Sets with the Property $D(n)$

Kartik Gudapati <kartik23.g@gmail.com>

Euler Circle

July 15, 2024

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Definition

A Diophantine m-tuple is a set of m distinct positive integers with the property that the product of any two distinct elements of the set increased by 1 is a perfect square.

KORK EXTERNE PROVIDE

Definition

A Diophantine m-tuple is a set of m distinct positive integers with the property that the product of any two distinct elements of the set increased by 1 is a perfect square.

Greek mathematician Diophantus of Alexandria was the first to study and solve this problem (his definition had rationals)

$$
\{\frac{1}{16},\frac{33}{16},\frac{17}{4},\frac{105}{16}\}.
$$

KO KA KO KERKER KONGK

French jurist and mathematician, Pierre de Fermat, found Diophatine triple

 ${1, 3, 8}.$

Kロトメ部トメミトメミト ミニのQC

French jurist and mathematician, Pierre de Fermat, found Diophatine triple

 ${1, 3, 8}.$

Fermat used d as the next number in the set. Using that $d + 1$, $3d + 1$, and $8d + 1$ are all perfect squares, he got the *Diophantine* quadruple

{1, 3, 8, 120}.

KORKARYKERKER POLO

It was found that the *Diophantine quadruple* $\{1, 3, 8, 120\}$ could not be extended anymore.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Theorem

There exists no Diophantine quintuple.

It was found that the *Diophantine quadruple* $\{1, 3, 8, 120\}$ could not be extended anymore.

KORK EXTERNE PROVIDE

Theorem

There exists no Diophantine quintuple.

Theorem

There exists infinitely many Diophantine quadruples.

Definition

A $D(n)$ tuple, in which n is an integer, is a set of distinct non-zero integers such that the product of any two distinct numbers in the set increased by *n* forms a perfect square.

KORKARYKERKER POLO

Definition

A $D(n)$ tuple, in which n is an integer, is a set of distinct non-zero integers such that the product of any two distinct numbers in the set increased by *n* forms a perfect square.

Example

A triple from the quadruple we showed earlier, $\{1, 8, 120\}$ is a $D(1)$ triple. However, it's also a $D(721)$ triple. Meaning, $1 \times 8 + 721$, $1 \times 120 + 721$, and $8 \times 120 + 721$ are all perfect squares.

KORKAR KERKER ST VOOR

Theorem

There exists infinitely $D(n)$ quadruples when n is a perfect square.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem

There exists infinitely $D(n)$ quadruples when n is a perfect square.

Proof.

If we multiply the elements of the infinitely many $D(1)$ quadruples by an integer k , we get infinitely many $D(k^2)$ quadruples. $\qquad \blacksquare$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

There are many values for n in which it has been proved whether or not a quadruple can be formed with the property $D(n)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

There are many values for *n* in which it has been proved whether or not a quadruple can be formed with the property $D(n)$.

Theorem

If $n \equiv 2 \pmod{4}$, there exists no $D(n)$ quadruple for that value of n.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Proof.

This was proved by claiming that $\{a_1, a_2, a_3, a_4\}$ is a quadruple with the property n . Then we know that the product of two distinct numbers in this set are either 2 or 3 (mod 4). This means none of the numbers in the set can be 0 (mod 4). Thus, all of the numbers are of either 1, 2, or 3 (mod 4). However, there is a duplicate so it's contradictory.

KORKAR KERKER ST VOOR

This doesn't mean that values for *n* such that $n \neq 4k + 2$ where $k \in \mathbb{Z}$ are all able to form a quadruple.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

This doesn't mean that values for *n* such that $n \neq 4k + 2$ where $k \in \mathbb{Z}$ are all able to form a quadruple.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Proposition

There exists no $D(n)$ quadruple for $n = -1$ or $n = -4$.

This doesn't mean that values for *n* such that $n \neq 4k + 2$ where $k \in \mathbb{Z}$ are all able to form a quadruple.

Proposition

There exists no $D(n)$ quadruple for $n = -1$ or $n = -4$.

Theorem

If $n \neq 4k + 2$ and $n \notin S = \{-4, -3, -1, 3, 5, 8, 12, 20\}$, there exists at least one $D(n)$ quadruple for n.

KELK KØLK VELKEN EL 1990

Numbers not of the form $4k + 2$ can be written as:

 $4k + 3$, $8k + 1$, $8k + 5$, $8k$, $16k + 4$, $16k + 12$.

