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Abstract. Diophantine m-tuples are sets of m distinct positive integers with the property
that the product two distinct elements of the set increased by 1 is a perfect square. Sets
with the property D(n) follow the generalization that rather than adding 1, we add n to
obtain a perfect square. This paper covers the results of the results and conclusions which
can be drawn from the sets with the property of D(n) for the various n’s we can have

1. Introduction

The first person to study the problem of the product of two numbers increased by 1
forming a perfect square was the ancient Greek mathematician Diophantus of Alexandria.
Diophantus was able to solve this problem with the set of four rational numbers

{ 1

16
,
33

16
,
17

4
,
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}.

However, this paper will only be regarding integers rather than the full field of rational
numbers.

Definition 1.1. A Diophantine m-tuple is a set of m distinct positive integers with the
property that the product of any two distinct elements of the set increased by 1 is a perfect
square.

The first set of four integers found that confined to this property is the set

{1, 3, 8, 120}.
This quadruple was found by a French jurist and mathematician, Pierre de Fermat. To find
this quadruple, he began with the Diophantine triple, {1, 3, 8}. Fermat put d as the fourth
integer for the set so that it would still follow the property of Diophantine m-tuples. He
then used the fact that d+1, 3d+1, and 8d+1 were all perfect squares to find that d being
120 worked. However, he couldn’t find a fifth number to be added to this tuple. It was
conjectured for a while that no Diophantine quintuple exists. Eventually it was proved that
no Diophantine quintuples exist [12]. Also, it has been proved that there exists an infinite
number of Diophantine quadruples. This paper won’t include the proofs of these since it’s
not the focus. Instead, this paper focuses on D(n)-tuples.

Definition 1.2. A D(n)-tuple, in which n is an integer, is a set of distinct nonzero integers
such that the product of any two distinct numbers in the set increased by n forms a perfect
square.

The quadruple we just took a look at, {1, 3, 8, 120}, is a D(1)-tuple since that’s what
Definitions 1.1 implies.
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Example. We also have {−1, 3, 4} which is a D(4)-tuple. This is because −1 × 3 + 4 = 12,
−1× 4 + 4 = 02, and 3× 4 + 4 = 42.

We will also be using the following two definitions of Regular Diophantine m-tuples.

Definition 1.3. A Diophantine triple, {a1, a2, a3} in which a1 < a2 < a3, is regular if
a3 = a1 + a2 + 2

√
a1a2 + 1.

Definition 1.4. A Diophantine quadruple, {a1, a2, a3, a4} in which a1 < a2 < a3 < a4, is

regular if a4 = a1 + a2 + a3 + 2a1a2a3 + 2
√
(a1 + 1)(a2 + 1)(a3 + 1).

It’s conjectured that all Diophantine quadruples are regular, but a proof for that does not
exist yet.

Since a large amount of time was dedicated to the findings on Diophantine quadruples
which is the generic case in which n = 1, the first question to come up is on which values of
n there can and can’t exist quadruples for. One of the first findings to notice is that when n
is of the form 4k+2 in which k ∈ Z, there exists no quadruples. We can also find that there
exists a D(n) quadruple for values of n that aren’t of the form 4k + 2 or are not in the set
S = {−4,−3,−1, 3, 5, 8, 12, 20}. However, out of these, it has only been proved for n = −4
and n = −1 that no D(n) quadruple exists. We found S by using the D(2a(2k + 1) + 1)
quadruple

{a, a(3k + 1)2 + 2k, a(3k + 2)2 + 2k + 2, 9a(2k + 1)2 + 8k + 4}.

We did this by manipulating a to get D(n) quadruples for the remaining values of n (the
values not of the form 4k+2). Similarly, we can use a different D(2a(2k+1)+1) quadruple

{a, a(k + 1)2 − 2k, a(2k + 1)2 − 8k − 4, ak2 − 2k − 2}

to obtain a different set T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84}. From this,
we are able to find that there exists at least two distinct D(n) quadruples for values of
n ̸= 4k + 2 and n ̸∈ S ∪ T .

We can use the fact that there are infinite Diophantine quadruples to show what happens
for D(n) when n is a perfect square other than the 1. This is done by multiplying the square
root of that n to each element, proving

Theorem 1.5. There exists an infinite number of D(n) quadruples for all values of n which
are perfect squares.

Another difference between Diophantine m-tuples and D(n)-tuples is that for some values
of n, there can exist sets with more than four elements that follow the properties of D(n).
Let’s first define

Mn = sup{|G| : G is a set with the property D(n)}

To find an upper bound on the number of elements, it can be split into an upper bound on
different groups of elements: large, small, and very small. We combine these three upper
bounds to get

Theorem 1.6.

Mn ≤ 31 for |n| ≤ 400,

Mn < 15.476 log n for |n| > 400.
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This is still a large upper bound and no D(n) sets have been found with a size close to
the upper bound for Mn. For prime numbers we can improve this upper bound for when the
primes are very large, since the previous bound will be better for smaller primes. If we set
p to be a prime number, we can find that Mp < 3× 2168 and M−p < 3× 2168.
D(n)-tuples have a relation with the Fibonacci and Lucas numbers. One of the major

findings is that a Diophantine quadruple can’t consist of only Fibonacci numbers. However,
we can still generate a Diophantine quadruple by using the Fibonacci numbers:

{F2x, F2x+2, F2x+4, 4F2x+1F2x+2F2x+3}

in which x is a whole number. Another relation ship between the Fibonacci and Lucas
numbers is that

{F2x, F2x+8, 9F2x+4, 4F2x+2F2x+4F2x+6}

is a D(F 2
x ) quadruple, and

{Fx−3Fx−2Fx+1, Fx−1Fx+2Fx+3, FxL
2
x, 4F

2
x−1FxF

2
x+1(2Fx−1Fx+1 − F 2

x )}.

is a D(L2
x) quadruple.

The upcoming section will talk about the restrictions on n in forming a quadruple, what
values form quadruples, and the special cases. The size estimate section covers an upper
bound for the number of elements in a set with the property D(n) depending on n. The
following section includes how a tuple can be a D(n)-tuple for multiple distinct n’s. In the
section after that includes a few of the many connections that these D(n)-tuples share with
the Fibonacci and Lucas numbers.

