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1. Abstract
In this paper we explain the Galton-Watson process and the mathematical
concepts behind it. Why did it originate? How can I apply it? What are
the prerequisites I need to know to understand branching processes’s and
generating functions? This paper answers questions like that and similar
ones.

2. Background
A branching process is a sequence of random variables, but what is a ran-
dom variable? A random variable is the numerical value determined by the
outcome of a random event.
2.1 Conditional Expectation
The expected value of a random variable is the average that random variable
is expected to take on, knowing what the expected value, certain constraints
can be put on them. That is Conditional Expectation.

E[X | Y ]

For two random variables X and Y , the conditional expectation is given
above. It denotes the expected value of some random variable X when the
random variable Y is known.

2.2 Law of Total Expectation
The expected value of a random variable is the average that random variable
is expected to take on, knowing what the expected value is we can It states
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that the expected value of a random variable can be obtained by taking the
expected value of its conditional expectation with respect to another random
variable. Letting X be a random variable and G be an outcome of another
random variable Y . The Law of Total Expectation can be written as

E[X] = E[E[X | G]]

The Law states that to find the expected value of a random variable X you
can first find the expected value of a random variable X given the variable
Y , and use that to find the expected value of X. This is just applying the
property of conditional expectation to larger expected value problems.

2.3 Recurrence Relations
A recurrence relation provides a way to compute the terms of a sequence
based on the previous terms, for a branching process this is very useful as we
are calculating the next generation based on the previous one. The standard
form of a recurrence relation can be seen as:

an = f(an−1, an−2, . . . , an−k)

where f is some function that defines how the term an relates to the previous
k terms

2.4 Probability Generating Functions
PGF’s are very useful in terms of branching processes as they take the distri-
butions of random variables and turn them into independent functions. The
GX(s) is the probability-generating function of a discrete random variable X
which only takes positive values

GX(s) = E[sX ] =
∞∑
k=0

P (X = k)sk

where P (X = k) is the probability that X takes the value k. There are some
properties of PGF’s that need to be taken into account. What happens when
s is equal to 1?

GX(1) =
∞∑
k=0

P (X = k) = 1

It is established that the sum of all probabilities is 1. What about finding
the mean? The expected value E[X] can be found taking the derivative of
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the generating function.
E[X] = G′

X(1)

There is also the property of variance which is how spread out the data is
from the average. So what if we want to find that? The second and first
derivative can be used.

Var(X) = G′′
X(1) +G′

X(1)− (G′
X(1))
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What if there are two independent random variablesX and Y , the probability
generating function of their sum Z = X + Y is the sum of their PGF’s.

GZ(s) = GX(s) ·GY (s)

2.5 Independent and Identically Distributed
This term appears a lot in stochastic processes. Especially talking about
random variables. An independent random variable is one where the events
before do not have any effect of the outcome. The identically distributed
part means that all these random variables have the same probability dis-
tribution. Consider tossing a fair coin n times. Let Xi be the outcome of
the i-th toss, where Xi = 1 for heads and Xi = 0 for tails. The random
variables X1, X2, . . . , Xn are i.i.d., each with the same Bernoulli distribution
(a distribution with only two outcomes, 0 and 1. ):

P (Xi = 1) = 0.5, P (Xi = 0) = 0.5

3. Introduction
In this paper we do exactly what the title implies, explain the Galton-

Watson Process. The process originally appeared in London when many Vic-
torians were concerned about aristocratic last names going extinct. Francis
Galton published a question regarding the distribution of surnames. “Their
law of population is such that, in each generation, a0 percent of the adult
males have no male children who reach adult life; a1 have one such male
child; a2 has two; and so on up to a5 who have five. Find what proportion of
their surnames will have become extinct after r generations, and how many
instances there will be of the surname being held by m persons.” To this Rev-
erend Henry William Watson replied with a solution. Together Galton and
Watson created a simple mathematical model for the propagation of family
names. Generalizations of the extinction probability formulas below played
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a role in the calculation of the critical mass of fissionable material needed for
a chain reaction. Galton-Watson processes continue to play a fundamental
role in both the theory and applications of stochastic processes.The definition
below:

Assume that we have a population of individuals each of which produces
a random number of offspring according to a probability distribution a =
(a0, a1, a2, ...) An individual gives birth to k children with a probability ak
for k ≥ 0 independent of other individuals. This makes a a probability
distribution.

