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IID (Type of Distribution)

A simple example of a random variable, which you have already
experienced, are situations such as rolling a dice or flipping a coin. These
systems, doing these tasks repeatedly, are considered i .i .d . That is, they
are independent and identical distributions. Let X represent of the
outcome of a standard dice roll.

P(X = 1) = P(X = 2) = P(X = 3) = · · ·P(X = 6) =
1

6
.

In specific, rolling a dice is also uniformly distributed, which means that
picking any of the possible outcomes is equally likely. Now let’s suppose
that we roll another standard dice. Let Y be that outcome. X and Y are
i.i.d. We know how systems like these behave, however they present an
unrealistic model of most actual systems we want to study.
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The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days

3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow

The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one

Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow

Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Problem with IID

Lets suppose we are working at a weather station and we aim to built a
long term probability model to predict the weather. Note that

1 Weather tomorrow is not independent to Weather today

Weather evolves over time

2 Weather tomorrow depends on the weather in the past couple of days
3 Weather patterns must exhibit some probabilistic behavior

There must be some non-zero probability of it being sunny tomorrow
The total probability of all choices must sum to one
Because there has to be some weather tomorrow
Probability of Sunny tomorrow is impacted by Rain today

For the sake of simplicity, let’s assume that the weather tomorrow only
depends on the weather today. Since we are also at a weather station, we
can keep track of the weather patterns as they emerge and collect samples
from this unknown probability distribution.

Kshitij Tomar Markov Chains July 14, 2024 3 / 12



The Solution (Its not the graph)

Let’s now suppose that we spent a month collecting data at our weather
station about the possible weather conditions of the sky: Sunny, Cloudy,
and Rainy. Drawing out the results from the lab.
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What does this tell us?

Lets assume that these are the probabilities that describe transitions from
one weather (state) to another. Instead of drawing a graph every time,
these probabilities may be succinctly written into a transition matrix. Let
P be this matrix.

P =
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For any entry, it represents the movement from a state to another state.
For example, the entry P(0, 1) = 1

6 represents the probability of moving
from a sunny weather today to a cloudy weather tomorrow. For reference,
Sunny = 0, Cloudy = 1, and Rainy = 2.
Notice all rows have to sum to 1! So what?
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So What?

To see the power of the transition matrix, consider the probability we want
for the Sunny weather in the upcoming two days if today was Sunny. Let
S represent a Sunny weather, C represent a cloudy weather and R
represent a rainy weather. Let χ = {S ,C ,R}. Then, weather on day t ≥ 0
can be represented as Xt

P(Xt = S | Xt−2 = S) =
∑
x∈χ

P(Xt = S | Xt−1 = x) P(Xt−1 = x | Xt−2 = S).

P(Xt = S | Xt−2 = S) = P2(S ,S).

This can be done iterative for any integer number of times t.
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So...we can do Magic Math

We can start with an arbitrary selection out of our possible choices. Let’s
suppose that we pick x ∈ χ. Note that the starting weather could be
determined through some probability distribution or it could be picked
arbitrarily. Now we define a probability distribution µ so that
µt(x) =

1
t#{Xq = x : q ≤ t} for all x ∈ χ. As we sample more according

to our transition matrix P, our probability distribution will get closer to
the actual long-term probability distribution.

Notice that µt+1(x) = µtP for all t ≥ 0.
We are interested in the limiting distribution, which is taking t → ∞. As
we travel further and further out into the chain, this makes it so that our
initial arbitrary decision has negligible effect over the entire distribution.
All limiting distributions π are stationary in the sense that π = πP.
So formally...

Kshitij Tomar Markov Chains July 14, 2024 7 / 12



So...we can do Magic Math

We can start with an arbitrary selection out of our possible choices. Let’s
suppose that we pick x ∈ χ. Note that the starting weather could be
determined through some probability distribution or it could be picked
arbitrarily. Now we define a probability distribution µ so that
µt(x) =

1
t#{Xq = x : q ≤ t} for all x ∈ χ. As we sample more according

to our transition matrix P, our probability distribution will get closer to
the actual long-term probability distribution.
Notice that µt+1(x) = µtP for all t ≥ 0.