2. Quadruples

For the generic Diophantinem-tuple in which only 1 is added to the product of the numbers
from the set, it has been proved that the largest number of elements the set can contain is
four [12], and there are infinitely many such quadruples. However, for the various n’s that
are added to the products instead of 1, there is a notable difference in which of these n’s can
form quadruples while which of them can only form triples.

We will begin by proving a useful

Theorem 2.1. There exists infinitely many D(n) quadruples for when n is a perfect square.

Proof. To prove this we can use the fact that there exists infinitely many Diophantine quadru-
ples. Since n is a perfect square, let’s state n = k2 where k ∈ Z. Also, let {a1, a2, a3, a4} be
a Diophantine quadruple, so a D(1) quadruple, in which a ∈ Z. If we use 1 ≤ i, j ≤ 4 for
distinct i and j where i ∈ N and j ∈ N, we can see that

aiaj + 1 = c21

where c ∈ Z. If we multiply this entire equation by k2, we get

k2aiaj + k2 = c22.

We can rewrite k2aiaj as kai × kaj. This means that that the tuple {kai, kaj} follows the
property of D(k2). Thus, proving that we can turn the infinitely many D(1) quadruple into
infinitely many D(k2) quadruples by multiplying all of the elements in the quadruple by
k. ■
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2.1. Finding What Values for n that Quadruples Exist. The first case of n’s which
are not able to make quadruples is the simplest to prove.

Theorem 2.2. If n ≡ 2 (mod 4), there is no D(n) quadruple.

Proof. Suppose we have set {a1, a2, a3, a4} as a D(n) quadruple, and 1 ≤ i, j ≤ 4 for distinct
i and j where i ∈ N and j ∈ N. Since

aiaj + n = c2

where c ∈ Z, we notice that

aiaj ≡ 2 or 3 (mod 4)(2.1)

because c2 ≡ 0 or 1 (mod 4). (2.1) implies that none of the numbers in the set can be 0
(mod 4), leaving the 4 numbers to be 1, 2, or 3 (mod 4). However, to be a quadruple, there
would need to be a duplicate of either 1, 2, or 3 (mod 4). This contradicts (2.1), proving
that there are no D(n) quadruples if n ≡ 2 (mod 4). ■

The case we accounted for is when n = 4k + 2 where k ∈ Z, so we need to check what
happens when n is of the form 4k, 4k + 1, or 4k + 3. These numbers can be rewritten to
be in the form 4k + 3, 8k + 1, 8k + 5, 8k, 16k + 4, or 16k + 12. However, in order to show
the proof of these cases, we first need to show how a quadruple can be generated based on
a starting integer.

Suppose we have a pair of integers, a1, a2, such that the pair follows the properties of
D(n):

a1a2 + n = c2.(2.2)

We notice that we can include a1 + a2 + 2c in our set and it would still follow the property
of D(n). As a quick verification, we can see that

a1(a1 + a2 + 2c) + n = (a1 + c)2,

a2(a1 + a2 + 2c) + n = (a2 + c)2.

Applying this same principle to the new pair, a2, a1 + a2 + 2c, we are quickly able to obtain
a fourth number for our set. The number added is a1 + 4a2 + 4c, and from that we get our
D(n) quadruple,

{a1, a2, a1 + a2 + 2c, a1 + 4a2 + 4c},
when the product of the first and last element increased by n is a perfect square.

If we insert n = 2k into (2.2), we get

a1a2 + 2k = c2.

From here, we have that
a21 + 4(c2 − 2k) + 4a1c+ n = h2

where h ∈ Z, and we have

(a1 + 2c− h)(a1 + 2c+ h) = 6k.

We can split this into two separate equations to make

a1 + 2c− h = 6,

a1 + 2c+ h = k.
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From here, we can add both of these equations and multiply by 2 in order to get

2k = 4a1 + 8c− 12.

Using what we originally inserted into (2.2), we are able to rewrite this as

a1(a2 + 2) = (c− 2)(c− 6).

When we replace c = a1k + 2, we are able to find 2k as 4a1(2k + 1) + 4, enabling us to find
the D(4a1(2k + 1) + 4) quadruple:

{a1, a1k2 − 4k − 4, a2(1 + k)2 − 4k, a2(1 + 2k)2 − 16k − 8}.(2.3)

Through manipulation of a1, we are able to generate quadruples that fall under many mul-
tiples of k plus some constant. This formulates a base for how we can prove many D(n)
principles in which n is some mod k.

Theorem 2.3. If n is an integer such that n ̸∈ S = {−4,−3,−1, 3, 5, 8, 12, 20} and n ̸≡ 2
(mod 4), then there is at least one D(n) quadruple.

Of this set S, it has only been proved that no D(n) quadruple exists for n = −1 [2] and
n = −4. To show that no D(−4) quadruple exists, it was proved that all elements of a D(−4)
quadruple must be even. We can make use of Theorem 2.1 by dividing all the elements of
the D(−4) quadruple by 2 to reach a D(−1) quadruple. However, this is not possible since
it was shown in [2] that no D(−1) quadruple exists.

A conjecture exists the when n is an element in S, there doesn’t exist a quadruple, but
the remaining numbers are still yet to be proved. However, it has been proved that numbers
not of S are able to form at least one D(n) quadruple

Proof of Theorem 2.3. Similar to the quadruple (2.3) being a D(4a(2k + 1) + 4) quadruple,
it’s proved [8, Chapter 3.6.1] that sets with the property D(2a(2k+1)+1) can be expressed
as a quadruple in the 2 following ways:

{a, a(3k + 1)2 + 2k, a(3k + 2)2 + 2k + 2, 9a(2k + 1)2 + 8k + 4} and(2.4)

{a, a(k + 1)2 − 2k, a(2k + 1)2 − 8k − 4, ak2 − 2k − 2}.(2.5)

