v

∑
u∈λ

P (u, v) = n

Substituting

∑
v

H(λ)

H(λ− v)
= n
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Multiplying both sides by (n− 1)! and rearranging, we get

n!

H(λ)
=

∑
v corner of λ

(n− 1)!

H(λ− v)

The above formula proves Equation 2.4.2 the inductive relationship we needed to prove the
hook length formula. ■

2.5. Plancherel Measure. Plancherel measure links the Longest Increasing Subsequence
(LIS) problem to the distribution of Young diagrams. For a partition λ of n, it’s defined as:

(2.5.1) P (λ(n) = λ) =
(fλ)2

n!

This measure describes the probability distribution of Young diagrams obtained from
applying the Robinson-Schensted algorithm to random permutations in Sn.

For a random permutation σn ∈ Sn, the length of its LIS (L(σn)) has the same distribution

as the length of the first row (λ
(n)
1 ) of a random Young diagram λ(n) chosen under Plancherel

measure.

Studying λ
(n)
1 under Plancherel measure is thus equivalent to analyzing L(σn), providing

a new approach to the Ulam-Hammersley problem.

3. Ulam-Hammersley Problem

The Ulam-Hammersley problem is concerned with finding the asymptotic behavior of the
expected length of the longest increasing subsequence (LIS) in a random permutation. For
a permutation σ ∈ Sn, let L(σ) denote the length of the LIS of σ. Define:

(3.0.1) ln =
1

n!

∑
σ∈Sn

L(σ).

The first few values of ln are:

l1 = 1.00, l2 = 1.50, l3 = 2.00, l4 = 2.41, l5 = 2.79

l6 = 3.14, l7 = 3.47, l8 = 3.77, l9 = 4.06, l10 = 4.33

In this section, we are interested in determining the asymptotic behavior of ln as n becomes
very large. Ulam briefly discussed the idea of studying the statistical distribution of ln in
1961. John M. Hammersley undertook the first serious study of the Ulam problem in 1970.
Henceforth, the problem is referred to as the Ulam-Hammersley problem.

3.1. First Bounds - Hammersley. In his seminal 1972 paper [5], Hammersley provided
the first significant bounds on the expected value of the Longest Increasing Subsequence
(LIS). He showed that for a random permutation σ ∈ Sn, the normalized expected length of
the LIS must fall within certain bounds:

(3.1.1)
π

2
≤ lim

n→∞

ln√
n
≤ e
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To prove the lower bound π
2
, we consider the points of a Poisson process with unit param-

eter on a square of area N . We referenced [5] while working on this proof.

A Poisson process with a unit rate parameter on a square of area N is considered. For any
point P in the square, let Q(P ) denote the point of the Poisson process which is northeast of
P and as close to P as possible. Let Q0 be the southwest corner of the square. The sequence
of points {Qi}∞i=0 is defined recursively by:

Qi+1 = Q(Qi), i = 0, 1, 2, . . .

The expected value of the horizontal (or vertical) projection of the distance between consec-
utive points Qi and Qi+1 is derived through integration:

(3.1.2)

∫ ∞

0

∫ π
2

0

re−
πr2

4 r cos θ dθ dr =
2

π
.

This integral accounts for the projected length on one axis, taking into consideration the
exponential decay in density of points as the distance increases, reflecting the properties of
the Poisson process.

The projected lengths are independent; hence, the strong law of large numbers can be
applied. As the area N becomes large, the sum of π

2

√
N terms from the sequence, which are

the projections, approaches the boundary of the square. It can be shown that:
π

2

√
N + o(

√
N)

captures the behavior of the sequence, ensuring that the chain formed by these points does
not exceed the boundary before reaching a significant length. This confirms the lower bound.

Therefore, the expected length of the LIS in a random permutation of n elements satisfies:

lim
n→∞

ln√
n
= E[Ln] ≥

π

2

√
n.

We will now prove for the upper bound e. We referenced [7] while working on this proof.

Let Xn,k denote the number of increasing subsequences of length k in the permutation σn.

The expected value of Xn,k is calculated by considering all
(
n
k

)
subsequences, where each

has a 1
k!

probability of being increasing. This yields:

E(Xn,k) =
1

k!

(
n

k

)
To find the probability that the longest increasing subsequence L(σn) has at least k elements,
use Markov’s inequality:

P (L(σn) ≥ k) = P (Xn,k ≥ 1) ≤ E(Xn,k) =
1

k!

(
n

k

)
Simplifying

(
n
k

)
as nk

k!
, and then rearranging and bounding, the expression simplifies to:

nk

(k!)2

By fixing k = [(1 + δ)e
√
n] (where δ > 0 is small), we can further simplify the probability

expression. The key here is to note that this probability converges to zero as n → ∞
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exponentially fast, making use of Stirling’s approximation and bounds for the binomial
coefficient.

This setup ensures that L(σn) typically does not exceed (1 + δ)e
√
n, reinforcing that the

rate of growth of the longest increasing subsequence is fundamentally rooted in the square
root of n.

The proof concludes that the expectation ℓn (the expected length of L(σn)) is at most
(1 + δ)e

√
n plus terms that vanish faster than

√
n, and this bound holds not only for the

expected value but also typically (in a probabilistic sense).

Hammersley further conjectured the following limit exists.