We are interested in the limiting distribution, which is taking t → ∞. As
we travel further and further out into the chain, this makes it so that our
initial arbitrary decision has negligible effect over the entire distribution.
All limiting distributions π are stationary in the sense that π = πP.
So formally...

Kshitij Tomar Markov Chains July 14, 2024 7 / 12



So...we can do Magic Math

We can start with an arbitrary selection out of our possible choices. Let’s
suppose that we pick x ∈ χ. Note that the starting weather could be
determined through some probability distribution or it could be picked
arbitrarily. Now we define a probability distribution µ so that
µt(x) =

1
t#{Xq = x : q ≤ t} for all x ∈ χ. As we sample more according

to our transition matrix P, our probability distribution will get closer to
the actual long-term probability distribution.
Notice that µt+1(x) = µtP for all t ≥ 0.
We are interested in the limiting distribution, which is taking t → ∞. As
we travel further and further out into the chain, this makes it so that our
initial arbitrary decision has negligible effect over the entire distribution.
All limiting distributions π are stationary in the sense that π = πP.

So formally...

Kshitij Tomar Markov Chains July 14, 2024 7 / 12



So...we can do Magic Math

We can start with an arbitrary selection out of our possible choices. Let’s
suppose that we pick x ∈ χ. Note that the starting weather could be
determined through some probability distribution or it could be picked
arbitrarily. Now we define a probability distribution µ so that
µt(x) =

1
t#{Xq = x : q ≤ t} for all x ∈ χ. As we sample more according

to our transition matrix P, our probability distribution will get closer to
the actual long-term probability distribution.
Notice that µt+1(x) = µtP for all t ≥ 0.
We are interested in the limiting distribution, which is taking t → ∞. As
we travel further and further out into the chain, this makes it so that our
initial arbitrary decision has negligible effect over the entire distribution.
All limiting distributions π are stationary in the sense that π = πP.
So formally...

Kshitij Tomar Markov Chains July 14, 2024 7 / 12



Markov Chains

Definition

Let χ be a finite state space. A sequence of random variables (Xt) is
called a Markov Chain, where t ∈ A is an indexing set and Xt ∈ χ for all
t, when for all x , y ∈ χ and t ∈ A,

P(Xt = y | Xt−1 = x ,Xt−2, . . . ,X0) = P(Xt = y | Xt−1 = x).
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Stationary Distributions

Definition

Let χ be a finite state space. A transition matrix P of the Markov Chain
(Xt) on χ is a |χ| × |χ| matrix such that for all x , y ∈ χ

P(Xt = y | Xt−1 = x) = P(x , y)

P(x , y) is known as the transition probability of moving from a state x
to a state y .

Definition

For a Markov Chain (Xt) on a finite state space χ, a distribution π is a
stationary distribution if πP = π where P is the transition matrix.
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Why this works

Theorem (Ergodic Theorem)

Let f : χ → R be a function on the finite state space χ. If (Xi ) is an
irreducible chain with stationary distribution π, then for any starting
distribution µ

P
(

lim
t→∞

1

t

t−1∑
i=0

f (Xi ) = E [f ]π

)
= 1.

Theorem (Convergence Theorem)

Suppose P is an irreducible and aperiodic transition matrix, with stationary
distribution π on a finite state space χ. Then for all t > 0, there exist
constants a ∈ (0, 1) and C > 0 such that

max
x∈χ

{d(Pt(x , ·), π)TV } ≤ Cat .
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Applications Mentioned in Paper

1 Markov Chain Monte Carlo: Creating a Markov chain to find a
transition matrix such that a given probability distribution is
stationary with respect to that transition matrix

2 Monte Carlo Integration: Approximating the area of higher dimension
functions using Monte Carlo Simulation techniques

3 Science Models: ASEP Model, Ising Model, Ehrenfest urn Model,
Kirchoff’s Node Laws, and many others

4 Computer Science Models: Google Pagerank, Autocorrect, etc.

5 Cryptogrophy: Useful for deciphering a cipher’s content by studying
the likelihood of letters being english letters based on their
positioning/frequency in a corpus of text
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Thank You for Listening

Check out my paper for more on this topic!
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