Using (2.4), a D(2a(2k+ 1) + 1) quadruple, we can manipulate n = 2a(2k+ 1) + 1 by using
a, making n be 4k+3, 8k+1, 8k+5, 8k, 16k+4, and 16k+12. a = 1 gives us a set with the
property of D(4k + 3). Setting a = 4 and substituting k′ = 2k + 1, we get a quadruple with
the property D(8k′ + 1). a = 2 gives us a set with the property of D(8k + 5). Multiplying
the elements of the set by 2, setting a = 1

2
, and substituting k′ = k + 1, we get a quadruple

with the property D(8k′). Setting a = 2 and substituting k′ = 2k + 1 we get a quadruple
with the property (16k′ +4). Quadruples of the last property, D(16k+12), can be obtained
by multiplying the elements of the quadruple for D(4k + 3) by 2. From (2.4) and these
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manipulations, we have obtained the following quadruples with said properties:

D(4k + 3) : {1, 9k2 + 8k + 1, 9k2 + 14k + 6, 36k2 + 44k + 13}
D(8k + 1) : {4, 9k2 − 5, 9k2 + 7k + 2, 36k2 + 4k}
D(8k + 5) : {2, 18k2 + 14k + 2, 18k2 + 26k + 10, 72k2 + 80k + 22}

D(8k) : {1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}
D(16k + 4) : {4, 9k2 − 4k − 1, 9k2 + 8k + 3, 36k2 + 8k}
D(16k + 12) : {2, 18k2 + 16k + 2, 18k2 + 28k + 12, 72k2 + 88k + 26}

Although it may seem like we have proved that all values for n not of the form n = 4k+2
are able to form a D(n) quadruple, there is something that needs to be considered. If we
insert small values as k into the quadruples, we run into the problem of elements in the set
being equal or non-positive. k = −1 has this problem for the quadruples with properties
D(4k + 3), D(8k + 1), D(8k + 5), D(16k + 4), and D(16k + 12). k = 0 has this problem
for all 6 quadruples. k = 1 has this problem for quadruples with properties D(8k + 1),
D(8k), and D(16 + 4). We obtain 14 numbers from inserting these values of k: -12, -7,
-4, -3, -1, 0, 1, 3, 4, 5, 8, 9, 12, and 20. However, we have proved that there exists D(n)
quadruples for when n is a perfect square in Theorem 2.1, meaning we can remove 0, 1, 4,
and 9 from our list in order to make the theorem more specific. It has also been proved that
there exists a D(−12) quadruple, {1, 12, 28, 76}, and a D(−7) quadruple, {1, 8, 11, 16}. Since
there exists a quadruple for these numbers, we are able to narrow down our list further to be
S = {−4,−3,−1, 3, 5, 8, 12, 20}. As stated earlier, a conjecture exists that the elements of
S can’t form a quadruple with the property D(n). If proved true, then S can’t be narrowed
down further. Since this has not been proved yet, we stick to the theorem that if n ̸∈ S and
n ̸= 4k + 2, then there exists at least one D(n) quadruple. ■

Similarly, we can make sets of quadruples by using (2.5). The sets we can make also have
property D(2a(2k + 1) + 1), so we are able to manipulate them in the same way to form
six quadruples with properties D(4k + 3), D(8k + 1), D(8k + 5), D(8k), D(16k + 4), and
D(16k + 12).

D(4k + 3) : {1, k2 − 2k − 2, k2 + 1, 4k2 − 4k − 3}
D(8k + 1) : {4, k2− 3k, k2 + k + 2, 4k2 − 4k}
D(8k + 5) : {2, 2k2 − 2k − 2, 2k2 + 2k + 2, 8k2 − 2}

D(8k) : {1, k2 − 6k + 1, k2 − 4k + 4, 4k2 − 20k + 9}
D(16k + 4) : {4, k2 − 4k − 1, k2 + 3, 4k2 − 8k}
D(16k + 12) : {2, 2k2 − 4k − 4, 2k2 + 2, 8k2 − 8k − 6}

Theorem 2.4. Let T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84}. If n ̸= 4k + 2
and n ̸∈ S ∪ T , then there exists at least 2 unique D(n) quadruples.

Similar to how we proved Theorem 2.3, we can also insert small numbers for k that run
into the similar block, resulting in a list of numbers. We are able to narrow down the list
by removing the perfect squares and by removing 11, 17, 33, and 40. We are able to remove
these because of the quadruples from (2.4) and the fact that separate D(n) quadruples can
be made for these numbers: {2,7,19,35}, {1,8,19,208}, {8,51,101,296}, and {1,24,41,129} for
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D(11), D(17), D(33), and D(40) respectively. Resulting from this, we get the narrowed
down set of T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 52, 60, 84}. A much more formal
demonstration of this can be found in [4].

2.2. Specific Cases for Values of n. For some values of n, there can be limitations on
which types of numbers must be elements of the set in order to be able to from a quadruple.
Similarly, some follow the principle of how specific types of numbers can’t be part of a
quadruple to form some D(n) quadruple. An example of one of the types of numbers that
follows a restriction on the elements of the set is n ≡ 5 (mod 8).

Theorem 2.5. If n = 8k+5, all elements of a quadruple which follows property D(n) must
be 2 (mod 4).

Proof. To do this we can show how there can’t exist a D(8k + 5) quadruple if any elements
of the set are odd or are of 0 (mod 4). {a1, a2, a3, a4} is our D(8k + 5) quadruple, and
1 ≤ i, j ≤ 4 for distinct i and j. Since aiaj + n is a perfect square,

aiaj ≡ 3, 4, or 7 (mod 8).

If we assume a1 to be even and a2 to be odd, a1a2 must be 4 (mod 8), meaning a1 ≡ 4
(mod 8), and a3 and a4 must be odd. In order for a1, a2, a3, and a4 to form a quadruple,

a2a3, a3a4, and a4a2 ≡ 3 (mod 4),

but this is false since at least one of these products will be 1 (mod 4). This is because there
are 3 odd numbers in the quadruple, there must be a duplicate of either 1 (mod 4) or 3
(mod 4). This proves 3 odd elements wouldn’t work in a set with this property and neither
will 4. Also, when we put a1 as 4 (mod 8) which is 0 (mod 4), the remaining elements must
be odd in order to avoid a product of 0 (mod 8), proving that there can’t exist a D(8k + 5)
quadruple if any elements are odd or 0 (mod 4). All elements of the quadruple must be of
form 4k + 2. ■

Although it required a much more complicated process, the proof that there exists no
D(−1) quadruple initially started in a similar manner as how we proved Theorem 2.5. It
involved many restrictions on what D(−1) triples couldn’t be extended, some of such are
shown in [3].