KO K K Ø K K E K K E K V K K K K K K K K K

Numbers not of the form $4k + 2$ can be written as:

 $4k + 3$, $8k + 1$, $8k + 5$, $8k$, $16k + 4$, $16k + 12$.

We have a starting positive integer a, we can make two $D(2a(2k+1)+1)$ quadruples:

 ${a, a(3k+1)^2 + 2k, a(3k+2)^2 + 2k + 2, 9a(2k+1)^2 + 8k + 4}$ and ${a, a(k + 1)^2 - 2k, a(2k + 1)^2 - 8k - 4, ak^2 - 2k - 2}.$

KORKAR KERKER ST VOOR

By manipulating a and using a k' we can get quadruples for all said forms not of $4k + 2$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

By manipulating a and using a k' we can get quadruples for all said forms not of $4k + 2$.

 $D(4k+3): \{1, 9k^2 + 8k + 1, 9k^2 + 14k + 6, 36k^2 + 44k + 13\}$ $D(8k+1): \{4, 9k^2 - 5, 9k^2 + 7k + 2, 36k^2 + 4k\}$ $D(8k+5): \{2, 18k^2 + 14k + 2, 18k^2 + 26k + 10, 72k^2 + 80k + 22\}$ $D(8k): \{1, 9k^2 - 8k, 9k^2 - 2k + 1, 36k^2 - 20k + 1\}$ $D(16k+4): \{4, 9k^2 - 4k - 1, 9k^2 + 8k + 3, 36k^2 + 8k\}$ $D(16k + 12)$: $\{2, 18k^2 + 16k + 2, 18k^2 + 28k + 12, 72k^2 + 88k + 26\}$

KORKARYKERKER POLO

 $-12, -7, -4, -3, -1, 0, 1, 3, 4, 5, 8, 9, 12,$ and 20

KO K K Ø K K E K K E K V K K K K K K K K K

 $-12, -7, -4, -3, -1, 0, 1, 3, 4, 5, 8, 9, 12,$ and 20

KO K K Ø K K E K K E K V K K K K K K K K K

Remove 0, 1, 4, and 9

 $-12, -7, -4, -3, -1, 0, 1, 3, 4, 5, 8, 9, 12,$ and 20

Remove 0, 1, 4, and 9

 $D(-12): \{1, 12, 28, 76\}$ $D(-7)$: {1, 8, 11, 16}

KELK KØLK VELKEN EL 1990

Now we narrow does the set to be

$$
S = \{-4, -3, -1, 3, 5, 8, 12, 20\}
$$

Now we narrow does the set to be

$$
S = \{-4, -3, -1, 3, 5, 8, 12, 20\}
$$

Theorem

If $n \neq 4k + 2$ and $n \notin S = \{-4, -3, -1, 3, 5, 8, 12, 20\}$, there exists at least one $D(n)$ quadruple for n.

Now we narrow does the set to be

$$
S = \{-4, -3, -1, 3, 5, 8, 12, 20\}
$$

Theorem

If $n \neq 4k + 2$ and $n \notin S = \{-4, -3, -1, 3, 5, 8, 12, 20\}$, there exists at least one $D(n)$ quadruple for n.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Conjecture

There exists no $D(n)$ quadruples when $n \in S$.

Getting T

Now let's use the second of the $D(2a(2k+1)+1)$ quadruples:

$$
{a, a(3k+1)^2 + 2k, a(3k+2)^2 + 2k + 2, 9a(2k+1)^2 + 8k + 4} \text{ and}
$$

$$
{a, a(k+1)^2 - 2k, a(2k+1)^2 - 8k - 4, ak^2 - 2k - 2}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Getting T

Now let's use the second of the $D(2a(2k+1)+1)$ quadruples:

$$
{a, a(3k+1)^2 + 2k, a(3k+2)^2 + 2k + 2, 9a(2k+1)^2 + 8k + 4} \text{ and}
$$

$$
{a, a(k+1)^2 - 2k, a(2k+1)^2 - 8k - 4, ak^2 - 2k - 2}.
$$

$$
D(4k+3): \{1, k^2 - 2k - 2, k^2 + 1, 4k^2 - 4k - 3\}
$$

\n
$$
D(8k+1): \{4, k^2 - 3k, k^2 + k + 2, 4k^2 - 4k\}
$$

\n
$$
D(8k+5): \{2, 2k^2 - 2k - 2, 2k^2 + 2k + 2, 8k^2 - 2\}
$$

\n
$$
D(8k): \{1, k^2 - 6k + 1, k^2 - 4k + 4, 4k^2 - 20k + 9\}
$$

\n
$$
D(16k+4): \{4, k^2 - 4k - 1, k^2 + 3, 4k^2 - 8k\}
$$

\n
$$
D(16k+12): \{2, 2k^2 - 4k - 4, 2k^2 + 2, 8k^2 - 8k - 6\}
$$

Removing perfect squares as well as 11, 17, 33, and 40, we get $T = \{-15, -12, -7, 7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84\}$

