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Introduction

Definition

A Diophantine m-tuple is a set of m distinct positive integers with
the property that the product of any two distinct elements of the
set increased by 1 is a perfect square.

Greek mathematician Diophantus of Alexandria was the first to
study and solve this problem (his definition had rationals)
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Introduction

French jurist and mathematician, Pierre de Fermat, found
Diophatine triple

{1, 3, 8}.

Fermat used d as the next number in the set. Using that d + 1,
3d + 1, and 8d + 1 are all perfect squares, he got the Diophantine
quadruple

{1, 3, 8, 120}.



Introduction

French jurist and mathematician, Pierre de Fermat, found
Diophatine triple

{1, 3, 8}.

Fermat used d as the next number in the set. Using that d + 1,
3d + 1, and 8d + 1 are all perfect squares, he got the Diophantine
quadruple

{1, 3, 8, 120}.



Introduction

It was found that the Diophantine quadruple {1, 3, 8, 120} could
not be extended anymore.

Theorem

There exists no Diophantine quintuple.

Theorem

There exists infinitely many Diophantine quadruples.



Introduction

It was found that the Diophantine quadruple {1, 3, 8, 120} could
not be extended anymore.

Theorem

There exists no Diophantine quintuple.

Theorem

There exists infinitely many Diophantine quadruples.



Introduction

Definition

A D(n) tuple, in which n is an integer, is a set of distinct non-zero
integers such that the product of any two distinct numbers in the
set increased by n forms a perfect square.

Example

A triple from the quadruple we showed earlier, {1, 8, 120} is a D(1)
triple. However, it’s also a D(721) triple. Meaning, 1× 8 + 721,
1× 120 + 721, and 8× 120 + 721 are all perfect squares.
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n as a Perfect Square

Theorem

There exists infinitely D(n) quadruples when n is a perfect square.

Proof.

If we multiply the elements of the infinitely many D(1) quadruples
by an integer k, we get infinitely many D(k2) quadruples. ■
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Values of n

There are many values for n in which it has been proved whether
or not a quadruple can be formed with the property D(n).

Theorem

If n ≡ 2 (mod 4), there exists no D(n) quadruple for that value of
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Values of n

Proof.

This was proved by claiming that {a1, a2, a3, a4} is a quadruple
with the property n. Then we know that the product of two
distinct numbers in this set are either 2 or 3 (mod 4). This means
none of the numbers in the set can be 0 (mod 4). Thus, all of the
numbers are of either 1, 2, or 3 (mod 4). However, there is a
duplicate so it’s contradictory. ■



Values of n

This doesn’t mean that values for n such that n ̸= 4k + 2 where
k ∈ Z are all able to form a quadruple.

Proposition

There exists no D(n) quadruple for n = −1 or n = −4.

Theorem

If n ̸= 4k + 2 and n ̸∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, there
exists at least one D(n) quadruple for n.
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Getting S

Numbers not of the form 4k + 2 can be written as:

4k + 3, 8k + 1, 8k + 5, 8k , 16k + 4, 16k + 12.

We have a starting positive integer a, we can make two
D(2a(2k + 1) + 1) quadruples:

{a, a(3k + 1)2 + 2k , a(3k + 2)2 + 2k + 2, 9a(2k + 1)2 + 8k + 4} and

{a, a(k + 1)2 − 2k , a(2k + 1)2 − 8k − 4, ak2 − 2k − 2}.
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Getting S

By manipulating a and using a k ′ we can get quadruples for all
said forms not of 4k + 2.

D(4k + 3) : {1, 9k2 + 8k + 1, 9k2 + 14k + 6, 36k2 + 44k + 13}
D(8k + 1) : {4, 9k2 − 5, 9k2 + 7k + 2, 36k2 + 4k}
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Some sets have equal elements or non-positives.

−12,−7,−4,−3,−1, 0, 1, 3, 4, 5, 8, 9, 12, and 20

Remove 0, 1, 4, and 9

D(−12) : {1, 12, 28, 76}
D(−7) : {1, 8, 11, 16}
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Set T

Removing perfect squares as well as 11, 17, 33, and 40, we get

T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84}
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If n ̸= 4k + 2 and n ̸∈ S ∪ T, then there exists at least 2 unique
D(n) quadruples.
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Size Estimate

Let’s call our D(n) set as G . Let’s also define

Mn = sup{|G | : G is a set with the property D(n)}

Example

M1 = 4, meaning that The largest amount of elements a D(1) set
can contain is four.
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Very Small Elements:

Cn = sup{|G ∩ [1, n2]| : G is a set with the property D(n)}
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Upper Bound for Each Group
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An ≤ 21 for all nonzero integers n.
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