For certain values of n, rather than there being a maximum for how many quadruples can
be made with the property D(n), there is a proved minimum for how many distinct D(n)
quadruples can be made. Namely, when n is of 1 (mod 8), 4 (mod 32), or 0 (mod 16), there
exists at least six distinct D(n) quadruples except for a few exceptions. The proof for all
three of these is similar to one another, so this paper only includes the proof for 1 (mod 8),
but the rest can be found in [6].

Theorem 2.6. If n = 8k + 1 and n ̸∈ U = {−15,−7, 17, 33} then are at least six distinct
quadruples with property D(n).
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Proof. In a similar method to how we generated (2.3) by manipulating variables, the following
sets represent the four quadruples that can be formed with the property of D(8k + 1).

{4, 9k2 − 5k, 9k2 + 7k + 2, 36k2 + 4k}
{4, k2 − 3k, k2 + k + 2, 4k2 − 4k}

{8, 1
2
k(k + 3) + 3,

1

2
k(k − 5) + 1, 2k2 − 2k}

{8, 1
2
k(9k − 11) + 1,

1

2
k(9k + 13) + 3, 18k2 + 2k}

In order to get two more quadruples to show how at least six distinct ones can be made,
we can split 8k + 1 into 16k′ + 1 and 16k′ + 9 where k′ ∈ Z. The following sets show two
quadruples that follow property D(16k′ + 1).

{k′ − 3, 4k′, 9k′ − 1, 16k′ − 8}
{4k′, 25k′ + 1, 49k′ + 3, 144k′ + 8}

The following sets show two quadruples that follow property D(16k′ + 9).

{k′, 16k′ + 8, 25k′ + 14, 36k′ + 20}
{k′ − 1, 4k′, 9k′ + 5, 16k′ + 8}

Although it might seem like it has been proved that there exists at least six distinct D(n)
quadruples when n = 8k + 1, we still need to consider when elements are the same or sets
coincide. We can eventually conclude that we can get six distinct D(16k′ + 1) quadruples
for k′ ̸∈ {−2,−1, 0, 1, 2, 3} and six distinct D(16k′ + 9) quadruples for k′ ̸∈ {−3,−1, 0, 1, 3}.

The resulting numbers we get for n are −39,−31,−15,−7, 1, 9, 17, 25, 33, 49, 57. How-
ever, we are able to narrow down this list. We can remove 1, 9, and 25 from the list be-
cause they are perfect squares. For n = −31, the quadruple generating sets were able to
generate four distinct quadruples, with the other two being duplicates or not forming a
quadruple. Still, we are able to form two quadruples different from what the sets generate,
{1, 40, 47, 56} and {1, 40, 287, 320}, proving that there are at least six quadruples with the
property D(−31). When n = −39 and n = 57, the sets were able to generate five distinct
quadruples for each. Sixth D(−39) and D(57) quadruples that have not been account for
are {1, 43, 48, 3520} and {1, 7, 24, 232} respectively. We were able to narrow down the list to
be set U = {−15,−7, 17, 33}, proving that there exists at least six distinct D(n) quadruples
when n = 8k + 1 and n ̸∈ U = {−15,−7, 17, 33}. ■

As stated earlier, we can go through a very similar process to show how for each property
D(32k + 4) and D(16k), there exists at least six distinct quadruples with a few exceptions.
The following two theorems have been proved in a similar manner [6]:

Theorem 2.7. If n = 32k+4 and n ̸∈ V = {−28, 68} then are at least six distinct quadruples
with property D(n).

Theorem 2.8. If n = 16k and n ̸∈ W = {−16,−8, 8, 24, 32, 40, 48, 80} then are at least six
distinct quadruples with property D(n).

Another type of n that gives us a minimum for the number of distinct quadruples that
can be made with the property D(n) are numbers that are 8 (mod 16), 13 (mod 24), 21
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(mod 24), 3 (mod 12), and 7 (mod 12) [6]. For these values of n, with the exception of a
few numbers once again, there exists a minimum of four distinct D(n) quadruples.

Theorem 2.9. If n = 24k+13 or 24k+21 and n ̸∈ X = −27,−11,−3, 13, 21, 45, 117, there
exists at least four distinct D(n) quadruples.

Theorem 2.10. If n = 12k + 3 or 12k + 7 and n ̸∈ Y = −9,−5, 3, 7, 15, 27, 63, there exists
at least four distinct D(n) quadruples.

3. Size Estimate

A common question that rises is how large can these D(n)-tuples get. Although it varies
throughout the different values of n, we can form an upper bound on the supremum. It was
found through forming cases based on the size of n. First, let’s define

Mn = sup{|G| : G is a set with the property D(n)}

where |G| refers to the number of elements in G. It has already been proved that M4

and M1 are 4. We also showed the proof of how M4k+2 = 3 and Mn ≥ 4 for n ̸∈ S =
{−4,−3,−1, 3, 5, 8, 12, 20}, but what reasonable size estimate can be formed for the rest of
the values of n?

The proof began by forming a supremum for the number of elements that can be in the
set for each of 3 cases: greater than |n|3, between n2 and |n3|, and between 1 and n2.

An = sup{|G ∩ [|n3|,+∞]| : G is a set with the property D(n)}
Bn = sup{|G ∩ (n2, |n3|)| : G is a set with the property D(n)}
Cn = sup{|G ∩ [1, n2]| : G is a set with the property D(n)}

Although it’s evident that Mn ≤ An +Bn +Cn when all elements of the set are positive, it’s
different when there are mixed signs: Mn ≤ 2Cn [8, Chapter 5.2]. This is because if there
are non-positives, then all the elements of the set must be of less than |n| for a D(n)-tuple
to exist. Thus, we get that Mn ≤ 2Cn in that case. However, this will not be of use until
the next subsection. This is because we are able to get a better upper bound than we would
get from using Mn ≤ 2Cn. So, we have

Mn ≤ max(An +Bn + Cn, 2Cn)(3.1)

From finding An, Bn, and Cn over intervals for n since some of the suprema vary depending
on what interval n falls in, we are able to obtain three lemmas. Two of these lemmas rely
on the gap principle, a detailed explanation on what it is can be found on [17]. The last of
these lemmas uses the large sieve method.

