The Galton-Watson Process

Kavya Venturpalli

Euler Circle

July 8, 2024

メロト メロト メヨト メヨト

э

Kavya Venturpalli

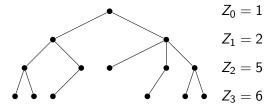
The Galton-Watson Process

What is the Galton-Watson Process?

The Galton-Watson Process is a stochastic process which focuses on the evolution of a population size over time.

- The question appeared when many Victorians were concerned about aristocratic last names going extinct.
- Their solution is incomplete, stating that all family names go extinct with probability 1.

< ロ > < 同 > < 三 > < 三 >


Origins

- Francis Galton saw this came up with a question, "Determine the extinction rate of surnames and the number of surnames held by m individuals after r generations, given the distribution of male offspring reaching adulthood."
- To this the Reverend Henry William Watson replied and both created a mathematical model for the propagation of family names.

イロト 不得 トイヨト イヨト

 Many other mathematicians like Bienayme, Cournot, and Erlang tried proving this problem but died before any publications.

Branching Processes

The diagram above depicts a branching process where the Z_n denotes the number of individuals in the n-th generation. Assuming that $Z_0 = 1$ the sequence $Z_0, Z_1, ...$ is a branching process

イロト イボト イヨト イヨト

The Galton-Watson Process Mathematically

$$X_{n+1} = \sum_{j=1}^{X_n} \xi_j^{(n)}$$

- X: population size of a certain generation making X_{n+1} the size of the (n+1)-th generation.
- $\xi_j^{(n)}$ is the number of offspring produced by the *j*-th individual in the *n*-th generation

イロト 不得 トイヨト イヨト

Extinction and cases

- μ stands for the average of a distribution
- intervals, a subcritical case, a critical case, and a supercritical case. The subcritical case is when $\mu < 1$, meaning that the average number of children per individual is less than one.
- Point two The critical case is when µ = 1 so the average number of children per individual is exactly 1. The generation neither grows or decays but rather stays constant over time.
- Point three he supercritical case is exactly what it seems, the population size is µ > 1.

イロト イポト イヨト イヨト

Example

Consider a population where each individual has either 0, 1, or 2 offspring with probabilities $p_0 = 0.3$, $p_1 = 0.4$, and $p_2 = 0.3$, respectively. Starting with one individual in generation 0, calculate the expected population size in generation 2 and determine the probability that the population becomes extinct after two generations.

イロト 不得 トイヨト イヨト

 $\mu = 0 \cdot p_0 + 1 \cdot p_1 + 2 \cdot p_2$ $\mu = 0 \cdot 0.3 + 1 \cdot 0.4 + 2 \cdot 0.3 = 1$

Kavya Venturpalli

The Galton-Watson Process

Generating function

A generating function is just another way to write a sequence.

イロン イ団 と イヨン イヨン

$$G(s) = \sum_{k=0}^{\infty} p_k s^k$$

• Extinction : q = G(q)

Kavya Venturpalli

The Galton-Watson Process

Example Cont.

Given the probabilities the generating function becomes.

$$G(s) = p_0 s^0 + p_1 s^1 + p_2 s^2$$

$$G(s) = 0.3 + 0.4s + 0.3s^2$$

$$q = 0.3 + 0.4q + 0.3q^2$$

・ロト ・回ト ・ヨト ・ヨト

э

Kavya Venturpalli

The Galton-Watson Process

Example Cont.

Subtracting q from both sides and combining like terms .

$$0.3q^2 - 0.6q + 0.3 = 0$$

 $q^2 - 2q + 1 = 0$
 $(q - 1)^2 = 0$
 $q = 1$

・ロト ・回 ト ・ヨト ・ヨト

э

The Galton-Watson Process