. . .

Z0 = 1

Z1 = 2

Z2 = 5

Z3 = 6

According to the diagram above Zn is the number of individuals in the n− th
generation. Since we are assuming that Z0 = 1, the sequence Z0, Z1, ... is a
branching process. A branching process is also a Markov chain as the size of
a generation depends on the size of a previous generation. [mishra2009]

Definition 3.1
A Galton-Watson Process is a stochastic process Xn which evolves according

to the formula X0 = 1, X0 has to have at least 1 offspring in order for

reproduction otherwise the whole lineage would die out.

Xn+1 =

Xn∑
j=1

ξ
(n)
j
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We have X which represents the population size of a certain generation.
More specifically Xn+1 denotes the size of the (n+1)-th generation, deter-
mined by the offspring distribution of the individuals in the n-th generation.
This formula represents the size of the next generation Xn+1 in a Galton-

Watson process. Xnis the number of individuals in the n-th generation. ξ
(n)
j

is the number of offspring produced by the j-th individual in the n-th gen-
eration, which are independent and identically distributed random variables.
The sum indicates that the total number of individuals in the (n+1)-th gen-
eration is the sum of the offspring produced by each individual in the n-th
generation.

A generation refers to a stage in a population model, more precisely
X0 notes some amount of individuals in that generation. Each individual in
Generation 0 produces a random number of offspring according to a given
probability distribution. The total number of offspring forms Generation 1,
denoted X1. This process continues indefinitely.

4. Mean Generation Size
In a branching process, the size of the n − th generation is the sum of the

total number of offspring of the parents in the generation before.

Zn =

Zn−1∑
i=1

Xi,

Xi denotes the number of children born to the i − th person in the (n-1)

generation. Similar to our sequence of Z0, Z1, ... the sequence X1, X2, ... is

also a branching process which is independently and identically distributed

sequence with the common distribution a. Zn−1 is independent ofXi meaning

that the number of individuals in the (n − 1) − th generation will not have

any influence on the number of children an individual i will have in the n−th

generation.
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Example 4.1

µ =
∞∑
k=0

kak

Letting µ be equal to the sum above
∑∞

k=0 kak, µ is the mean of the offspring

distribution. To find the mean of the size of the n − th generation E(Zn)

condition on Zn−1. This statement means that to find the expected value of

individuals in the n − th generation E(Zn) consider the condition that we

already know the number of individuals in the (n− 1)− th generation Zn−1.

By the law of total expectation (2.1)

E (Zn) =
∞∑
k=0

E (Zn | Zn−1 = k)P (Zn−1 = k)

=
∞∑
k=0

E

(
Zn−1∑
i=1

Xi | Zn−1 = k

)
P (Zn−1 = k)

(1)

Finding the overall expected value E(Zn), considering all arbitrary sizes of

k of the earlier generation Zn−1 and the sum over the expected values of Zn

given each k. In the second part of the equation where Zn =
∑k

i=1Xi where

Xi is the number of children of an i−th individual in the (n-1)-th generation.

Substituting Zn with
∑k

i=1 Xi This equation shows that the expected number

of individuals in the n-th generation, given that there are k individuals in

the (n− 1) generation, is the sum of the expected number of children Xi for
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each of the k individuals.

=
∞∑
k=0

E

(
k∑

i=1

Xi | Zn−1 = k

)
P (Zn−1 = k)

=
∞∑
k=0

E

(
k∑

i=1

Xi

)
P (Zn−1 = k)

=
∞∑
k=0

kµP (Zn−1 = k) = µE (Zn−1) ,

(2)

Xi are i.i.d of random variables which are independent of Zn−1. This makes

the expected value of the sum of random variables the sum of each of the

expected values added up. E(Xi) = µ where µ is the average of the offspring

distribution, also where k represents the number of individuals in the (n−1)−
th generation. Substituting back in the sum µ can be factored out because it

is a constant. The expected value of Z(n− 1) is
∑∞

k=0 kP (Zn−1 = k) so the

expected value of Zn is the equal to the expected value of Zn−1 multiplied

by the mean of the offspring distribution.