Theorem 3.1.

Mn ≤ 31 for |n| ≤ 400,

Mn < 15.476 log n for |n| > 400.

Proof. An is the estimate of the number of large elements that can be in G. Through using
a gap principle [8, Chapter 5.2.1], we can prove

Lemma 3.2. An ≤ 21 for all nonzero integers n.
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Bn is the estimate of the number of small elements that can be in G. By using a variant
of the gap principle [7], we can prove

Bn < 0.65 log |n|+ 2.24.

Eventually, a more detailed analysis of the gap principle was done [8, Chapter 5.2.2], proving

Lemma 3.3. Bn < 0.6114 log |n| + 2.158 when |n| ≤ 400, and Bn < 0.6071 log |n| + 2.152
when |n| > 400.

To find Cn, the estimate of the number of very small elements that can be in G, we have
to go through a much more complicated process. It relies on using the large sieve method,
finite fields fields obtained from sums, and other principles [8, Chapter 5.2.3] to obtain

Lemma 3.4. Cn < 11.006 log |n| for |n| > 400.

When |n| ≤ 400, Cn ≤ 5. This is easy to show through the use of a computer. Also,
from combining that with Lemma 3.3 and Lemma 3.2, we are able to show the first part of
Theorem 3.1:

Mn ≤ 31 for |n| ≤ 400.

When |n| > 400, we are able to combine all three lemmas, proving the second part of
Theorem 3.1:

Mn < 15.476 log n for |n| > 400.

■

These two inequalities form an upper bound for the supremum of how many elements exist
in G. Still, farther reduction is most likely possible to make a much more sound estimate for
Mn through the various values of n. It’s conjectured that Mn ≤ 6, a large distance from the
upper bound. However, that result is far away form being proved and still just a conjecture.

3.1. Primes. For sets with the property of D(p) and D(−p) in which p is a prime number,
the process to find the upper bound for Mp and M−p is done quire differently. Let’s say we
have a set P = {a1, a2, . . . , am} and 1 ≤ i, j ≤ k in which i ̸= j. We have that aiaj + p = c2.
When the tuple has property D(−p), there can’t be mixed signs. However, for D(p), when
there can be mixed signs, so we will just have to multiply the bound by 2 to get the absolute
upper bound as we can see from (3.1) how this is done to Cn. Also, it is important to note
that in the set P , there can only exist one multiple of p. We can show this through seeing
what would happen if there were two multiples of p: ai and aj. We could say aiaj + p = c2

since ai and aj follow the property of D(p), but performing modulo p2 results in

p ≡ c2 (mod p2).

However, this is contradictory and wouldn’t work, proving that there can be at most one
multiple of p in set P .

Without loss of generality, let’s assume that P is in increasing order. That is 0 < a1 <
a2 < · · · < am. Also, if we have elements of the set, ai and aj, let’s put the result of the
product increased by p as aiaj+p = c2i,j to allow c to assume multiple numbers. Immediately,

we can begin by proving that a3 > p
1
4 . To do this, we can first note a1a3 + p = c21,3 and

a2a3 + p = c22,3. Now we have

c2,3 > c1,3 > p
1
2 .
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Also,

a23 > a3(a2 − a1) = c22,3 − c21,3 = (c2,3 − c1,3)(c2,3 + c1,3) = 2p
1
2 ,

proving

a3 > p
1
4 .

If instead, it were a D(−p)-tuple,

a22 > a1a2 = c21,2 + p > p, so

a2 < p
1
2 .

In this case, the inequality from the D(p) case still holds true. Also, if we eliminate the first

2 elements of the set, a1, a2, if needed, we are able to state that a > p
1
4 for all a in the set.

In addition, we also can see that from Lemma 3.2, the number of elements in the set such
that a > p3 is less than or equal to 21. If we were to remove those elements from the set,
we would have that for all a in set P , p

1
4 < a < p3. Through the use of this and the gap

principle, the theorem below has been proved [9].

Theorem 3.5. For a set D(p), Mp < 3× 2168, and for a set D(−p), M−p < 3× 2168 for all
prime numbers p.

Also, for when p ≤ 22
76
, we can use Theorem 3.1 to notice that Mp ≤ 280. This means

that Theorem 3.5 is best used for when p > 22
76

since we can get a better bound for the
other case.

4. D(n) Sets With the Same Elements for Several n’s

So far through this paper, D(n) sets have only been looked at as though they were just a
set of elements that follow the property of D(n). However, in a new perspective, these sets
can follow more than just the property of D(n). The can be sets of D(n1), D(n2), D(n3),
and so on. For example, we can show that such triples exist by using a part of the famous
quadruple, {1, 3, 8, 120}, mentioned earlier. We already know the triple {1, 8, 120} is a D(1)
triple. However, it’s also a D(721) triple. Another such triple is {8, 21, 55}, which is both a
D(1) and D(4321) triple. Both of these immediately dismiss the initial conjecture of how if
there is a D(1) triple, that same triple can’t follow the property of D(n) where n ̸= 1. Now,
a question that rises is what is the maximum numbers that n could be such that a D(1)
triple follows the property of D(n)-tuples for all such n’s.

Proposition 4.1. For a triple {a1, a2, a3}, it can only be a D(n) triple for a finite number
of distinct n’s.