(3.1.3) c = lim
n→∞

E(L(σ))√
n

He further conjectured that c equals 2. This conjecture turned out to be correct, as later
proved by Logan and Shepp (1977) and Vershik and Kerov (1977) independently.

3.2. Confirming Hammersley’s Conjecture. In 1977, two independent teams proved
Hammersley’s conjecture about the limit of the expected length of the Longest Increasing
Subsequence (LIS). We present their results via details from [10].

Expected Length of LIS:

E(n) =
1

n!

∑
λ⊢n

λ1(f
λ)2.

Here, λ is a partition of n, λ1 is the length of the longest increasing sequence in λ, and fλ

is the number of standard Young tableaux of shape λ.

The RSK correspondence shows that:

n! =
∑
λ⊢n

(fλ)2.

Given that the number of terms in the sum of the squares of fλ is very small compared to
n!, the maximum value of fλ is close to

√
n!.

Using the above insights E(n) approximates as:

E(n) ≈ 1

n!
(λn

1 (f
λn

))2 ≈ (λn)1,

where λn is the partition that maximizes fλ. In order to maximize fλ we need to minimize
the product of various hook lengths in λ, (

∏
u∈λ h(u)), via Theorem 2.4.1.

Since we are interested in the behavior of λn as n → ∞ we will normalize the Young
diagram of any partition λ to have area one ( =⇒ each square of the diagram has length
1/
√
n). The upper boundary or the y-axis of the diagram is directed to the right, and the

left boundary or the x-axis is directed downwards.

Limiting Curve Ψ(x): As n → ∞, it is reasonable to assume that the boundary of the
partition λn approaches some limiting curve y = Ψ(x). Assuming this curve intersects the
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x-axis at x = b:

c := lim
n→∞

E(n)√
n

≥ b.

Logan-Shepp noted that c could be larger than b if the first few parts of λn stretch out along
the x-axis.

Logan-Shepp and Vershik-Kerov Result: Logan-Shepp [6] and Vershik-Kerov [12],
independently, derived the curve y = Ψ(x) as a solution to a variational problem. The nor-
malized hook-length at (x, y) is given by f(x)−y+f−1(y)−x. They minimize the functional
I(f) =

∫∫
A
log(f(x)− y + f−1(y)− x) dx dy, subject to the normalization

∫∫
A
dx dy = 1.

Parametric Form of Ψ(x): The curve y = Ψ(x) is given parametrically by:

x = y + 2 cos θ, y =
2

π
(sin θ − θ cos θ) for 0 ≤ θ ≤ π.

This curve intersects the x-axis at x = 2, suggesting that c ≥ 2.

The equation shows E(n) ∼ 2
√
n, summarizing that the expected length of the longest

increasing subsequence for a random permutation of n elements asymptotically approaches
2
√
n.

Lemma 3.2.1 (Logan and Shepp, 1977, [6]). For random permutations in Sn,

(3.2.1) lim inf
n→∞

ln√
n
≥ 2

Vershik and Kerov, in their paper, showed that c ≤ 2 through a clever use of the RSK
algorithm.

Lemma 3.2.2 (Vershik and Kerov, 1977, [12]). For random permutations in Sn,

(3.2.2) lim sup
n→∞

ln√
n
≤ 2
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Theorem 3.2.3. The limit of the expected length of the LIS for random permutations exists
and equals 2:

(3.2.3) lim
n→∞

ln√
n
= 2

Proof. Follows directly from the combination of the lemmas by Logan-Shepp and Vershik-
Kerov. ■

This result marked a significant advancement in the study of Longest Increasing Subse-
quences and proved that Hammersley’s conjecture is correct.

4. The Distribution of LIS

4.1. BDJ Theorem. Let isn denote the function is : Sn → Z. In 1999, Baik, Deift, and
Johansson determined the entire limiting distribution of isn, significantly extending earlier
results on its expectation.

Theorem 4.1.1 (Baik-Deift-Johansson). For random (uniform) σ ∈ Sn and all t ∈ R,

lim
n→∞

Prob

(
isn(w)− 2

√
n

n1/6
≤ t

)
= F (t),

where F (t) is the Tracy-Widom distribution.

The Tracy-Widom distribution F (t) is defined as:

F (t) = exp

(
−
∫ ∞

t

(x− t)u(x)2dx

)
,

where u(x) is the solution to the Painlevé II equation:

u′′(x) = 2u(x)3 + xu(x),

subject to the condition u(x) ∼ − e−
2
3x3/2

2
√
πx1/4 as x → ∞.

This theorem confirms the 2
√
n leading term in E(n) found by Vershik-Kerov and Logan-

Shepp, and provides the scale of fluctuations around this value, which are of order n1/6.

The BDJ Theorem allows computation of limiting moments of isn(w). For instance, the
variance of isn as n → ∞ is:

lim
n→∞

Var(isn)

n1/3
=

∫
t2dF (t)−

(∫
tdF (t)

)2

= 0.8131947928...

The expectation E(n) can be expressed more precisely as:

E(n) = 2
√
n+ αn1/6 + o(n1/6),

where α =
∫
tdF (t) = −1.7710868074....

This result provides the second term in the asymptotic behavior of E(n), refining our
understanding of the expected LIS length.
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