E(Zn) = µE(Zn−1)

Repeating this relation,

E (Zn) = µE (Zn−1) = µ (µE (Zn−2))

= µ2E (Zn−2) = · · · = µnE (Z0)

Assuming that the size of the Z0 generation is equal to 1,

E(Zn) = µn

The expected value of Zn is the mean of the offspring to the power of the
n-th generation.
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5. Extinction and other cases

lim
n→∞

E(Zn) = lim
n→∞

µn =


0, if µ < 1,

1, if µ = 1,

∞, if µ > 1.

Generations can become very large and n can expand all the way towards
infinity. There are long-term cases that need some way of being measurable.
A common factor is the mean which can be categorized into intervals, a sub-
critical case, a critical case, and a supercritical case. The subcritical case is
when µ < 1, meaning that the average number of children per individual is
less than one. This can eventually lead to the average number of children de-
clining exponentially hitting 0 at some point in time. Making the probability
of extinction very high. The critical case is when µ = 1 so the average num-
ber of children per individual is exactly 1. The generation neither grows or
decays but rather stays constant over time, there may be small possibilities
of extinction based on small changes over time. The overall idea remains as
the population size stays on average. The supercritical case is exactly what
it seems, the population size is µ > 1. The average number of children per
individual is greater than one indicating that the population size is growing
exponentially and might not go extinct.

Simulating 10 generations of (Z0, ......, Z10) of a branching process using a
Poisson offspring distribution where 3 values for the Poisson mean parameter
were chosen based on the sub, super, and critical cases. The subcritical case
is where µ = 0.75, critical is where µ = 1, and the supercritical is where
µ = 1.5 [Dobrow2016]

5.1 Extinction
In branching processes, one of the main uses is calculating the probability of
eventual extinction.
Example of Extinction probability
Consider a population where each individual has either 0, 1, or 2 offspring
with probabilities p0 = 0.3, p1 = 0.4, and p2 = 0.3, respectively. Starting
with one individual in generation 0, calculate the expected population size
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µ Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

0.75 1 2 3 3 2 1 0 0 0 0 0
0.75 1 0 0 0 0 0 0 0 0 0 0
0.75 1 1 0 0 0 0 0 0 0 0 0
0.75 1 3 3 1 0 0 0 0 0 0 0
0.75 1 2 3 2 2 0 0 0 0 0 0
1 1 2 6 10 8 7 8 6 6 0 0
1 1 3 2 2 7 6 7 8 8 0 0
1 1 1 4 4 4 9 8 7 8 0 0
1 1 3 4 1 1 0 0 0 0 0 0
1 1 2 2 22 41 93 173 375 763 1,597 0
1.5 1 1 1 3 7 7 9 11 19 29 0
1.5 1 3 2 5 18 34 68 127 246 521 1,011
1.5 1 2 5 3 2 6 9 17 18 13 19

Table 1: Simulations of a Branching Process for Three Choices of µ

in generation 2 and determine the probability that the population becomes
extinct after two generations.

µ = 0 · p0 + 1 · p1 + 2 · p2

The equation above shows how to calculate the average.

µ = 0 · 0.3 + 1 · 0.4 + 2 · 0.3 = 1

Applying the concept of generating functions,

G(s) = p0s
0 + p1s

1 + p2s
2

G(s) = 0.3 + 0.4s+ 0.3s2

Knowing that we are trying to find the probability of a generation going
extinct, using the theorem q = G(q) where q represents the probability that
the branching process dies out.

q = 0.3 + 0.4q + 0.3q2

Substituting s for q, now all to do is simple algebra, subtracting q from both
sides:

0.3q2 − 0.6q + 0.3 = 0
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q2 − 2q + 1 = 0

(q − 1)2 = 0

q = 1

The extinction probability is 1 meaning that the population will die out with
certainty.