Proof. In this set {a1, a2, a3} that is a D(n) triple, if we replace the n being added for x, we
are able to use the fact that

a1a2 + x = c21,2

a2a3 + x = c22,3

a3a1 + x = c21,3

in which c ∈ Z. From this, we are able to generate the equation

y2 = (a1a2 + x)(a2a3 + x)(a3a1 + x).
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We are able to replace all the c2’s multiplied together to be y2. This equation is an elliptic
curve, and these curves are closely studied when studying on Diophantine m-tuples. It also
helps in partially deducing an answer to our initial question of how many distinct values
there can be for n such that the triple {a1, a2, a3} is a D(n) triple for all of these values of n.
Since this elliptic curve has a finite number of integer points, we know that a triple can’t be
a D(n) triple for an infinite number of values for n. An elementary proof of this explanation
can be found on [19] ■

Also, another question that rose was on how many triples there are such that are D(1),
D(n1), and D(n2) triples. It has been proved there exists infinite different triples that can
be expressed as D(1), D(n1), and D(n2) in which n2 and n3 ̸= 1 and n1 ̸= n2. Specifically,
what was proved was

Theorem 4.2. For the D(1) quadruple {2, a1, a2, a3}, the triple {a1, a2, a3} forms a D(1)
triple as well as a D(n) triple for two distinct values of n and n ̸= 1.

To prove this we will be using

Lemma 4.3. For the positive integers a1, a2, and a3 where a1 + a2 + a3 is even, {a1, a2, a3}
is a D(n) set where

n1 =
1

4
(a1 + a2 + a3)

2 − a1a2 − a2a3 − a3a1

given that n1 ̸= 0.

In this theorem, n1 = 1 only when a3 = a1 + a2 ± 2
√
a1a2 + 1. Also, n1 ̸= 0, so we are

able to obtain

Corollary 4.4. A D(1) triple, {a1, a2, a3}, in which a1 + a2 + a3 is even and a3 ̸= a1 + a2 ±
2
√
a1a2 + 1, it’s a triple that follows the property of D(1) and D(n1) for n1 ̸= 1.

We can analyze 2a1 + 1, 2a2 + 1, and 2a3 + 1 to notice that since all of them must result
in a perfect square, we can conclude that a1,a2, and a3 are all even due to the property of
perfect squares being either 0 or 1 (mod 4).

Using Corollary 4.4, we are able to find one of such distinct n’s. To find another distinct
n such that n2 ̸= 1 and n2 is not the same as the n1 found by using Corollary 4.4, we have to
go through a different process. From [1], we can find that it’s proved that n2 = a1 + a2 + a3
with the except of some values of n. We are able to get this in [1] because {2, a1, a2, a3} is a
regular Diophantine quadruple. More formally, we have

Lemma 4.5. Let {2, a1, a2, a3} be a Diophantine quadruple. Then {a1, a2, a3} is a D(n)
triple for n = a1 + a2 + a3.

Without loss of generality we can say that the quadruple {a1, a2, a3} is in increasing order.
We have that 2 < a1 < a2 < a3, so we know that a1+a2+a3 ≥ 12. Lemma 4.5 was proved [1]
to not work for when n ∈ {−5,−3,−2, 0, 1, 3}, but we know that n ≥ 12 so we can disregard
this. Also, from this we know that n2 ̸= 1.

To check that n1 ̸= n2 we are able to see that if n1 = n2 would lead to a contradiction
when a3 ≥ 1024. However, when a3 < 1024, the only triple {a1, a2, a3} that we can get
where where {2, a1, a2, a3} is a regular Diophantine quadruple we can get is {4, 12, 420}. In
this case, n1 ̸= n2, thus we have proved Theorem 4.2.
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Moving on from triples, the new question is whether or not there exist a set {a1, a2, a3, a4}
that is a D(n) quadruple for more than 1 distinct values of n. One demonstration of this
showing that it’s certainly possible is the set {−1, 7, 64, 119} being both aD(128) andD(848)
quadruple. In fact, it was proved in [10] that there exists infinitely many quadruples such
that the quadruple is a D(n) quadruple for two distinct nonzero values of n.

5. Relation with Fibonacci Numbers

These D(n)-tuples also have connections with the Fibonacci and Lucas numbers. The
Fibonacci numbers being Fn such that F1 = 1, F2 = 1, and Fx+2 = Fx+1 + Fx in which x is
a whole number. The Lucas numbers can be expressed as Ln such that L1 = 1, L2 = 3, and
Lx+2 = Lx+1 + Lx. The Lucas numbers can also be written as Lx = Fx−1 + Fx+1.
The first question that commonly rises when people learn that a connection between

Fibonacci numbers and D(n)-tuples exists is whether or not there exists a D(n) quadruple
of Fibonacci numbers. For triples, there exists infinitely many. Any triple that falls under
the form

{F2x, F2x+2, F2x+4}

forms a D(1) triple. The 4th term can be created by multiplying terms of the Fibonacci
numbers together. Many have also proved

Theorem 5.1. No regular Diophantine quadruples exist consisting of only Fibonacci num-
bers.

To prove this, we need multiple lemmas and equations which will be listed bellow.

Lemma 5.2. Let’s say that x and k are positive integers, and {F2x, F2x+2, Fk} is a Diophan-
tine triple. Then k = 2x + 4 or k = 2x − 2 (only when x > 1) except for x = 2, in which
case k = 1 would work.

We will also be using the Binet formula for Fn in which we will set (α, β) = (1+
√
5

2
, 1−

√
5

2
)

to get

(5.1) Fx =
αx − βx

α− β
when x ≥ 0.

Also, from the use of the Binet formula, we can get an estimate on the size of Fx through
using the inequality

(5.2) αx−2 ≤ Fx ≤ αx−1 when x ≥ 1.

Similarly, the Lucas numbers also have a Binet formula being

(5.3) Lx = αx + βx when x ≥ 0.

The Fibonacci number and Lucas numbers have many equations to relate the two. One
which will be useful for us to make our proof is

(5.4) L2
x − 5F 2

x = 4(−1)x when x ≥ 0.

The equations and inequalities listed above can be found in [18]. We will also be using

Lemma 5.3. If FxFx+2 + 1 or FxFx+4 + 1 is a perfect square for when x > 2, x must be
even.
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Proof. To show this, we have to start by using the fact that when x is odd, FxFx+2−1 = F 2
x+1

and FxFx+4 − 1 = F 2
x+2. If x were the sane odd and FxFx+2 +1 and FxFx+4 +1 were perfect

squares, it would mean the difference between the perfect squares would be 2, which wouldn’t
make sense proving that x must be even. ■

Another useful lemma to us is

Lemma 5.4. We have k ∈ {1, 3}. If FxFx+k + 1 is a perfect square for positive integers x,
then x = 4 and k = 1.