KO K K Ø K K E K K E K V K K K K K K K K K

Removing perfect squares as well as 11, 17, 33, and 40, we get

 $T = \{-15, -12, -7, 7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84\}$

Theorem

If $n \neq 4k + 2$ and $n \notin S \cup T$, then there exists at least 2 unique $D(n)$ quadruples.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let's call our $D(n)$ set as G. Let's also define

 $M_n = \sup\{|G| : G$ is a set with the property $D(n)\}$

KO K K Ø K K E K K E K V K K K K K K K K K

Let's call our $D(n)$ set as G. Let's also define

 $M_n = \sup\{|G| : G$ is a set with the property $D(n)\}$

Example

 $M_1 = 4$, meaning that The largest amount of elements a $D(1)$ set can contain is four.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Large Elements:

 $A_n = \sup\{|G \cap [|n^3|, +\infty]|: G \text{ is a set with the property } D(n)\}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Large Elements:

 $A_n = \sup\{|G \cap [|n^3|, +\infty]|: G \text{ is a set with the property } D(n)\}$ Small Elements:

 $B_n = \sup\{|G \cap (n^2, |n^3|)| : G$ is a set with the property $D(n)\}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Large Elements:

 $A_n = \sup\{|G \cap [|n^3|, +\infty]|: G \text{ is a set with the property } D(n)\}$ Small Elements:

 $B_n = \sup\{|G \cap (n^2, |n^3|)| : G$ is a set with the property $D(n)\}$

Very Small Elements:

 $C_n = \sup\{|G \cap [1, n^2]| : G \text{ is a set with the property } D(n)\}\$

KORKAR KERKER SAGA

Lemma

 $A_n \leq 21$ for all nonzero integers n.

Lemma

 $A_n < 21$ for all nonzero integers n.

Lemma

 $B_n < 0.6114 \log |n| + 2.158$ when $|n| \leq 400$, and $B_n < 0.6071 \log |n| + 2.152$ when $|n| > 400$.

KORK EXTERNE PROVIDE

Lemma

 $A_n \leq 21$ for all nonzero integers n.

Lemma

 $B_n < 0.6114 \log |n| + 2.158$ when $|n| \leq 400$, and $B_n < 0.6071 \log |n| + 2.152$ when $|n| > 400$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Lemma

 $C_n < 11.006 \log |n|$ for $|n| > 400$.

Theorem

 $M_n \leq 31$ for $|n| \leq 400$, $M_n < 15.476 \log n$ for $|n| > 400$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem

 $M_n \leq 31$ for $|n| \leq 400$, $M_n < 15.476 \log n$ for $|n| > 400$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Conjecture

 $M_n \leq 6$ for all nonzero n.

Quadruple with the property $D(F_{\mathsf{x}}^2)$ in which $\mathsf{x} \in \mathbb{N}$:

$$
\{2F_{x-1},2F_{x+1},2F_x^3F_{x+1}F_{x+2},2F_{x+1}F_{x+2}F_{x+3}(2F_{x+1}^2-F_x^2)\}
$$

Quadruple with the property $D(F_{\mathsf{x}}^2)$ in which $\mathsf{x} \in \mathbb{N}$:

$$
\{2F_{x-1}, 2F_{x+1}, 2F_x^3F_{x+1}F_{x+2}, 2F_{x+1}F_{x+2}F_{x+3}(2F_{x+1}^2 - F_x^2)\}\
$$

Quadruple with the property $D(L_{x}^{2})$:

 $\{F_{x-3}F_{x-2}F_{x+1}, F_{x-1}F_{x+2}F_{x+3}, F_xL_x^2, 4F_{x-1}^2F_xF_{x+1}^2(2F_{x-1}F_{x+1}-F_x^2)\}$

KELK KØLK VELKEN EL 1990