Theorem 5.2 Extinction Probability
Given a branching process, let G be the probability-generating function of
the offspring distribution. Then, the probability of eventual extinction is
the smallest positive root of the equation s = G(s) If µ ≤ 1, that is, in the
subcritical and critical cases, the extinction probability is equal to 1.

The theorem provides a method to determine the extinction probability
in a branching process using the PGF of the offspring distribution. The
extinction probability is the smallest positive root of s = G(s). In subcritical
and critical cases (µ ≤ 1), the extinction probability is always 1, indicating
certain extinction. In the supercritical case (µ > 1), there is a chance of
survival, and the extinction probability is found by solving the fixed-point
equation.

Example 5.3 Problem of Extinction
Assume p0 = 1/2, p1 = 1/4, and p2 = 1/4. The tree for these probabilities of
the first two generations is shown below.

To solve this example the theory of sums of independent random vari-
ables to assign branch probabilities. If there are two offspring in the first
generation, the probability that there will be two in the second generation is
[GrinsteadSnell]

To solve this example, using the theory of independent sums of random
variables will be very helpful. If there are two offspring in the first generation,
the probability that there will be two in the second is:

P (X1 +X2 = 2) = p0p2 + p1p1 + p2p0

=
1

2
· 1
4
+

1

4
· 1
4
+

1

4
· 1
4
+

1

4
· 1
2
=

5

16
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Figure 1: branching process

But what happens if the branching process goes extinct? Let dn be the
probability that the process dies out by the nth generation. Knowing d0 = 0.
In our example, d1 =

1
2
and d2 =

1
2
+ 1

8
+ 1

16
= 11

16
. Note that we must add the

probabilities for all paths that lead to 0 by the nth generation. By definition,

0 = d0 ≤ d1 ≤ d2 ≤ · · · ≤ 1.

Since, dn converges to a limit d, 0 ≤ d ≤ 1. d is the probability that the
branching process goes extinct. To find all the probabilities we write dn as
all the possible outcomes in the first generation. If there is j offspring in the
first generation, for it to die out by the n − th generation. Each line must
die out by the n-1 generation. Since these are independent, the probability
is (dn−1)

j.

dm = p0 + p1dm−1 + p2(dm−1)
2 + p3(dm−1)

3 + · · ·

Let hz be the generating function for pi

h(z) = p0 + p1z + p2z
2 + · · ·

Using the generating function we can rewrite 0 = d0 ≤ d1 ≤ d2 ≤ · · · ≤ 1 as

dm = h(dm−1)
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Since dn converges to d then by dm = p0+p1dm−1+p2(dm−1)
2+p3(dm−1)

3+· · ·
the value d satisfies the equation below:

d = h(d)

The obvious solution is where d = 1 causing,

1 = p0 + p1 + p2 + · · ·

Now this is where Galton and Watson made a mistake, they directly assumed
that the only probability was 1. To understand this better that the solutions
of h(z) = p0 + p1z + p2z

2 + · · · represent the intersection of the graph:

y = z

and
y = h(z) = p0 + p1z + p2z

2 + · · ·
Because of this the graph of y = h(z) should be looked at, also remember
that h(0) = p0.

h′(z) = p1 + 2p2z + 3p3z
2 + · · · ,

and,
h′′(z) = 2p2 + 3 · 2p3z + 4 · 3p4z2 + · · · .