Proof. We can begin by using formulas (5.1) and (5.3) to get

FxFx+k + 1 =
1

5
(αx − βx)(αx+k − βx+k) + 1 =

1

5
(L2x+k − (−1)xLk + 5).

This means that for FxFx+k + 1 = t2 for t ∈ Z, so for FxFx+k + 1 to be a perfect square,

L2x+k = 5t2 + ((−1)xLk − 5).

If we insert this into formula (5.4) and replace x with 2x+ k, we get

(5.5) 5F 2
2x+k = L2

2x+k − 4(−1)k = 25t4 + 10((−1)xLk − 5)2 − 4(−1)k.

Let’s first assume that k = 1. We notice that if x were even or if x were odd we would
be left with two separate cases. Also, let’s set y = F2x+k. In the case of x being even, we
are able to reduce (5.5) to y2 = 5t4 − 8t2 + 4. From here it’s possible to find that the two
positive integer solutions for (t, y) are (1, 1) and (4, 34). Since y = F2x+1, it follows that
for the solutions of y, 1 and 34, we have that x = 0 and 4 respectively. Alternatively, when
x is odd, we can reduce (5.5) to y2 = 5t4 − 12t2 + 8. This equation only has one positive
integer solution which is y = 1 and t = 1. Once again, if y is 1 and also y = F2x+1, then
x = 0. However, both of the x = 0 solutions aren’t convenient for us since this proof is for
positive integers x which is all that’s useful for us in proving Theorem 5.1. This means the
only solution for x we are left with is x = 4

Now let’s assume that k = 3. In the case which x is even, we have 5y2 = 25t4 − 20t2 + 8.
In this case, there are no positive integer solutions. Similarly, there are no positive integer
solutions to 5y2 = 25t4−80t2+68, proving that for k ∈ {1, 3}, FxFx+k+1 is a perfect square
only when k = 1 and x = 4. ■

We also will be using

Lemma 5.5. If Fx + 1 is a perfect square for positive integers x, then x ∈ {4, 6}.

Proof. If we say that Fx + 1 = t2 for positive integers t, we can rewrite this as Fx = t2 − 1.
If we insert this into (5.4) and also set y = Lx, we get

y2 = 5F 2
x + 4(−1)x = 5t4 − 10t2 + 5 + 4(−1)x

Similar to how we proved Lemma 5.4, we will also split this into two cases, x be even and
x being odd. We then can get the equations, y2 = 5t4 − 10t2 + 9 and y2 = 5t4 − 10t2 + 1
for even and odd x respectively. The positive integer solutions to the equation we get from
x being even are (t, y) = (1, 2), (2, 7), (3, 18). We get no positive integer solutions when x is
odd. Now that we have the t values of 1, 2, and 3, we can insert this back into Fx = t−1.
From this, we get Fx = 0, 3, 8 for t = 1, 2, 3 respectively. Also, when Fx = 0, x = 0 which
is not a positive integer and also not helpful in proving Theorem 5.1. Thus, we have proved
that if Fx + 1 to be a perfect square for positive integers x, then x ∈ {1, 3}. ■
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Theorem 5.6. If we have a regular Diophantine triple {Fx1 , Fx2 , Fx3} such that x1 < x2 <
x3, then we have that x1 + 2 = x2 and x1 + 4 = x3.

Proof. We have that Fx3 = Fx1 + Fx2 + 2
√

Fx1Fx2 + 1 (recall Definition 1.3). From here, we
can get that Fx2 < Fx3 < 4Fx2 < Fx2 + 4. From this inequality, we can see that because
Fx3 < Fx2 + 4, we can get that Fx3 = Fx2 + c for some c ∈ {1, 2, 3}. From here, we can use
that Fx2Fx3 + 1 is a perfect square. For now, if we say that c ̸= 2, then c ∈ {1, 3}. Using
Lemma 5.4, it would mean that x1 = 4 and x3 = 5, so Fx1 = 3 and Fx1 = 5. If we put
this into the triple, we would have {Fx1 , 3, 5}. However, neither Fx1 = 1 nor Fx1 = 2 work,
thus proving that we must have c = 2. Also, from Lemma 5.3, we can see that x2 must be
even. Using Lemma 5.2 and due to x2 being even, it satisfies the property conditions, thus
proving that x1 = x2 − 2. There is a contradiction listed in Lemma 5.2 which states that
when x2 = 4, in addition to x1 = 2, we can also have x1 = 1. Still, Theorem 5.6 holds true,
thus proving it. ■

Proof of Theorem 5.1. Suppose we have a regular Diophantine quadruple, {Fx1 , Fx2 .Fx3 , Fx4}
(recall Definition 1.4). We will set it in order by stating x1 < x2 < x3 < x4. Also we know
that if an element of this set was 1 meaning x1 = 1 or 2 it wouldn’t be able to form a regular
quadruple consisting of Fibonacci numbers. This is since x2 and x3 could only be 4 or 6 as
we can see from Lemma 5.5, so we wouldn’t be able to get an x4 to satisfy the conditions.
Thus, Fx1 bust be greater than 1, meaning x1 ≥ 3.

Now, from using Lemma 5.2 as well as Lemma 5.4 we can see that x2 ≥ x1 + 4 ≥ 7 and
x3 ≥ x2 + 4 ≥ 11. Also, we can find a lower bound for x4 since

(5.6) Fx3(4Fx1Fx2 + 1) < Fx4 < 4Fx3(Fx1Fx2 + 1),

we can get that x4 ≥ x1 + x2 + x3 − 2 ≥ 19. Another result we get from (5.6) is that

4

5
(1− 1

α2x3
)(1 +

1

α2x4
)−1((1− 1

α2x1
)(1− 1

α2x2
) +

5

4
α−x1−x2) < αx4−x3−x2−x1 and

αx4−x3−x2−x1 <
4

5
(1 +

1

α2x3
)(1− 1

α2x4
)−1((1 +

1

α2x1
)(1 +

1

α2x2
) +

5

4
α−x1−x2).