From this we see that for z ≥ 0, h′(z) ≥ 0 and h′′(z) ≥ 0. For the nonnegative
z, h(z) is a concave up and increasing function. The graph y = h(z) can
intersect the graph y = z at two points. We know that the graph intersects
at (1,1) because of the rule that the generating function is equal to one, so
the sum of all probabilities is 1. There are three possible graphs:

The first case, (a), the graph h(z) intersects the line y = z at two points
d and 1, where 0 ≤ d < 1. The next case, (b) is where the graph h(z)
intersects the line y = z at one point d = 1. So the only solution is z = 1, so
the probability that the process will go extinct is exactly 1. The last case, (c)
is where the graph h(z) intersects with the line y = z at two points. 1 and d
where d > 1. Similar to b the only solution that works, is within 0 ≤ z ≤ 1
where z = 1 meaning that the population will go extinct with probability 1.

h′(1) = p1 + 2p2 + 3p3 + · · · =,

The derivative represents the number of offspring produced by a single
parent. Looking back at the previous cases, a, b, and c it is established that
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Figure 2: Graphs of y = z and y = h(z)

Case(a) represents the supercritical case as h′(1) > 1. Case(b) represents the
critical case as h′(1) = 1, and Case(c) is the subcritical case as h′(1) < 1
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Figure 3: Geometric Construction of d

This depicts the geometric process of finding the fixed point d where the
graph y = h(z) and y = z intersect. Recall that d0 = 0, d1 = h(d0) =
p0, d2 = h(d1), . . . , and dn = h(dn−1). So the sequence d0, d1, d2, ... is
constructed geometrically. This sequence also represents the iterations of
h(z) starting from 0. This figure helps to visualize extinction probability and
how starting at zero and repeating the function h will lead to the branching
process converging to some d, that d represents when the Galton-Watson
process will die out.

Similarly Alfred Lotka worked on a problem like this where he tried to
find the extinction probability that a male line of descent would go extinct.
Looking into the 1920 census, Lotka fitted the distribution of male offspring
to a zero-adjusted distribution (starting from a basline or control factor).
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This takes the form:

a0 = 0.48235 and ak = (0.2126)(0.5893)k−1, for k ≥ 1.

The generating function of the offspring distribution is:

G(s) = 0.48235 + 0.2126
∞∑
k=1

(0.5893)k−1sk = 0.48235 +
(0.2126)s

1− (0.5893)s
.

The mean of the male offspring distribution is µ = 1.26. It is interesting
that despite a mean number of children (sons and daughters) per individual
of about 2.5, the probability of extinction of family surnames is over 80%.
[Lotka1931]

5.2 Generating Functions in Branching Processes
A generating function is just another way to write a sequence, and referring
to the Galton-Watson process which is just a sequence of generations. The
two can be related. This proof shows how the generating function Gn(s)
evolves based on the generating function of the offspring distribution, Gs

Gn(s) =
∞∑
k=0

skP (Zn = k)

This is the generating function for the distribution Zn, which is the number

of individuals in the n-th generation

G(s) =
∞∑
k=0

skak

In this equation ak is the probability that an individual has k offspring

Gn(s) = E(sZn)

The generating function Gn(s) can be represented as the expected value of

s(Zn)

Gn(s) = E(sZn) = E
(
s
∑Zn−1

i=1 Xi

)
15



Zn is expressed as the sum of offspring Xi of each individual in the (n-1)-th

generation

Gn(s) = E
(
E
(
s
∑Zn−1

i=1 Xi

∣∣∣Zn−1

))
By the law of total expectation, we take the conditional expectation given

Zn−1 and then the overall expectation.

E
(
s
∑Zn−1

i=1 Xi

∣∣∣Zn−1 = z
)

Given Zn−1 = z the sum of offspring
∑z

i=1Xi can be taken into understand-

ing.

E
(
s
∑z

i=1 Xi

)
= E

(
z∏

i=1

sXi

)
Because of the independence of Xi this equation can be rewritten as the

product of expectations.

E

(
z∏

i=1

sXi

)
=

z∏
i=1

E(sXi)

Since Xi is i.i.d, each term is the expected value of sX , which makes it the

generating function Gs.

E

(
z∏

i=1

sXi

)
= [G(s)]z

This makes the inner expectation [(Gs)]
z.

Gn(s) = E
(
[G(s)]Zn−1

)
= Gn−1(G(s))

The generating function Gn(s) can be expressed recursively using the gener-
ating function of the (n-1)-th generation and the offspring generating func-
tion.
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