This means that 0.76 < αx4−x3−x2−x1 < 0.88. However, this is not possible. We can see this
by showing that for for when x4 − x3 − x2 − x1 is a positive integer, it wouldn’t work since
αx4−x3−x2−x1 > 0.88. Also for α−1 and any integer smaller for the exponent, the result will
be less than 0.76. Thus, we are unable to form a regular Diophantine quadruple consisting
of only Fibonacci numbers. ■

After it was proved that regular Diophantine quadruples could not consist of only Fi-
bonacci numbers, it was also eventually proved that irregular Diophantine quadruples could
not consist of only Fibonacci numbers [11]. Thus, through using both of these, they were
able to form

Theorem 5.7. There exists no four positive integers x1, x2, x3, x4 such that {Fx1 , Fx2 , Fx3 , Fx4}
is a Diophantine quadruple.

One of the earlier demonstrations of how the Fibonacci numbers are connected is done
through Diophantine m-tuples, the generic case of D(1). It was discovered that the set
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{F2x, F2x+2, F2x+4, 4F2x+1F2x+2F2x+3} is a D(1) quadruple [13]. A simple test shows how so.

F2x × F2x+2 + 1 = F 2
2x+1

F2x × F2x+4 + 1 = F 2
2x+2

F2x × 4F2x+1F2x+2F2x+3 + 1 = (2F2x+1F2x+2 − 1)2

F2x+2 × F2x+4 + 1 = F 2
2x+3

F2x+2 × 4F2x+1F2x+2F2x+3 + 1 = (2F 2
2x+2 + 1)2

F2x+4 × 4F2x+1F2x+2F2x+3 + 1 = (2F2x+2F2x+3 + 1)2

Now let’s demonstrate how the Fibonacci numbers correlate with with more than just
D(1). We can use a, such that a ∈ Z, to generate 2 numbers for our quadruple to have,
k − a, and k + a, such that

(k − a)(k + a) + a2 = y2(5.7)

where y ∈ Z. We can insert a = 1 into (5.7). Through this, we can obtain other elements to
form a quadruple.

{k − 1, k + 1, 4k, 16k3 − 4k},
{k − 1, k + 1, 16k3 − 4k, 64k5 − 48k3 + 8k}

are examples of such quadruples that can be obtained for D(1). If we insert a = 2 into (5.7),
we can get quadruples

{k − 2, k + 2, 4k, 4k3 − 4k},
{k − 2, k + 2, 4k3 − 4k, 4k5 − 12k3 + 8k},

and more quadruples that follow the same pattern in order to obtain D(4) quadruples. Also,
{k − 4, k + 4, 4k, 4k3 − 4k} is a D(16) quadruple for k > 4. This demonstrates how various
D(a2) quadruples are able to form various D(a2) quadruples by using this principle.

Now, we can use a Fibonacci relation [18] to show that

F2iF2i+2j + F 2
j = F 2

2i+j.

There is a similarity to this and (5.7). We can substitute a = Fj. The first two elements of
the set that will be used are F2i and F2i+2j. The k from the equation reflects F2i+j. By using
j = 1, 2, 3, 4, 6, and by using the Lucas number property of Lx = Fx−1 + Fx+1, the following
four theorems have been reached.

Theorem 5.8. The following sets are quadruples that have the property D(1).

{F2x, F2x+2, F2x+4, 4F2x+1F2x+2F2x+3}
{F2x, F2x+4, 5F2x+2, 4L2x+1F2x+2L2x+3}

Theorem 5.9. The following sets are quadruples that have the property D(4).

{F2x, F2x+6, 4F2x+2, 4F2x+1F2x+3F2x+4}
{F2x, F2x+6, 4F2x+4, 4F2x+2F2x+3F2x+5}

Theorem 5.10. The following set is a quadruple that has the property D(9).

{F2x, F2x+8, 9F2x+4, 4F2x+2F2x+4F2x+6}
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Theorem 5.11. The following set is a quadruple that has the property D(64).

{F2x, F2x+12, 16F2x+6, F2x+3F2x+6F2x+9}

Another connection between the two is when n = F 2
x or when n = L2

x. Through using the
identities

4Fx−1Fx+1 + F 2
x = L2

x,

(F 2
x + Fx−1Fx+1)

2 − 4Fx−1Fx+1F
2
x = 1,

it’s been proved in [5] that we are able to obtain a quadruple with the property D(F 2
x ):

{2Fx−1, 2Fx+1, 2F
3
xFx+1Fx+2, 2Fx+1Fx+2Fx+3(2F

2
x+1 − F 2

x )}.

By using the Morgado identity [16]

Fx−3Fx−2Fx−1Fx+1Fx+2Fx+3 + L2
x = (Fx(2Fx−1Fx+1 − F 2

x ))
2,

and by using the identities

4Fx−2Fx+2 + L2
x = 9F 2

x ,

(F 2
x + Fx−2Fx+2)

2 − 4Fx−2Fx+2F
2
x = 1,

it’s been proved in [5] that we are able to obtain a quadruple with the property D(L2
x):

{Fx−3Fx−2Fx+1, Fx−1Fx+2Fx+3, FxL
2
x, 4F

2
x−1FxF

2
x+1(2Fx−1Fx+1 − F 2

x )}.

Another idea that has been considered and researched is that if Fibonacci numbers could
be the result of 1 added to the product of two distinct numbers in the set. This idea steers
away from the result being a perfect square, so it doesn’t follow the property of D(n). For
example, suppose we have a D(1) triple {a1, a2, a3}. It has been proved in [14] that a1a2+1,
a2a3 + 1, and a3a1 + 1 cannot all three result in a Fibonacci number. For Lucas numbers, it
doesn’t follow the same rule as the Fibonacci numbers, and instead, the following theorem
has been proved in [15].

Proposition 5.12. The set of positive integers {a1, a2, a3} such that

a1a2 + 1 = Lx1

a2a3 + 1 = Lx2

a3a1 + 1 = Lx3

for a1 < a2 < a3 only exists when {a1, a2, a3} = {1, 2, 3}

In this single existing case, a1a2 + 1 = L2 = 3, a2a3 + 1 = L4 = 7, and a3a1 + 1 = L3 = 4.
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